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“If physical theories were people, thermodynamics would be the village witch. Over
the course of three centuries, she smiled quietly as other theories rose and with-
ered, surviving major revolutions in physics, like the advent of general relativity
and quantum mechanics. The other theories find her somewhat odd, somehow dif-
ferent in nature from the rest, yet everyone comes to her for advice, and no-one dares
to contradict her. ”

J. Goold, M.Huber, A.Riera, L.del Rio and Psryzpezyk [1].



“A todos que já duvidaram de si mesmos em sua jornada acadêmica: acreditem,
somos capazes! ”
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Resumo

Neste trabalho, formalizamos e estendemos uma abordagem da termodinâmica quântica como

uma teoria de gauge, inicialmente proposta por Céleri e Rudnicki na Ref. [3]. Dentro desse for-

malismo, quantidades físicas são derivadas como funcionais do operador densidade, emergindo de

um procedimento de coarse-graining em relação a todas as transformações unitárias que preser-

vam a energia do sistema. Essas transformações formam o que chamamos de grupo termod-

inâmico. Como resultado, obtemos formas invariantes para calor e trabalho, que são derivadas

em um contexto mais geral do que na Ref. [3], especificamente na presença de níveis de energia

degenerados que podem variar ao longo do tempo. Uma consequência imediata desse formal-

ismo é a reestruturação da primeira lei da termodinâmica no regime quântico. Aqui, uma nova

contribuição de energia, diretamente conectada à produção de coerências quânticas na base de

energia, é naturalmente identificada como calor, o qual denominamos calor coerente. Por outro

lado, a nova formulação do trabalho quântico emerge com uma dependência completa dos ter-

mos de populações do operador densidade. Além disso, definimos a entropia invariante de gauge,

explorando suas propriedades e conexões com outras quantidades físicas e informacionais. Em

particular, aplicamos nosso formalismo à dinâmica quântica e a processos de quench em sistemas

de spins, demonstrando que o calor coerente desempenha um papel na captura de assinaturas de

irreversibilidade no sistema. Por fim, mostramos que, em sistemas críticos bem conhecidos, as

quantidades derivadas dentro dessa teoria desempenham um papel significativo na compreensão

da modificação da estrutura de simetrias do sistema em comparação com as simetrias internas do

grupo de gauge termodinâmico.

Palavras-chave: TermodinâmicaQuântica; Grupo de gauge termodinâmico; Coerências quân-

ticas; Simetrias.



Abstract

In this work, we formalize and extend an approach to quantum thermodynamics as a gauge

theory, initially proposed by Céleri and Rudnicki in Ref. [3]. Within this formalism, physical

quantities are derived as functionals of the density operator, emerging from a coarse-graining

procedure with respect to all unitary transformations that preserve the system’s energy. These

transformations form what we term the thermodynamic group. As a result, we obtain invariant

forms for heat and work, which are derived in a more general context than in Ref. [3], specifically

in the presence of degenerate energy levels that may vary over time. An immediate consequence

of this formalism is the restructuring of the first law of thermodynamics in the quantum regime.

Here, a new energy contribution, directly connected to the production of quantum coherences in

the energy basis, is naturally identified as heat, which we refer to as coherent heat. On the other

hand, the new formulation of quantum work emerges with a complete dependence on the popu-

lation terms of the density operator. Additionally, we define gauge-invariant entropy, exploring

its properties and connections to other physical and informational quantities. In particular, we

apply our formalism to quantum dynamics and quench processes in spin systems, demonstrating

that coherent heat plays a role in capturing signatures of irreversibility in the system. Finally,

we show that, in well-known critical systems, the quantities derived within this theory play a

significant role in understanding the modification of the system’s symmetry structure compared

to the internal symmetries of the thermodynamic gauge group.

Keywords: Quantum Thermodynamics; Thermodynamic Gauge Group; Quantum Coher-

ences; Symmetries.
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Chapter 1

Introduction

Among the physical theories, thermodynamics certainly stands out as an extremely peculiar the-

ory. Indeed, fundamental theories such as General Relativity and the Standard Model of particle

physics aim to describe how processes and interactions occur in their respective regimes. How-

ever, thermodynamics is constructed from a different perspective, which instead of progressing

in the same direction, focuses on establishing the conditions and limitations for which physical

processes can occur and, most importantly, which processes cannot occur in nature.

This distinctive character of thermodynamics is, in essence, what differentiates it from other

physical theories. Moreover, this type of description possesses a certain operational character

which guides thermodynamics to a certain universality intrinsic to the theory. In fact, these sub-

tleties of the theory have led various physicists to understand and recognize thermodynamics as

a solid pillar within Physics, which probably should not be violated[4]. Particularly, in Ref.[1], the

authors present a simple passage that, in a poetic way, encapsulates the strength and universality

of thermodynamics, which we quote below.

If physical theories were people, thermodynamics would be the village witch. Over

the course of three centuries, she smiled quietly as other theories rose and with-

ered, surviving major revolutions in physics, like the advent of general relativity and

quantum mechanics. The other theories find her somewhat odd, somehow different

in nature from the rest, yet everyone comes to her for advice, and no-one dares to

contradict her. [1]

In this passage, the "witch of physical theories" is exalted not only for its generality and

extent of validity but also for its unwavering persistence throughout the development of other

physical theories. Certainly, referring to thermodynamics as a "witch" is extremely interesting

in the context of comparing it to other physical theories. However, the last sentence of this

passage suggests that labeling thermodynamics as just any "witch" might not be very fitting;

perhaps elevating it to the title of "oracle
1
" of physical theories places it in the position that

thermodynamics truly deserves.

1
Oracles were priests or priestesses residing in sacred places in ancient Greece, consulted by people to receive

answers and guidance from the gods on personal and political matters.



2 Chapter 1. Introduction

In the classical context, the wisdom of this "oracle" is essentially founded on the existence

of three laws. Indeed, the zeroth law of thermodynamics establishes the conditions for ther-

modynamic systems to be in states of equilibrium, which are, in summary, the states in which

thermodynamic description is made. The first law of thermodynamics moves in the direction of a

generalization of the principle of conservation ofmechanical energy, which can be summarized as

the energy of the universe being constant [4]. Finally, the second law of thermodynamics guides

us to an understanding of which physical processes can occur, thus establishing conditions of va-

lidity and limits for their realization. From a quantum perspective, it is still possible to consider

a third law, which ensures a relationship between the entropy established by the second law and

the thermodynamic temperature, asserting that the entropy of a system is zero at absolute zero

temperature [5].

