Research

What we are

The main interest of our research group is Quantum Information and its relations with Thermodynamics, Relativity (both special and general) and Quantum Mechanics. Although we are a group of theoreticians, we also have interest in experimental physics, specially in quantum optics and nuclear magnetic resonance. Bellow we describe some of the areas that we have interest and our full publication list.

Specific Research Interests

Quantum Information. Motivated by the possibility of improving the capacity of information processing using the laws of Quantum Mechanics, Quantum Information Science raised approximately 30 years ago. It is based on the extension of Shannon's Information Theory to the quantum world. It was soon realized that developments in this field could help us to investigate a great variety of problems.

Quantum Information is a theoretical framework developed to study how the laws of quantum mechanics can be used to understand and maximize the efficiency in the acquisition, transmission and processing of information. These achievements had provide us with new ideas and technical tools whose generality and universality allowed then to be applied to many different areas of physics, such as condensed matter, quantum computation and high energy physics, just to name a few. Moreover, conceptual advances are boosting the raising of a new technological era, based on the quantum properties of matter, with a huge potential impact on our everyday life.

Our interest rests on the basis of this theory, particularly the so called Information Geometry, a theory employing the tools of differential geometry to study Quantum Information. Although our main research lines are the application of quantum information to physics, problems in the foundations of the theory are also considered.

Quantum Thermodynamics. Thermodynamics lies at the very basis of physics and the great social and technological improvement in human life brought by its development can hardly be quantified. Quantum Thermodynamics is a theoretical framework that tries to answer questions like how the thermodynamic phenomena emerge from the reversible laws of quantum mechanics. How can we extend, and until what level, the laws of macroscopic thermodynamics to the quantum world? Is that possible to apply thermodynamics to small, out-of-equilibrium quantum systems? It seems that Quantum Information holds the key to answer such deep questions.

Recently we have witnessed a huge interest in this field from both theoreticians and experimentalists. The application of the laws of Thermodynamics when quantum effects, like entanglement, correlations and quantum fluctuations come into play are changing the way we look at the very basis of these fundamental theories. Moreover, it became clear that the development of a consistent formalism for Quantum Thermodynamic is a key feature for the development of future quantum technologies. 

Relativity. General relativity describes gravity as a four-dimensional geometric structure called space-time, in which the concepts of absolute space and time cease to exist. Gravity is therefore a geometric consequence of the curvature of space-time in the presence of mass and energy. Several theoretical predictions have been experimentally confirmed over the past decades. Despite all the achievements, the understanding of general relativity in length scales where quantum effects are relevant is still a challenge that requires theoretical and experimental efforts. The elucidation of the effects of gravitational interaction on quantum aspects of matter may trigger a new era of technology by exploiting quantum properties such as entanglement and coherence on global scales. In this sense, quantum field theory in curved space is the best theoretical formalism in predicting physical phenomena in the interface between quantum mechanics and relativity.

Quantum information theory and general relativity are not entirely unrelated fields. Ideas from both quantum information theory and quantum field theory has contributed significantly to the understanding of the structure of space-time at the quantum level. A vast number of papers dedicated to understand the properties of quantum systems in different situations in the relativistic context have appeared, namely entanglement in non-inertial reference frames, information processing and black holes, entanglement in expanding universes and the sensitivity of quantum correlations to the space-time topology, among many others.

We are interested in investigating quantum systems subject to relativistic effects from the point of view of information geometry, by exploring the link between the geometry of the state space and the variety of distinguishability quantifiers of quantum states. How to describe quantum systems under relativistic effects? How the behavior of quantum correlations is affected by relativity? Relativistic uncertainty relations and particle localization? On the other hand, we are also interested in the formulation of General Relativity in terms of information, a filed that is attracting great attention recently.

