Research

What we are

Our research group primarily focuses on Quantum Information and its connections with Thermodynamics, Relativity (both special and general), and Quantum Mechanics. While we are a theoretical group, we also have a strong interest in experimental physics, particularly in quantum optics and nuclear magnetic resonance. Below, we outline some of the areas we explore and provide our complete list of publications.

Specific Research Interests

Quantum Information.

Quantum information Science emerged around 30 years ago, driven by the potential to enhance information processing capabilities through the principles of quantum mechanics. It extends Shannon's information theory into the quantum realm. Early on, it became clear that advances in this field could provide valuable insights into a wide range of problems.

Quantum information is a theoretical framework designed to explore how the laws of quantum mechanics can be employed to improve the acquisition, transmission, and processing of information. These developments have introduced new concepts and technical tools that are broadly applicable across various areas of physics, including condensed matter, quantum computation, and high-energy physics, to name a few. Furthermore, conceptual breakthroughs are driving the emergence of a new technological era, one rooted in the quantum properties of matter, with the potential to significantly impact our daily lives.

Our focus lies in the foundation of this theory, especially information geometry, which applies the tools of differential geometry to study quantum information. While our primary research focuses on the application of quantum information to physics, we also explore foundational problems within the theory. Specific areas of interest include the development of quantum communication protocols, quantum algorithms, and quantum computation.

Quantum Thermodynamics.

Thermodynamics rests in the foundation of physics, and its development has led to immense social and technological advancements that are difficult to fully quantify. quantum thermodynamics is a theoretical framework aimed at addressing questions such as how thermodynamic phenomena emerge from the reversible laws of quantum mechanics. How can we extend, and to what extent, the laws of macroscopic thermodynamics to the quantum realm? Is it possible to apply thermodynamics to small, out-of-equilibrium quantum systems? It appears that quantum information holds the key to answering these profound questions.

Recently, there has been a surge of interest in this field from both theorists and experimentalists. The application of thermodynamics in the presence of quantum effects —such as entanglement, correlations, and quantum fluctuations— is reshaping our understanding of the foundational principles of these theories. Furthermore, it has become evident that developing a consistent formalism for quantum thermodynamics is crucial for advancing future quantum technologies. his is one of the main interests of our group. However, we also focus on applying and understanding thermodynamics in various fields, such as critical and relativistic systems.

Relativity.

General relativity describes gravity as a four-dimensional geometric structure known as space-time, where the concepts of absolute space and time no longer apply. Gravity, in this framework, is a geometric consequence of the curvature of space-time shaped by mass and energy. Many of its theoretical predictions have been experimentally validated over the past decades. However, understanding general relativity at length scales where quantum effects become significant remains a challenge that requires both theoretical and experimental advancements. Unraveling the impact of gravitational interactions on the quantum aspects of matter could lead us into a new technological era, utilizing quantum properties like entanglement and coherence on a global scale. In this regard, quantum field theory in curved spaces provides the most effective theoretical framework for predicting physical phenomena at the intersection of quantum mechanics and relativity. This is one of the focus of our group.

Quantum information theory and general relativity are not entirely separate fields. Concepts from both quantum information theory and quantum field theory have made significant contributions to our understanding of space-time at the quantum level. A large body of research has emerged, focusing on the properties of quantum systems in various relativistic contexts. These include topics such as entanglement in non-inertial reference frames, information processing in black holes, entanglement in expanding universes, and the sensitivity of quantum correlations to space-time topology, among many others.

We are interested in exploring quantum systems influenced by relativistic effects from the perspective of information theory and thermodynamics. How can we describe quantum systems under relativistic effects? How are quantum correlations affected by relativity? What about relativistic uncertainty relations and particle localization? Additionally, we are also focused on formulating general relativity in terms of information, a field that has been garnering significant attention recently. Also, the formulation of thermodynamics in this context is among our goals.