The laws of thermodynamics are the fundamental tools that ensure its universality, which

essentially lies in the type of questions thermodynamics aims to resolve. In effect, all of classical

thermodynamics is constructed on the notion that measurements, in the thermodynamic limit,

are, in essence, a coarse-graining of space and time intervals. Through this coarse-graining,

thermodynamic variables emerge from the averages of dynamic microscopic variables, which

are not measured by any macroscopic apparatus. As a result, thermodynamics establishes itself

as a robust theory that sets limits on physical processes since microscopic degrees of freedom are

eliminated by coarse-graining. Consequently, this introduces an independence of the theory from

the microscopic description of the system. Because of this, thermodynamics can then be applied

to an extremely wide range of physical systems, such as in engineering, biology, neuroscience [6–

8], as well as in complex systems [9], computing [10], and even in black holes [11].

However, when we consider equilibrium states, which are the states where classical ther-

modynamics is established, a certain characteristic becomes prominent. Indeed, in equilibrium

states in the thermodynamic limit, the net flows of all quantities are zero, and consequently, mi-

croscopic fluctuations are negligible. In fact, within the thermodynamic limit, these fluctuations

can be ignored, as the descriptions emerge as averages from spatial and temporal coarse-graining.

Nevertheless, as we move into systems far from the thermodynamic limit, for example in very

small systems, the usual formulation of thermodynamics ceases to be applicable. In such cases,

it is necessary to employ other approaches for studying systems, particularly stochastic thermo-

dynamics [12]. Additionally, other formulations of thermodynamics can also be considered, such

as those based on information theory [1] and elegant axiomatic formulations [13, 14]. In these

formulations, fluctuations previously ignored become amenable to consideration in systems de-

scribed by states out of equilibrium.

Nonetheless, when we begin to delve into the realm of quantum systems, the laws of quantum

mechanics become relevant. Thus, understanding how aspects of classical thermodynamics can

be translated into the quantum context becomes significant. In this regard, the seminal work

of Robert Alicki [15] plays a significant role in this description, as it introduces the notions of



Chapter 1. Introduction 3

heat and work in the context of quantum thermal machines. However, a complete, robust, and

fully consistent theory of quantum thermodynamics has not yet been fully developed [16, 17].

In this context, several questions remain open, particularly understanding how thermodynamic

quantities such as work, heat, and entropy should be defined in the quantum scenario.

In particular, different approaches are being explored to define how these quantities should be

established. For instance, work is generally defined as changes in the energy of the system due to

external modifications resulting from some time-dependent process. Moreover, the Hamiltonian

of the system must be modified through one or a family of Hamiltonian parameters.

Furthermore, a common method of evaluating work in this sense is the two-point measure-

ment scheme, where work is defined as the difference in energy between two projective mea-

surements of the Hamiltonian at the beginning and end of the process [18, 19]. This definition

treats work as a stochastic variable and, in the context of quantum systems, work then gives way

to average work, which is associated with the averages of individual quantum trajectories [20].

Nonetheless, other definitions may also be considered, such as those involving the coherence

elements of the density operator [21].

Similarly to work, notions of heat and their definitions in the quantum context are also dis-

cussed. In his seminal work, Alicki [15] introduces the notion of heat as a physical quantity that

emerges in open systems, that is, when the physical system is in contact with a reservoir, caus-

ing the evolution of the system to be non-unitary. Specifically, in this context, closed quantum

systems should not present heat contributions due to any change in the Hamiltonian. However,

there are works that provide definitions of heat even for closed quantum systems [22–24]. In

this context, the notion of heat acquires additional meanings, which can sometimes be related to

uncertainties in the energy basis [22–24].

Furthermore, another important issue in constructing quantum thermodynamics lies in defin-

ing thermodynamic entropy. Indeed, various schools of thought have emerged in this area, guided

by different philosophical perspectives [25, 26]. The Von Neumann entropy [27], which is con-

sistent with the Gibbs entropy for thermal states, does exist; however, it presents some inconsis-

tencies as a thermodynamic entropy [26]. Nonetheless, other significant notions of entropy can

also be elaborated, such as Boltzmann entropy, observational entropy, and diagonal entropy [25,

26]. In particular, diagonal entropy stands out due to its direct connection with the energy basis

of the system, more precisely, with the diagonal elements of the density operator in the energy

basis of the system’s Hamiltonian [28].

Moreover, information theory itself provides a family of definitions for entropic quantities,

with relative entropy being substantially important in the context of quantum thermodynamics.

Relative entropy quantifies the "distance"
2
between two quantum states and is fundamental to

2
Strictly speaking, relative entropy is not a metric in the traditional sense of distance. However, this notion of

entropy provides a measure of distinguishability between quantum states, justifying the use of the term "distance."

Moreover, it is possible to construct a metric from relative entropies through simple symmetrization. In Appendix

A.2, these aspects are discussed.
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the concept of irreversibility and the arrow of time in quantum processes [29–31].

In light of these various open questions, a recent work proposed a new formulation for quan-

tum thermodynamics as a gauge theory [3]. In this work, Céleri and Rudnicki, inspired by the

success of fundamental theories, particularly field theories such as General Relativity and the

Standard Model of particle physics, introduced the notion of a thermodynamic gauge group. The

transformations of the thermodynamic group form the basis for constructing physical quantities

that would be invariant under the action of this group. These physical quantities would then be

obtained through a process of coarse-graining, similar to classical thermodynamics.

Thus, the theoretical framework introduced in Ref. [3] defines a symmetry structure known as

the Thermodynamic Gauge Group, or thermodynamic group, which facilitates a type of coarse-

graining within the informational realm. Just as the detailed microscopic dynamics of a classical

system can be irrelevant to Thermodynamics, a portion of the informationwithin a quantum state

becomes superfluous for Quantum Thermodynamics. The thermodynamic group was specifi-

cally designed to eliminate this superfluous information. Hence, Quantum Thermodynamics is

described as a gauge theory governed by this thermodynamic group. By invoking the principle

of gauge invariance, quantum thermodynamic quantities are derived uniquely from this frame-

work. Ref. [3] provides an extensive discussion on the gauge-invariant concepts of work and heat

and their associations with quantum properties such as quantum coherences.

Moreover, an important issue concerning the establishment of the thermodynamic gauge

group introduced in Ref. [3] arises. In essence, the thermodynamic gauge group is not fundamen-

tal, meaning it does not naturally originate from the mathematical underpinnings of the theory

as seen in field theories. Instead, the thermodynamic gauge emerges from the coarse-graining

paradigm, which is hypothesized by the theory. In analogy with conventional field theories, the

density operator in this context becomes similar to potentials. As such, the density matrices,

which act as the bearers of information, assume the role of these potentials. Consequently, the

information within the system’s state is deemed redundant exclusively from a thermodynamic

viewpoint but retains its relevance in Quantum Information or Quantum Mechanics. Essentially,

the thermodynamic group was devised to systematically eliminate such redundancy. Therefore,

the function of the thermodynamic group is to transition from the state space to thermodynamic

variables by excising redundant data, thus implementing a form of coarse-graining reminiscent

of classical thermodynamics.