Full Publication List

2023

  • Thiago H. Moreira and Lucas C. Céleri. Decoherence of a composite particle induced by a weak quantized gravitational field. Class. Quantum Grav. 41, 015006
  • Marcos L. W. Basso, Jonas Maziero and Lucas C. Céleri. The irreversibility of relativistic time-dilation. Class. Quantum Grav. 40, 195001
  • Marcos L. W. Basso, Jonas Maziero and Lucas C. Céleri. Local predictability and coherence versus distributed entanglement in entanglement swapping from partially entangled pure states. Phys. Lett. A 457, 128576
  • Matheus Capela, Harshit Verma, Fabio Costa, and Lucas C. Céleri. Reassessing thermodynamic advantage from indefinite causal order. Phys. Rev. A 107, 062208
  • Decheng Ma, Chenglong Jia, Enrique Solano and Lucas Chibebe Céleri. Analogue gravitational lensing in optical Bose-Einstein condensates. Universe 9, 443
  • Lucas C. Céleri, Daniel Huerga, Francisco Albarrán-Arriagada, Enrique Solano, Mikel Garcia de Andoin and Mikel Sanz. Digital-analog quantum simulation of fermionic models. Phys. Rev. Applied 19, 064086

2022

  • G. H. Aguilar, T. L. Silva, T. E. Guimarães, R. S. Piera, L. C. Céleri and G. T. Landi. Two-point measurement of entropy production from the outcomes of a single experiment with correlated photon pairs. Phys. Rev. A 106, L020201
  • M. Capela, L. C. Céleri, R. Chaves and K. Modi. Quantum Markov monogamy inequalities. Phys. Rev. A 106, 022218
  • Decheng Ma, Enrique Solano, Chenglong Jia and Lucas C. Céleri. Analogue Penrose process in rotating acoustic black Hole. arXiv: 2205.01454

2021

  • T. Gonzalez-Raya, R. Asensio-Perea, A. Martin, L. C. Céleri, M. Sanz, P. Lougovski and E. F. Dumitrescu. Digital-analog quantum simulations using the cross-resonance effect. Phys. Rev. X Quant. 2, 020328.
  • D. P. Pires, K. Modi and L. C. Céleri. Bounding generalized relative entropies: Nonasymptotic quantum speed limits. Phys. Rev. E 103, 032105

2020

  • A. G. de Oliveira, R. M. Gomes, V. C. C. Brasil, N. Rubiano da Silva, L. C. Céleri and P. H. Souto Ribeiro. Full thermalization of a photonic qubit. Phys. Lett. A 384, 126933.
  • T. Häffner, G. L. Zanin, R. M. Gomes, L. C. Céleri and P. H. Souto Ribeiro. Remote preparation of single photon vortex thermal states. Eur. Phys. J. Plus 135, 601.
  • T. Gonzalez-Raya, J. M. Lukens, L. C. Céleri and M. Sanz. Quantum memristors in frequency-entangled optical fields. Materials 13, 864.
  • P. H. Souto Ribeiro, T. Häffner, G. L. Zanin, N. Rubiano da Silva, R. Medeiros de Araújo, W. C. S. Silva, R. J. de Assis, L. C. Céleri and A. Forbes. Experimental study of the generalized Jarzynski fluctuation relation using entangled photons. Phys. Rev. A 101, 052113.
  • M. Capela, L. C. Céleri, K. Modi and R. Chaves. Monogamy of temporal correlations: Witnessing non-Markovianity beyond data processing. Phys. Rev. Research 2, 013350
  • B. O. Goes, G. T. Landi, E. Solano, M. Sanz and L. C. Céleri. Wehrl entropy production rate across a dynamical quantum phase transition. Phys. Rev. Research 2, 033419
  • Danilo Borim, Lucas C. Céleri and Vasileios I. Kiosses. Precision in estimating Unruh temperature. arxiv: 2001.09085