Full Publication List

2024

  • Z. Peng, L. C. Céleri, A. Basit and G. Xianlong. Effects of reservoir squeezing on the amplification of quantum correlation and the quantum speed limit. Phys. Rev. A 110, 052433.
  • A. B. Nascimento and L. C. Céleri. Speedup of thermodynamic entropy production via quantum dynamical criticality. Phys. Rev. A 110, 052223
  • T. M. Mendonça, L. C. Céleri, M. Paternostro and D. O. Soares-Pinto. System-environment quantum information flow. Phys. Rev. A 110, L040401
  • Y. J. Alvim and L. C. Céleri. Landauer principle and the second law in a relativistic communication scenario. Entropy 26, 613
  • P. H. S. Bento, A. del Campo and L. C. Céleri. Krylov complexity and dynamical phase transition in the quenched LMG model. Phys. Rev. B 109, 224304
  • R. C. Souza Pimenta, G. H. dos Santos, A. B. Barreto, L. C. Céleri and P. H. Souto Ribeiro. Photonic entanglement with accelerated light. Quantum 8, 1317
  • L. C. Céleri and L . Rudnicki. Gauge invariant quantum thermodynamics: consequences for the first law. Entropy 26, 111
  • G. Oliveira and L. C. Céleri. Thermodynamic entropy production in the dynamical Casimir effect. Phys. Rev. A 109, 012807

2023

  • Thiago H. Moreira and Lucas C. Céleri. Decoherence of a composite particle induced by a weak quantized gravitational field. Class. Quantum Grav. 41, 015006
  • Marcos L. W. Basso, Jonas Maziero and Lucas C. Céleri. The irreversibility of relativistic time-dilation. Class. Quantum Grav. 40, 195001
  • Marcos L. W. Basso, Jonas Maziero and Lucas C. Céleri. Local predictability and coherence versus distributed entanglement in entanglement swapping from partially entangled pure states. Phys. Lett. A 457, 128576
  • Matheus Capela, Harshit Verma, Fabio Costa, and Lucas C. Céleri. Reassessing thermodynamic advantage from indefinite causal order. Phys. Rev. A 107, 062208
  • Decheng Ma, Chenglong Jia, Enrique Solano and Lucas Chibebe Céleri. Analogue gravitational lensing in optical Bose-Einstein condensates. Universe 9, 443
  • Lucas C. Céleri, Daniel Huerga, Francisco Albarrán-Arriagada, Enrique Solano, Mikel Garcia de Andoin and Mikel Sanz. Digital-analog quantum simulation of fermionic models. Phys. Rev. Applied 19, 064086

2022

  • G. H. Aguilar, T. L. Silva, T. E. Guimarães, R. S. Piera, L. C. Céleri and G. T. Landi. Two-point measurement of entropy production from the outcomes of a single experiment with correlated photon pairs. Phys. Rev. A 106, L020201
  • M. Capela, L. C. Céleri, R. Chaves and K. Modi. Quantum Markov monogamy inequalities. Phys. Rev. A 106, 022218
  • Decheng Ma, Enrique Solano, Chenglong Jia and Lucas C. Céleri. Analogue Penrose process in rotating acoustic black Hole. arXiv: 2205.01454

2021

  • T. Gonzalez-Raya, R. Asensio-Perea, A. Martin, L. C. Céleri, M. Sanz, P. Lougovski and E. F. Dumitrescu. Digital-analog quantum simulations using the cross-resonance effect. Phys. Rev. X Quant. 2, 020328.
  • D. P. Pires, K. Modi and L. C. Céleri. Bounding generalized relative entropies: Nonasymptotic quantum speed limits. Phys. Rev. E 103, 032105

2020

  • A. G. de Oliveira, R. M. Gomes, V. C. C. Brasil, N. Rubiano da Silva, L. C. Céleri and P. H. Souto Ribeiro. Full thermalization of a photonic qubit. Phys. Lett. A 384, 126933.
  • T. Häffner, G. L. Zanin, R. M. Gomes, L. C. Céleri and P. H. Souto Ribeiro. Remote preparation of single photon vortex thermal states. Eur. Phys. J. Plus 135, 601.
  • T. Gonzalez-Raya, J. M. Lukens, L. C. Céleri and M. Sanz. Quantum memristors in frequency-entangled optical fields. Materials 13, 864.
  • P. H. Souto Ribeiro, T. Häffner, G. L. Zanin, N. Rubiano da Silva, R. Medeiros de Araújo, W. C. S. Silva, R. J. de Assis, L. C. Céleri and A. Forbes. Experimental study of the generalized Jarzynski fluctuation relation using entangled photons. Phys. Rev. A 101, 052113.
  • M. Capela, L. C. Céleri, K. Modi and R. Chaves. Monogamy of temporal correlations: Witnessing non-Markovianity beyond data processing. Phys. Rev. Research 2, 013350
  • B. O. Goes, G. T. Landi, E. Solano, M. Sanz and L. C. Céleri. Wehrl entropy production rate across a dynamical quantum phase transition. Phys. Rev. Research 2, 033419
  • Danilo Borim, Lucas C. Céleri and Vasileios I. Kiosses. Precision in estimating Unruh temperature. arxiv: 2001.09085