However, the initial developments proposed by Céleri and Rudnicki in Ref. [3] were still some-

what nascent. Indeed, this work addressed various issues within essentially specific contexts,

necessitating broader generalization. Consequently, several aspects that were left unresolved

include:

I) The consideration of Hamiltonian systems whose degeneracies do not change over time.



Chapter 1. Introduction 5

II) The understanding and interpretation of the obtained quantities—particularly heat in closed

systems—still require further discussion.

III) The development following the first law, particularly the definition of an entropy obtained

in an invariant manner, as well as a second law for the theory.

IV) Applications of the formalism to physical problems, particularly in many-body systems.

In this context, the present work emerges as a continuation, formalization, and generalization

of the theory initially proposed byCéleri and Rudnicki in Ref. [3]. Our aim is essentially to address

the four items mentioned above. For organizational purposes, as well as to summarize what will

be done throughout the text, we will provide a brief description of the work below.

• Chapter 2 of this dissertation consists of a brief review of Thermodynamics. Indeed, in this

chapter, we will present concepts and general notions regarding relevant physical quanti-

ties in the context of classical and quantum thermodynamics. Additionally, we will discuss

some general aspects of certain definitions of entropy in the quantum context.

• In Chapter 3, we will construct the foundations of thermodynamics as a gauge theory.

Thus, starting from a set of assumptions, we will build the thermodynamic group and

subsequently establish the notion of physical quantities within this approach, which are

invariant under the thermodynamic group. General aspects of the formalism will also be

discussed.

• In Chapter 4, we will obtain the associated expressions for heat, work, and entropy within

the formalism of the GT-group. Then, we will revisit some of the basic applications devel-

oped by Céleri and Rudnicki in Ref. [3].

• In Chapter 5, we will obtain expressions for the heat and work, defined in an invariant

manner, associated with out-of-equilibrium processes. We will also argue how these quan-

tities connect with the notions of irreversibility and state asymmetry. Finally, we apply

this approach to the study of two spin systems that exhibit quantum phase transitions,

specifically:

– The Landau-Zener model, which is solved analytically,

– The Lipkin-Meshkov-Glick model, which we develop numerically,

for both, we evaluate themain thermodynamic quantities (Heat, work, and entropy) through-

out the quench process.

• In Chapter 6, we present a general discussion on the developments from the previous chap-

ters and further explore some perspectives that have already been initially discussed and

are left for future investigations.
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In addition to the chapters presented, there are two appendices included at the end of the

dissertation. In summary, these appendices were constructed with two main objectives. The first

objective is related to the self-contained nature of the text, ensuring that it is comprehensive and

accessible. To this end, we present some general results that span both the scope of quantum in-

formation theory and group theory, including Haar measures, which were employed throughout

the text to derive the main results of each chapter. On the other hand, the second objective is

rooted in the educational purpose of the dissertation. Specifically, the appendices were designed

to provide potential readers with a brief introduction to the concepts and foundational elements

that underpin the text, thereby serving as a didactic resource for readers who may not be as

familiar with these topics.

Regarding the notations and constants, we will use a coordinate system where the constants

kB = ℏ = 1, with kB being the Boltzmann constant and ℏ the reduced Planck constant. In some

cases, these constants may appear to clarify the topics discussed. However, we emphasize that

all numerical and analytical calculations will treat these constants as 1.
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Chapter 2

Thermodynamics: An overview

In this chapter, we will revisit some general aspects of classical and quantum thermodynam-

ics. In short, the concepts and discussions presented here constitute part of some fundamental

elements for the work that will be developed in the following chapters. Indeed, our goal here is

to go through some particular elements of thermodynamics, especially the usual definitions of

heat and work as well as the formulations of the first and second law.

2.1 Classical Thermodynamics

Thermodynamics, unlike most physical theories, does not concern itself with describing the

mysteries of the natural world. However, it provides us with a robust formalism on how to ex-

plore this world, for example, by indicating suitable routes for extracting resources, such as hot

gas or magnetized metal, to achieve specific objectives, whether moving a train or formatting a

hard drive [1]. Moreover, thermodynamics also establishes the limitations for these explorations,

imposing fundamental constraints on the processes of energy and matter transformation, delin-

eating what is possible and what is unattainable [1].

In fact, the early developments of thermodynamics traverse an extensive historical journey of

empirical results [32–38] which guide us to its modern axiomatic formulation [5]. In this context,

the foundations of thermodynamics are laid out in a set of postulates that synthesize the results

obtained throughout its development. Furthermore, the nature of macroscopic measurement pro-

cesses is rigorously grounded in the Central Limit Theorem [39].

In particular, macroscopic measurements are established under the assumptions of being ex-

tremely slow compared to the atomic time scale and are extremely coarse on the atomic scale of

distance. Indeed, these two assumptions about the macroscopic measurement process ensure not

only simplicity in the description of these systems but also a universal character for thermody-

namics.

This description is what we call coarse-graining, which, in this context, emerges from the

impossibility of determining all the microscopic details of a macroscopic system. Consequently,

we do not evaluate the individual components of the system, as microscopic fluctuations are
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expected to average out over time and space, thus forming a well-defined behavior for laws and

average physical quantities that are independent of microscopic details.

In this sense, note that in a macroscopic measurement, the atoms composing the system un-

dergo extremely rapid and complex movements. However, since macroscopic measurements are

extremely slow on the atomic time scale, any sets of atoms associated with rapidly oscillating

movements should, on average, cancel out over time and not contribute to the system’s de-

scription. Nevertheless, a particular set of combinations of atomic coordinates, which are time-

independent, will be macroscopically observable [5].

The surviving atomic coordinates are then those that have characteristic times similar to the

measurement method employed. As a result, the hypothesis that macroscopic measurements

are extremely slow on the atomic time scale reveals that thermodynamics describes only static

macroscopic systems.

Furthermore, macroscopic measurements are also coarse on the atomic scale of distance. In-

deed, the motion of individual atoms is strongly coupled; consequently, these atoms tend to orga-

nize and move in patterns called normal modes. That is, it becomes more convenient to describe

an atomic state by specifying the instantaneous amplitudes of each normal mode. These ampli-

tudes are called normal coordinates, and there are exactly the same number of normal coordinates

as atomic coordinates [5].