2019

  • G. L. Zanin, T. Häffner, M. A. A. Talarico, E. I. Duzzioni, P. H. Souto Ribeiro, G. T. Landi and L. C. Céleri. Experimental quantum thermodynamics with linear optics. Braz. J. Phys. 49, 783.
  • G. H. Aguilar, M. A. de Souza, R. M. Gomes, J. Thompson, M. Gu, L. C. Céleri and S. P. Walborn. Experimental investigation of linear-optics-based quantum target detection. Phys. Rev. A 99, 053813
  • J. P. Santos, L. C. Céleri, G. T. Landi and M. Paternostro. The role of quantum coherence in non-equilibrium entropy production. npj Quant. Inf. 5, 23

2018

  • J. P. Santos, L. C. Céleri, F. Brito, G. T. Landi, M. Paternostro. Spin-phase-space-entropy production. Phys. Rev. A 97, 052123.
  • M. Capela, M. Sanz, E. Solano, L. C. Céleri. Kolmogorov-Sinai entropy and dissipation in driven classical Hamiltonian systems. Phys. Rev. E 98, 052109
  • L. C. Céleri and V. Kiosses. Unruh effect as a result of quantization of spacetime. Phys. Lett. B 781, 611
  • E. G. Arrais, D. A. Wisniacki, L. C. Céleri, N. G. de Almeida, A. J. Roncaglia, F. Toscano. Quantum work for sudden quenches in Gaussian random Hamiltonians. Phys. Rev. E 98, 012106
  • R. Medeiros de Araújo, T. Häffner, R. Bernardi, D. S. Tasca, M. P. J. Lavery, M. J. Padgett, A. Kanaan, L. C. Céleri, P. H. Souto Ribeiro. Experimental study of quantum thermodynamics using optical vortices. Journal of Physics Communications 2, 035012

2017

  • F. Campaioli, F. A. Pollock, F. C. Binder, L. C. Céleri, J. Goold, S. Vinjanampathy and K. Modi. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 118, 150601.
  • J. Maziero and L. C. Céleri. The Sudden Change Phenomenon of Quantum Discord. In: Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham.

2016

  • L. C. Céleri, V. Kiosses and D. R. Terno. Spin and localization of relativistic fermions and uncertainty relations. Phys. Rev. A 94, 062115.
  • M. A. A. Talarico, P. B. Monteiro, E. C. Mattei, E. I. Duzzioni, P. H. Souto Ribeiro, and L. C. Céleri. Work distribution in a photonic system. Phys. Rev. A 94, 042305.
  • D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso and D. O. Soares-Pinto. Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031.
  • J. P. S. Peterson, R. S. Sarthour, A. M. Souza, I. S. Oliveira, J. Goold, K. Modi, D. O. Soares-Pinto and L. C. Céleri. Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A 472, 20150813.

2015

  • G. H. Aguilar, S. P. Walborn, P. H. Souto Ribeiro and L. C. Céleri. Experimental determination of multipartite entanglement with incomplete information. Phys. Rev. X 5, 031042.
  • T. M. Carrijo, A. T. Avelar and L. C. Céleri. Quantum uncertainty in critical systems with three spins interaction. J. Phys. B: At. Mol. Opt. Phys. 48, 125501.
  • D. P. Pires, L. C. Céleri and D. O. Soares-Pinto. Geometric lower bound for quantum coherence measure. Phys. Rev. A 91, 042330.
  • K. Micadei, D. A. Rowlands, F. A. Pollock, L. C. Céleri, R. M. Serra and K. Modi. Coherent measurements in quantum metrology. New J. Phys. 17, 023057.

2014

  • L. C. Céleri, R. M. Gomes, R. Ionicioiu, T. Jennewein, R. B. Mann and D. R. Terno. Quantum control in foundational experiments. Found. Phys. 44, 576.

2013

  • J. G. Filgueiras, R. S. Sarthour, A. M. Souza, I. S. Oliveira, R. M. Serra and L. C. Céleri. Quantum delayed-choice experiment in an environment with arbitrary white noise. J. Phys. A: Math. Theor. 46, 245301.
  • J. Maziero, R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86.
  • K. Micadei, R. M. Serra and L. C. Céleri. Thermodynamic cost of acquiring information. Phys. Rev. E 88, 062123.