2019

  • G. L. Zanin, T. Häffner, M. A. A. Talarico, E. I. Duzzioni, P. H. Souto Ribeiro, G. T. Landi and L. C. Céleri. Experimental quantum thermodynamics with linear optics. Braz. J. Phys. 49, 783.
  • G. H. Aguilar, M. A. de Souza, R. M. Gomes, J. Thompson, M. Gu, L. C. Céleri and S. P. Walborn. Experimental investigation of linear-optics-based quantum target detection. Phys. Rev. A 99, 053813
  • J. P. Santos, L. C. Céleri, G. T. Landi and M. Paternostro. The role of quantum coherence in non-equilibrium entropy production. npj Quant. Inf. 5, 23

2018

  • J. P. Santos, L. C. Céleri, F. Brito, G. T. Landi, M. Paternostro. Spin-phase-space-entropy production. Phys. Rev. A 97, 052123.
  • M. Capela, M. Sanz, E. Solano, L. C. Céleri. Kolmogorov-Sinai entropy and dissipation in driven classical Hamiltonian systems. Phys. Rev. E 98, 052109
  • L. C. Céleri and V. Kiosses. Unruh effect as a result of quantization of spacetime. Phys. Lett. B 781, 611
  • E. G. Arrais, D. A. Wisniacki, L. C. Céleri, N. G. de Almeida, A. J. Roncaglia, F. Toscano. Quantum work for sudden quenches in Gaussian random Hamiltonians. Phys. Rev. E 98, 012106
  • R. Medeiros de Araújo, T. Häffner, R. Bernardi, D. S. Tasca, M. P. J. Lavery, M. J. Padgett, A. Kanaan, L. C. Céleri, P. H. Souto Ribeiro. Experimental study of quantum thermodynamics using optical vortices. Journal of Physics Communications 2, 035012

2017

  • F. Campaioli, F. A. Pollock, F. C. Binder, L. C. Céleri, J. Goold, S. Vinjanampathy and K. Modi. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 118, 150601.
  • J. Maziero and L. C. Céleri. The Sudden Change Phenomenon of Quantum Discord. In: Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer, Cham.

2016

  • L. C. Céleri, V. Kiosses and D. R. Terno. Spin and localization of relativistic fermions and uncertainty relations. Phys. Rev. A 94, 062115.
  • M. A. A. Talarico, P. B. Monteiro, E. C. Mattei, E. I. Duzzioni, P. H. Souto Ribeiro, and L. C. Céleri. Work distribution in a photonic system. Phys. Rev. A 94, 042305.
  • D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso and D. O. Soares-Pinto. Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031.
  • J. P. S. Peterson, R. S. Sarthour, A. M. Souza, I. S. Oliveira, J. Goold, K. Modi, D. O. Soares-Pinto and L. C. Céleri. Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A 472, 20150813.

2015

  • G. H. Aguilar, S. P. Walborn, P. H. Souto Ribeiro and L. C. Céleri. Experimental determination of multipartite entanglement with incomplete information. Phys. Rev. X 5, 031042.
  • T. M. Carrijo, A. T. Avelar and L. C. Céleri. Quantum uncertainty in critical systems with three spins interaction. J. Phys. B: At. Mol. Opt. Phys. 48, 125501.
  • D. P. Pires, L. C. Céleri and D. O. Soares-Pinto. Geometric lower bound for quantum coherence measure. Phys. Rev. A 91, 042330.
  • K. Micadei, D. A. Rowlands, F. A. Pollock, L. C. Céleri, R. M. Serra and K. Modi. Coherent measurements in quantum metrology. New J. Phys. 17, 023057.

2014

  • L. C. Céleri, R. M. Gomes, R. Ionicioiu, T. Jennewein, R. B. Mann and D. R. Terno. Quantum control in foundational experiments. Found. Phys. 44, 576.