Consequently, spatial averages over these macroscopic systems do not consider individual

atoms but rather sets that can be identified in their measurement. As a result, it is the normal

modes associated with long wavelengths that survive in spatial averages. Since these modes

have a spatially homogeneous structure, they survive spatial averaging. Moreover, it is these

same low-frequency normal modes that survive temporal averaging, as the contributions from

high-frequency modes should cancel out on average [5].

Note that the surviving coordinates, which may be of different natures, form the set of ther-

modynamic variables. Indeed, the study of these surviving coordinates forms areas of physics

such as Mechanics and Electricity. On the other hand, thermodynamics is concerned with the

manifestations of effects from the numerous atomic coordinates that, due to the coarseness of

macroscopic observations, do not explicitly appear in the macroscopic description of the system.

In this sense, there are two strictly important consequences for thermodynamics that result

from these hidden modes. The first consequence is that these modes can be used as repositories

and carriers of energy. For example, energy transferred by mechanical and electrical modes is

respectively termed mechanical work and electrical work. Nevertheless, it is also possible that

hidden modes of motion, associated with high frequencies, can be used to transfer energy within

a system. In particular, the transfer of energy through these hidden modes is what we call heat

[5].
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This discussion synthesizes some notions about measurement processes, particularly in ther-

modynamics. In this sense, note that thermodynamics is a theory that essentially describes av-

erage quantities based on an elegant coarse-graining in macroscopic systems. Furthermore, note

that the entire discussion does not make any assumptions about the nature of the thermodynamic

coordinates, highlighting the universality of the theory.

2.1.1 Axiomatic formulation of thermodynamics

Once we have determined the scope of interest of thermodynamics, we will proceed to its

construction. Indeed, classical thermodynamics can be set in an axiomatic formulation [5]. In

this sense, the description of a closed system, i.e., one that can only interact with another system

through a sufficiently controlled transfer of energy, is usually made in terms of the quantities:

volume V , mole number of the k-th chemical componentNk, and internal energyU, and is based

on three postulates. The first postulate is associated with the existence of equilibrium states,

which we present below.

Postulate 1. (Equilibrium [5]). There exist particular states (called equilibrium states) of simple
systems that, macroscopically, are characterized completely by the internal energy U, the volume V ,
and the mole numbers N1, N2, . . . , Nk of the chemical components.

Equilibrium states form a manifold of thermodynamic states in which there are no macro-

scopic changes over time. Indeed, Postulate 1 is equivalent to characterizing an equilibrium state

as a thermodynamic state in which all net fluxes within the system cancel out. Moreover, any

state in a closed system, in classical thermodynamics, tends toward the equilibrium state.

That is, in a scenario where some process is carried out, causing the system to depart from

equilibrium, once the system is closed again, the resulting state tends to return to the thermody-

namic equilibrium state. In this context, we can then define the heat flux, for any process, as the

difference between the change in internal energy and the work done in that process.

In this sense, let us consider a quasi-static process, that is, a thermodynamic process suffi-

ciently slow such that the system never departs from equilibrium throughout the process. Then,

the infinitesimal heat flux for this process is defined by:

δQ = dU−δW (2.1)

where δ denotes an inexact differential,W and Q are, respectively, the total work and total heat

flux. The inexact differentials that appear in Eq. (2.1) are associated with the fact that both work

and heat flux in a closed system depend on the process. However, starting from Eq. (2.1), we can

write:

∆U = Q+W (2.2)
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where ∆U = Uf −Ui with f and i labeling the final and initial states, respectively. Eqs. (2.1)

and (2.2) correspond to the first law of thermodynamics.

However, it is important to note that Eq. (2.1) does not imply that internal energy is the sum

of energy contributions from work and heat flux. Certainly, this becomes clear through Eq. (2.2),

which shows that the sum of these contributions equals the change in internal energy.

Nevertheless, note that both expressions reveal that the first law of thermodynamics is a

conservation law. More specifically, it details an energy balance between contributions from

work and heat flux. Moreover, although Q and W depend on the thermodynamic process, the

change in internal energy is independent of any process. In short, this is a consequence of the

fact that the state function U is a conservative field.

Besides the state function U, other functions can be used to represent a thermodynamic state

[5]. In particular, the second postulate of thermodynamics introduces a new state function that

depends on extensive parameters (which scale with the system), such as internal energy, volume,

and number of particles. In this sense, we introduce the second postulate.

Postulate 2. (Existence of entropy [5]) There exists a function (called the entropy S) of the extensive
parameters of any composite system, defined for all equilibrium states and having the following
property: The values assumed by the extensive parameters in the absence of an internal constraint
are those that maximize the entropy over the manifold of constrained equilibrium states.

Note that Postulate 2 not only establishes the existence of entropy but also asserts that this

quantity must be maximized in the manifold of equilibrium states. However, this postulate does

not uniquely determine, nor even from any set of transformations, the behavior and properties

that entropy must satisfy. The following postulate specifies the characteristics of entropy.

Postulate 3. (Entropy properties [5]) The entropy of composite systems is additive over their con-
stituent subsystems. Furthermore, entropy is a continuous and differentiable function almost every-
where, and it is a monotonically increasing function of energy, i.e

∂S

∂U
> 0. (2.3)

The first property of thermodynamic entropy, as stated in Postulate 3, can be expressed by

the following equality.

S =
∑
i

Si, (2.4)

in which the total entropy function of a system S is expressed as the sum of the entropies Si of

each i-th subsystem. The assumptions of continuity and differentiability almost everywhere are

specially important. Indeed, in various natural scenarios, particularly in thermodynamic equilib-

rium, entropy is expected to be continuous and differentiable. However, there are particular cases
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where this property may be violated. For example, during first- and second-order phase transi-

tions, the entropy and its derivative, respectively, exhibit a discontinuity at the critical point of

the system. Nevertheless, except on a set of measure zero, it is reasonable to assume that entropy

is a function of class C∞.

From Postulate 3, we can then define the concept of thermodynamic temperature. Indeed, the

thermodynamic temperature T of a system, in a state of equilibrium, is defined by:

T ≡ ∂U

∂S
∴ T > 0. (2.5)

Note that the inequality T > 0 is a consequence of the monotonicity of entropy with

respect to internal energy as defined by Postulate 3 and expressed by Eq. (2.3). From the definition

of thermodynamic temperature, it becomes possible to specifically address thermal equilibrium

and thus formulate the so-called zero law of thermodynamics, which establishes a transitivity

relationship between systems in equilibrium.