2012

  • R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S. Oliveira and L. C. Céleri. Experimental analysis of the quantum complementarity principle. Phys. Rev.. A 85, 032121.
  • J. Maziero, L. C. Céleri, R. M. Serra and M. S. Sarandy. Long-range quantum discord in critical spin systems. Phys. Lett. A 376, 1540.
  • M. A. Silva Jr., R. M. Serra and L. C. Céleri. Observer invariance of the collapse postulate of quantum mechanics. Int. J. Mod. Phys. B 27, 1345013.
  • D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra and L. C. Céleri. On the quantumness of correlations in nuclear magnetic resonance. Phil. Trans. R. Soc. London A: Math. Phys. Sci. 370, 4821.

2011

  • R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403.
  • D. O. Soares-Pinto, M. H. Y. Moussa, J. Maziero, E. R. deAzevedo, T. J. Bonagamba, R. M. Serra and L. C. Céleri. Equivalence between Redfield and master equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336.
  • R. Auccaise, J. Maziero, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107, 070501.
  • L. C. Céleri, J. Maziero and R. M. Serra. Theoretical and experimental aspects of quantum correlations beyond entanglement. Int. J. Quant. Inf. 9, 1837.

2010

  • D. O. Soares-Pinto, L. C. Céleri, R. Auccaise, F. F. Fanchini, E. R. deAzevedo, J. Maziero, T. J. Bonagamba and R. M. Serra. Nonclassical correlation in NMR quadrupolar systems. Phys. Rev. A 81, 062118.
  • J. Maziero, H. C. Guzman, L. C. Céleri, M. S. Sarandy and R. M. Serra. Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106.
  • L. C. Céleri, A. G. S. Landulfo, R. M. Serra and G. E. A. Matsas. Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A 81, 062130.
  • J. Maziero, T. Werlang, F. F. Fanchini, L. C. Céleri and R. M. Serra. System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116.
  • J. Maziero, L. C. Céleri and R. M. Serra. Suitability of symmetric and asymmetric versions of the quantum discord. arXiv : 1004.2082

2009

  • L. C. Céleri, F. Pascoal and M. H. Y. Moussa. Action of the gravitational field on the dynamical Casimir effect. Class. Quant. Grav. 26, 105014.
  • J. Maziero, L. C. Céleri, R. M. Serra and V. Vedral. Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102.
  • F. Pascoal, L. C. Céleri, S. S. Mizrahi, M. H. Y. Moussa, C. Farina. Dynamical Casimir effect for a massless scalar field between two concentric spherical shells with mixed boundary condictions. Phys. Rev. A 80, 012503.
  • L. C. Céleri, F. Pascoal, M. A. de Ponte and M. H. Y. Moussa. Number of particle creation and decoherence in the nonideal dynamical Casimir effect at finite temperature. Ann. Phys. 324, 2057 .

2008

  • F. Pascoal, L. C. Céleri, S. S. Mizrahi and M. H. Y. Moussa. Dynamical Casimir effect for a massless scalar field between two concentric spherical shells. Phys. Rev. A 78, 032521.
  • L. C. Céleri, M. A. de Ponte, C. J. Villas-Boas and M. H. Y. Moussa. Switching off the reservoir through nonstationary quantum systems. J. Phys. B: At. Mol. Opt. Phys. 41, 085502.
  • A. V. Dodonov, L. C. Céleri, F. Pascoal, M. D. Lukin and S. F. Yelin. Photon generation from vacuum in non-stationary circuit QED. arXiv : 0806.4035

2003

  • S. Ragusa and L. C. Céleri. Ghost free analysis of a nonsymmetric theory of gravitation. Braz. J. Phys. 33, 821.
  • S. Ragusa and L. C. Céleri. Solar gravitational deflection of a graviton. Gen. Rel. Gravit. 35, 1125.