2013

  • J. G. Filgueiras, R. S. Sarthour, A. M. Souza, I. S. Oliveira, R. M. Serra and L. C. Céleri. Quantum delayed-choice experiment in an environment with arbitrary white noise. J. Phys. A: Math. Theor. 46, 245301.
  • J. Maziero, R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86.
  • K. Micadei, R. M. Serra and L. C. Céleri. Thermodynamic cost of acquiring information. Phys. Rev. E 88, 062123.

2012

  • R. Auccaise, R. M. Serra, J. G. Filgueiras, R. S. Sarthour, I. S. Oliveira and L. C. Céleri. Experimental analysis of the quantum complementarity principle. Phys. Rev.. A 85, 032121.
  • J. Maziero, L. C. Céleri, R. M. Serra and M. S. Sarandy. Long-range quantum discord in critical spin systems. Phys. Lett. A 376, 1540.
  • M. A. Silva Jr., R. M. Serra and L. C. Céleri. Observer invariance of the collapse postulate of quantum mechanics. Int. J. Mod. Phys. B 27, 1345013.
  • D. O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R. M. Serra and L. C. Céleri. On the quantumness of correlations in nuclear magnetic resonance. Phil. Trans. R. Soc. London A: Math. Phys. Sci. 370, 4821.

2011

  • R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403.
  • D. O. Soares-Pinto, M. H. Y. Moussa, J. Maziero, E. R. deAzevedo, T. J. Bonagamba, R. M. Serra and L. C. Céleri. Equivalence between Redfield and master equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336.
  • R. Auccaise, J. Maziero, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107, 070501.
  • L. C. Céleri, J. Maziero and R. M. Serra. Theoretical and experimental aspects of quantum correlations beyond entanglement. Int. J. Quant. Inf. 9, 1837.

2010

  • D. O. Soares-Pinto, L. C. Céleri, R. Auccaise, F. F. Fanchini, E. R. deAzevedo, J. Maziero, T. J. Bonagamba and R. M. Serra. Nonclassical correlation in NMR quadrupolar systems. Phys. Rev. A 81, 062118.
  • J. Maziero, H. C. Guzman, L. C. Céleri, M. S. Sarandy and R. M. Serra. Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106.
  • L. C. Céleri, A. G. S. Landulfo, R. M. Serra and G. E. A. Matsas. Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A 81, 062130.
  • J. Maziero, T. Werlang, F. F. Fanchini, L. C. Céleri and R. M. Serra. System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116.
  • J. Maziero, L. C. Céleri and R. M. Serra. Suitability of symmetric and asymmetric versions of the quantum discord. arXiv : 1004.2082

2009

  • L. C. Céleri, F. Pascoal and M. H. Y. Moussa. Action of the gravitational field on the dynamical Casimir effect. Class. Quant. Grav. 26, 105014.
  • J. Maziero, L. C. Céleri, R. M. Serra and V. Vedral. Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102.
  • F. Pascoal, L. C. Céleri, S. S. Mizrahi, M. H. Y. Moussa, C. Farina. Dynamical Casimir effect for a massless scalar field between two concentric spherical shells with mixed boundary condictions. Phys. Rev. A 80, 012503.
  • L. C. Céleri, F. Pascoal, M. A. de Ponte and M. H. Y. Moussa. Number of particle creation and decoherence in the nonideal dynamical Casimir effect at finite temperature. Ann. Phys. 324, 2057 .

2008

  • F. Pascoal, L. C. Céleri, S. S. Mizrahi and M. H. Y. Moussa. Dynamical Casimir effect for a massless scalar field between two concentric spherical shells. Phys. Rev. A 78, 032521.
  • L. C. Céleri, M. A. de Ponte, C. J. Villas-Boas and M. H. Y. Moussa. Switching off the reservoir through nonstationary quantum systems. J. Phys. B: At. Mol. Opt. Phys. 41, 085502.
  • A. V. Dodonov, L. C. Céleri, F. Pascoal, M. D. Lukin and S. F. Yelin. Photon generation from vacuum in non-stationary circuit QED. arXiv : 0806.4035

2003

  • S. Ragusa and L. C. Céleri. Ghost free analysis of a nonsymmetric theory of gravitation. Braz. J. Phys. 33, 821.
  • S. Ragusa and L. C. Céleri. Solar gravitational deflection of a graviton. Gen. Rel. Gravit. 35, 1125.