Observe that, as established by Postulate 3, the temperature defined by Eq. 2.5 is strictly pos-

itive, in particular, it is non-zero. In fact, within the context of classical thermodynamics, we do

not expect to encounter any system with zero temperature. However, in some scenarios, such as

in quantum systems, we can have zero temperature. The possibility of having T = 0 leads us to

the following postulate.

Postulate 4. The entropy S for any system vanishes in the state for which

∂U

∂S
= 0,

that is, at the zero of temperature.

Postulate 4 sometimes appears in the literature as the third law of thermodynamics or even as

Nernst’s Postulate [5]. In truth, this postulate is only fully explained with quantum mechanics.

However, the bulk of thermodynamics does not require this postulate [5]. Thus, Postulates 1, 2,

and 3 establish all the essential characteristics for the definition of thermodynamic entropy. We

will then proceed to the formulation of the second law of thermodynamics.

Unlike the first law, the second law of thermodynamics does not consist of a conservation

principle or even an energy balance. In fact, the implications of the second law have another level

of sophistication since it imposes limits on the occurrence of physical processes. In particular, one

of the results establishing the second law was given by Clausius, who states that it is impossible

to carry out a process whose only effect is to extract heat from a source at temperature Tc to a

source at temperature Th > Tc.

Mathematically, Clausius’s result can be expressed by the following inequality:∮
C

δQ

T
≤ 0 (2.6)
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where C denotes a path between two points A and B. Equality in expression (2.6) occurs if and

only if the path C is reversible, that is, along the entire trajectory C the thermodynamic state of

the system is always in equilibrium. However, fromClausius’s result, we can obtain a formulation

of the second law in terms of entropy.

Indeed, letU ≡ U(S,X) be the thermodynamic state function, whereX is a set of parameters

Xk that can be associatedwith different normal coordinates due to the nature of the system. Thus,

it is possible to expand U as:

dU = dS
∂U

∂S
+
∑
k

dXk
∂U

∂Xk

= T dS +
∑
k

dXk
∂U

∂Xk

(2.7)

in which we assume that the quantities involved may depend on a parameter t, which could be

time. Thus, by inspecting Eq. (2.1), we can identify the following equality

T dS = dQ, (2.8)

since the variablesXk must specify contributions as work. Thus, it is immediate from the equality

(2.8) that:

T dS = δQ =⇒ ∆S =

∮
Cr

δQ

T
(2.9)

in which the path Cr is associated with a reversible process and∆S = SB − SA, where A and B

are labels associated with two equilibrium states. Now, consider a process described by the path

C = Ci∪(−Cr)whereCi refers to an irreversible process. From this and Clausius’ inequality (2.6)

we obtain: ∮
C=Ci∪(−Cr)

δQ

T
≤ 0 =⇒

∮
−Cr

δQ

T
+

∮
Ci

δQ

T
≤ 0

=⇒ −∆S +

∮
Ci

δQ

T
≤ 0

=⇒ ∆S ≥
∮
Ci

δQ

T
. (2.10)

As discussed previously, equality in Eq. (2.10) holds if and only if Ci is a path associated with a

reversible process. The expression given by Ineq. (2.10) corresponds to the second law of ther-

modynamics in terms of entropy. In particular, for an isolated system δQ = 0 and thus it follows

that entropy must always increase.

Now, note that we can describe the quantities involved above with respect to the time t asso-

ciated with the process we are considering. Consequently, the change in entropy can be written

as ∆S = S(t) − S(0) and the inexact differential of heat can be written as δQ = Q̇δt, and thus
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Ineq (2.10) gives us

dS

d t
≥ Q̇

T
(2.11)

note that we consider the temperature T constant throughout the entire process. This considera-

tion stems from a basic assumption that the heat exchange occurs with systems that are infinitely

large compared to our system.

Thus, according to Ineq. (2.11), theremust exist a non-negative quantity, whichwewill denote

by σ̇(t), such that:

dS

d t
=
Q̇

T
+ σ̇(t). (2.12)

Indeed, the quantity σ(t) represents the entropy production in the system. In summary, this

development provides us with another inequality for the second law, which is:

σ̇(t) ≥ 0, (2.13)

that is, the rate at which entropy is produced in a system is always positive. Note that, in iso-

lated systems, the notion of entropy production becomes equivalent to the temporal variation of

entropy.

Notice that Eq. (2.12) shows that the second law is not some kind of conservation law since it

is possible to see that the term associated with entropy production acts analogously to a source

term in a continuity equation.

2.2 Quantum Thermodynamics

Having discussed some aspects of the essence of classical thermodynamics, we will now delve

into quantum thermodynamics. To do this, we will begin our discussion by revisiting some ele-

ments of quantum mechanics, which can be found in various well-established literature such as

[40, 41]. Next, we will define the usual notions of heat and work in quantum thermodynamics as

in Ref.[15, 42].

In this context, let us consider a d-dimensional Hilbert space denoted by Hd
. In the context

of Quantum Mechanics, the most general representation of a quantum system is made in terms

of an operator, which we denote by ρ ∈ L1(Hd) where L1(Hd) denotes the space of Lebesgue

measurable functions over the Hilbert spaceHd
. Such an operator is associated with an ensemble

{pi, |ψi⟩}, where pi denotes the probability associated with each state |ψi⟩ and carries all the

information of a given physical system. Additionally, the following properties are satisfied by

the density matrix operator ρ [41]:



14 Chapter 2. Thermodynamics: An overview

(i) The density matrix ρ has trace equal to one.

(ii) The operator ρ is hermitian, i.e. ρ = ρ†.

(iii) The density matrix ρ is a positive operator.

The property (i) ensures the normalization of the density operator, (ii) guarantees that the

eigenvalues of the density operator are real, while (iii) ensures the positivity of its elements.

Furthermore, the elements of the density matrix ρ have certain relevant physical significance,

especially in this work, to be discussed. In summary, the diagonal elements of ρ are real and

are referred to as state populations or simply populations, which carry the physical information

about the probabilities of the states, while the off-diagonal elements are called coherences [40,

41, 43].

In this sense, the most general form of density operator [41] is given by

ρ =
∑
j

pj |ψj⟩ ⟨ψj| . (2.14)

The density operator allows us to characterize a given state ρ as either pure or mixed. In partic-

ular, when Tr {ρ2} = 1, ρ is a pure state; on the other hand, if

P = tr
(
ρ2
)
=
∑
j

p2j ≤ 1,

ρ is called mixed state and P denote the purity of state. In particular, we can see that Tr {ρ2} is

bounded [41] as

1

d
≤ tr

(
ρ2
)
≤ 1, (2.15)

where

1

d
occurs when we have the maximally disordered in the system which occurs where the

density matrix is given by

ρ =
1d
d
, (2.16)

where 1d denotes a d× d identity matrix.

Another important aspect in this scenario, is how the density operator evolves in time. In

this sense, for a quantum system under unitary evolution, we have that the unitary evolution

operator U(t, t0) satisfies the following initial value problem:i
∂

∂t
U (t, t0) = H(t)U (t, t0)

U(t0, t0) = 1
(2.17)
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where 1 denotes the identity operator and H(t) is the time-dependent Hamiltonian operator

defined on Hd
. The most general solution of Eq. (2.17) is given by:

U (t, t0) = 1 +
∞∑
j=1

(
−i
ℏ

)j ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tj−1

t0

dtnH (t1)H (t2) · · ·H (tj) .

(2.18)

A particular case of the system in Eq. (2.17) and, consequently, of the solution in Eq. (2.18) oc-

curs when the Hamiltonian operator is time-independent. In this case, the problem in Eq. (2.17)

reduces to a simple differential equation whose solution is given by:

U(t, t0) = e−iH(t−t0). (2.19)

In particular, the set of evolution operators U(t, t0) forms a semigroup with respect to the

usual multiplication operation between operators [40, 44].

With this, it follows that given a state at a time t0 given by ρ(t0) the state at a time t ≥ t0 is

given by:

ρ(t) = U (t, t0) ρ (t0)U
† (t, t0) , (2.20)

where U(t, t0) satisfies the problem in Eq. (2.17). The equality in Eq. (2.20) determines the time

evolution of the density operator under unitary dynamics, however, we can still obtain a dynamic

equation for the density operator. To this end, let us consider a system governed by a Hamiltonian

H(t) and consider the quantum states |ψj(t0)⟩ such that |ψj(t)⟩ = U(t, t0) |ψj(t0)⟩. Then, from
the density operator in the most general form given by Eq. (2.14) it follows that:

i
∂ρ(t)

∂t
=

∑
j

(
i
∂

∂t
|ψj(t)⟩

)
⟨ψj(t)|+ |ψj(t)⟩

(
i
∂

∂t
⟨ψj(t)|

)
=

∑
j

H(t) |ψj(t)⟩ ⟨ψj(t)| − |ψj(t)⟩ ⟨ψj(t)|H(t)

= H(t)ρ(t)− ρ(t)H(t).

Therefore, we obtain the following equation:

∂ρ(t)

∂t
= −i[H(t), ρ(t)] (2.21)

which is called the Liouville-von Neumann equation [40] due to the similarity with respect to the

Liouville equation that emerges in the context of classical mechanics [45].

The quantum dynamics given by Eq. (2.21) is established under the hypothesis that the evo-

lution of the system is unitary, that is, the states evolve according to the Schrödinger equation.
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However, even in non-relativistic quantum mechanics, this is not the most general scenario for

describing the dynamics of the density operator, since in this regime we can have cases where

the dynamics of the operator is non-unitary.

2.2.1 Work, heat and first law

From this, we can begin to introduce some important notions for quantum thermodynamics.

In summary, the unitarity or non-unitarity of the system’s dynamics, and consequently of the

density operator, is a crucial aspect for defining closed and open systems in the context of quan-

tum thermodynamics. Certainly, we say that a quantum system is closed as long as its dynamics

are unitary, that is, described according to the Schrödinger Equation Eq. (2.17) or, equivalently,

the Liouville-von Neumann Equation Eq. (2.21).

Furthermore, note that even a system with a time-dependent Hamiltonian, meaning the en-

ergy of the system is not conserved, is still said to be a closed system. This is particularly the case

because we consider that the injection or removal of energy in the system is done in a sufficiently

controlled manner so that the system can still be considered closed, which resembles the classical

description of a piston that can move in the context of quantum thermodynamics.

Consequently, we say that a system is open if its evolution is non-unitary. In particular,

this scenario occurs when we consider a quantum system, described by a Hamiltonian HS , that

interacts with an environment described by a HamiltonianHR. Therefore, the total Hamiltonian

of the system is given by:

H = HS ⊗ IR + IS ⊗HR + ϵHI (2.22)

where IR and IS represents, in order, the identity operator in the Hilbert space associated to the

environment HR and the open system HS . The Hamiltonian HI characterizes the interaction

between S and R and ϵ and the parameter ϵ characterizes the strength of the coupling of the

interaction Hamiltonian.

The description given by Eq. (2.22) is valid as long as the system is under a Markovian regime

(there are no memory effects, so past and future events do not interfere with each other), the cou-

pling strength, ϵ, is small, the environmentR has infinite degrees of freedom, and the interaction

between the system and the environment is irreversible. In summary, these assumptions lead to a

new characterization of the system’s evolution. In particular, the interaction between the system

and the environment causes the system’s dynamics to become non-unitary; consequently, the

Liouville-Von Neumann equation Eq. (2.21) no longer holds for describing the evolution of the

density operator.

However, even under a non-unitary regime, it is still possible to describe the dynamics of

the density operator. In summary, the evolution of this operator is then defined by the Lindblad
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Master Equation [46] given by:

d ρ(t)

dt
= −i[H(t), ρ(t)] +D[ρ(t)], (2.23)

D[ρ(t)] =
d2∑
k=1

γk

(
LkρL

†
k −

1

2

{
L†
kLk, ρ(t)

})
(2.24)

where D[ρ(t)] is called dissipator, and the right side of the equation Eq. (2.23) defines a linear

superoperator L(ρ) ≡ −i[H(t), ρ(t)] + D[ρ(t)] it is also customary to call L{ρ} the Liouvillian

because the analogy betweeen Eq. (2.23) and the Liouville equation Eq. (2.21).

With these discussions, we now have the main results associated with the density operator in

quantum mechanics, as well as the determination of concepts that define what we call closed and

open systems in the context of quantummechanics. So, let’s now begin to define the notions of the

main thermodynamic quantities in the context of the first law. In particular, the first definitions

of heat and work in the context of quantum thermodynamics were made by Alicki [15].

Indeed, following the notions presented in [15], we define the internal energy of a system by

the expected value of the Hamiltonian operator, i.e.:

U = ⟨H⟩ = Tr {ρ(t)H(t)} , (2.25)

notice that we denote the energy of the system by Uwhich differs from the notation used for the

time evolution operator U(t, t0). From this, using the linearity of the trace functional, and taking

the differential of the expression in Eq. (2.25) it follows that we have

dU = dTr {ρ(t)H(t)} = Tr {d ρ(t)H(t)}+ Tr{ρ(t) dH(t)} . (2.26)

The first term that appears in the last equality is what we associate with the differential con-

tribution of heat to the system, while the second is what we associate with the differential of

work.

Notice that the quantity we associate with work is connected to modifications in the Hamilto-

nian, which is well-behaved since we have a high level of controllability over quantum systems.

On the other hand, the change in states is not something controllable; in summary, these changes

emerge as responses to the modifications experienced by the system. Thus, these energy contri-

butions are identified as heat, in analogy to the classical notion we discussed earlier.

Therefore, the notions of heat and work in quantum thermodynamics are expressed, in dif-

ferential form, as:

dQu[ρ(t)] = Tr{H d ρ}, (2.27)

dWu[ρ(t)] = Tr{dHρ}, (2.28)
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inwhichQu[ρ(t)] andWu[ρ(t)] denote heat andwork respectively, the subscript labelu designates

the word usual, which will be relevant in later chapters where we will introduce other notions of

heat and work. More commonly, these quantities can be written as:

Qu[ρ(t)] =

∫ τ

0

dtTr

{
d ρ(t)

dt
H(t)

}
, (2.29)

Wu[ρ(t)] =

∫ τ

0

dtTr

{
ρ(t)

dH(t)

dt

}
, (2.30)

considering a dynamics defined such that t ∈ [0, τ ] where τ is the time of evolution. Note that

the notion of usual heat introduced in Eq. (2.30) reasonably agrees with the classical notion of

work understood as the integral of a power function [42, 45]. With this, we can then formulate

the first law of thermodynamics in the context of quantum thermodynamics, which is expressed,

in differential form, by:

dU = dWu[ρ(t)] + dQu[ρ(t)] (2.31)

more usually:

∆U = Wu[ρ(t)] +Qu[ρ(t)] (2.32)

sinceWu[ρ(0)] = Qu[ρ(0)] = 0 and ∆U = U(t)− U(0).

The expressions for heat Eq. (2.29) and work Eq. (2.30) were obtained without any considera-

tions regarding the nature of the dynamics of the density operator. Thus, these definitions remain

valid both in the context of open systems and closed systems. In this sense, it is interesting to

evaluate the behavior of heat in the particular case where we have a closed system. In this regime,

the density operator evolves according to the Liouville-Von Neumann equation Eq. (2.21), thus,

it follows that the heat Eq. (2.29) is such that

Qu[ρ(t)] =

∫ τ

0

dtTr

{
d ρ(t)

dt
H(t)

}
=

∫ τ

0

dtTr {−i[H(t), ρ(t)]H(t)}

= −i
∫ τ

0

dtTr {[H(t), ρ(t)H(t)]}

= 0

since the trace of any commutator is always zero, that is, Tr{[A,B]} = 0 for all operators A

and B. Consequently, this establishes a result analogous to what we have in classical thermo-

dynamics: The heat involved in a given thermodynamic process, in a closed system, is always

zero.
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However, note that the heat introduced by Alicki is closely tied to the unitarity of the dy-

namics, particularly describing the energy exchange associated with the interaction between the

system and a possible coupled bath. In this sense, the previous result indicates that this energy

contribution is null in closed systems. Nevertheless, there are several other developments in

quantum thermodynamics where notions of energy, analogous to heat, are introduced in closed

systems. These contributions, in turn, can have different natures, such as being connected to

"internal frictions" [23], non-adiabaticity in unitary dynamics [22], and even out-of-equilibrium

processes [47]. In particular, these distinct contributions emerge in the quantum scenario through

the production of uncertainties in energy measurements arising from the generation of quantum

coherences in the energy basis [24].

In Chapter 4, we will discuss in more detail specific situations where energy contributions,

more specifically parts of the work done on a system, can be interpreted as heat [3].

2.3 Different notions of entropy

In the previous section, we introduced the physical quantities associated with heat and work,

as well as the first law of thermodynamics in the context of quantum mechanics. A natural

continuation would then be to establish a notion of entropy and, consequently, establish a second

law for quantum thermodynamics. However, the concept of entropy is one of the most debated

and mystified in the history of science [25]. As a result, various schools of thought have emerged,

leading to the concept of entropy being formulated with different notions both philosophical-

conceptual and quantitative-numerical [48]. With this in mind, let us then discuss some notions

of entropy that appear as candidates for microscopic entropy [25, 48].

2.3.1 Von Neumann entropy

The first definition of entropy that we will revisit is the so-called Von Neumann entropy, which

usually appears as thermodynamic entropy [25, 49] and is defined by:

Su[ρ] = −Tr {ρ log(ρ)} . (2.33)

This entropy is associated to the minimization of Shannon entropy [50, 51] over all basis [52].

In this work, we reefears to the Von Neumann entropy as usual entropy. In fact, this entropy

is consistent with thermodynamic entropy only in two cases
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I) When the system is in equilibrium and is represented by statistical ensembles. For example,

the Gibss thermal state given us:

ρG =
e−βH

Z
=⇒ Su[ρG] = −

∑
n

En log(En) (2.34)

where β is the inverse of temperature and Z ≡= Tr{e−βH} is the partition function.

II) The second case is for ensembles even out of equilibrium that describes open systems cou-

pled to an ideal heat bath.

The consideration that Von Neumann entropy is not, in general, a thermodynamic entropy is fun-

damentally important. Indeed, there are numerous works, especially in the realm of information

theory, that employ its use as such without due concern for the precise conditions necessary for

this attribution. With this in mind, we can cite, as an illustrative example, the case of an ideal gas

undergoing free expansion, where the entropy increases during the expansion. However, free ex-

pansion is a reversible process, and thus the Von Neumann entropy in this process is zero, which

does not correspond to the actual physical nature of the problem [53]. Furthermore, inconsisten-

cies in the very derivation of entropies can also be observed when comparing the origin of the

line elements associated with typically informational entropies and thermodynamic entropy.

TheVonNeumann entropy possesses several particular properties, whichwewill nowpresent.

Indeed, these are:

(i) VonNeumann entropy is invariant under unitary transformation. In fact, consider a unitary

transformation V then we have:

Su[V ρV ] = −Tr
{
V ρV † log(V ρV †)

}
= Tr

{
V ρ log(ρ)V †} = Su[ρ] (2.35)

since, for every differential functionF and a unitary transformationV wehaveF (V xV †) =

V F (x)V †
, and the last equality holds by cyclic property of the trace.

(ii) Von Neumann entropy is invariant in closed system. This follows immediately from the in-

variance under unitary transformation since that in closed system the evolution is unitary,

then ρ(t) = U(t, t0)ρ(t0)U
†(t, t0) which gives the time invariance:

Su[ρ(t)] = Su[U(t, t0)ρ(t0)U
†(t, t0)] = Su[ρ(t0)]. (2.36)

(iii) Spectral decomposition of density operator in Von Neumann entropy. Since the density

matrix ρ is a Hermitian operator, it can be spectrally decomposed as ρ =
∑
k

pk |ψk⟩ ⟨ψk|,

where {pk} is a set of eigenvalues and {|ψk⟩} is a set of corresponding eigenvectors that
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form an orthonormal basis. Using this decomposition in Von Neumann entropy we have

Su[ρ(t)] = −Tr{ρ(t) log[ρ(t)]}

= −
∑
j

⟨ψj|

[∑
k

pk |ψk⟩ ⟨ψk| log

(∑
n

pn |ψn⟩ ⟨ψn|

)]
|ψj⟩

= −
∑
j,k

⟨ψj|ψk⟩ pk log

(∑
n

pn ⟨ψk|ψn⟩ ⟨ψn|ψj⟩

)
= −

∑
k

pk log (pk)

then, we can write the Von Neumann entropy as

Su[ρ(t)] = −
∑
k

pk log (pk) (2.37)

where pk ∈ [0, 1] since that ρ is a positive operator and his trace is equal to 1.

(iv) Von Neumann entropy is equal to zero if and only if ρ(t) is a pure state, i.e.

Su[ρ(t)] = 0 ⇐⇒ Tr{ρ2(t)} = 1. (2.38)

In fact, let us consider a normalized a quantum state |ψk(t)⟩, and a orthonormal set {|ψ⟩j}
where j = 1, ..., k, .... The density matrix associated to this pure state labeled by k is

ρ(t) = |ψk(t)⟩ ⟨ψk(t)| therefore:

Su[ρ(t)] = Su[|ψk(t)⟩ ⟨ψk(t)|]

= −Tr {|ψk(t)⟩ ⟨ψk(t)| log[|ψk(t)⟩ ⟨ψk(t)|]}

= −
∑
j

⟨ψj| [|ψk(t)⟩ ⟨ψk(t)| log[|ψk(t)⟩ ⟨ψk(t)|]] |ψj⟩

= −⟨ψk(t)| log[|ψk(t)⟩ ⟨ψk(t)|] |ψk⟩

= − log[⟨ψk(t)⟩ ⟨ψk(t)⟩]

= − log(1) = 0

since the |ψk(t)⟩ is normalized. For other hands, suppose, by contradiction, that ρ(t) is a

mixed state as Eq. (2.14) and Su[ρ(t)] = 0 therefore, from (iii) we have

Su[ρ(t)] = 0 =⇒ −
∑
k

pk log (ρk) = 0 =⇒ pk = 1

since pk ∈ [0, 1]. Therefore, if Su[ρ(t)] = 0 the density operator is a pure state.
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The Von Neumann entropy has a considerable number of other properties [41, 50]. The prop-

erties we highlighted and proved above are relevant in our discussion about a microscopic defi-

nition of thermodynamic entropy. Indeed, in the preceding discussions, we will always compare

each entropy with the Von Neumann entropy, particularly concerning these properties.

2.3.2 Boltzman entropy

Another important definition of entropy is the Boltzmann entropy. Let us consider H be the

Hamiltonnian of an isolated system where we drive any dependence on external paramater gt.

In this sense, the system is governerd by the following stationary Schrödinger equation:

H |Ei, li⟩ = Ei |Ei, li⟩ ,

where {|Ei, li⟩} correspond to the set of energy eigenstates with energy eigenvaluesEi and labels
possible exact degeneraries.

Now, let us consider a scenario where our objective is to perform an energy measurement.

Indeed, in the situation where our system is sufficiently simple and controllable such that the ob-

server has full control of the experiment, any energy measurement can be understood in relation

to the projection of each eigenenergy Πi = |Ei, li⟩ ⟨Ei, li|.
However, this is an ideal scenario, and certainly in more realistic systems, one may not have

full control over the experiment such that there is some uncertainty δ associated with the ig-

norance of the energy measurement. In this sense, we have a scenario in which the energy

measurement is then characterized by the following projector

ΠE =
∑

Ei∈[E,E+δ)

∑
ℓi

|Ei, li⟩ ⟨Ei, li| . (2.39)

In fact, the uncertainty associated with the parameter δ is related to the observer’s ignorance

regarding some element of the system and/or the inherent impossibility of fine measurement in

the conducted experiment. The projectors obtained by Eq. (2.39) form an orthogonal set such that

the equalities: ΠEΠE′ = δE,E′ΠE∑
E ΠE = 1

(2.40)

where δE,E′ the Kronecker delta. In particular, sets of projectors that satisfy the equalities given

in Eq. (2.40) define what we call a coarse-grained measurement. The most general case is when

we have information about further macroscopic variables, such as the particle number N .
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If a coarse-grained measurement results in outcome E, the Boltzmann entropy of the system

is

SB(E) ≡ log(VE), VE ≡ Tr{ΠE} = dim{ΠE} (2.41)

where VE is referred as the system’s volume element which is the rank of the projector ΠE .

When information about additional macroscopic variables, such as particle number N , is

available, the Boltzmann entropy can be generalized as

SB(E,N, ...) ≡ log(VE,N,...) (2.42)

where VE,N,... counting all the microstate compatible with the macroscopic constraints E,N, ...

A particularly interesting case is to compare the Boltzmann entropy with the Von Neumann

entropy, especially concerning the result of property Eq. (2.38). Indeed, let us consider a closed

system that is governed by the following Hamiltonian:

H =

(
a 0

0 b

)
, a ̸= b (2.43)

now, let’s consider a pure state ρ = |ψ⟩ ⟨ψ| confined to an energy shell [a, a+ δ)with δ being the

imprecision in the energy measurement such that δ > b. Consequently, we have that [a, a+ b] ⊂
[a, a+ δ), and therefore the projector ΠE is given by:

πE = |a, 1⟩ ⟨a, 1|+ |b, 1⟩ ⟨b, 1| (2.44)

then, the Boltzmann entropy is given by:

SB(E) = log(VE) = log(Tr{πE}) = log(2) ̸= 0, (2.45)

therefore, this simple case reveals the Boltzmann entropy is nonzero even for a pure state. In the

case of the measuremeant is perfect i.e. δ = 0 the Boltzmann entropy is zero if and only if the

systems is non-degenerated.

Another interesting aspect of the Boltzmann entropy is related on how intuitively this en-

tropy explain the second Law of thermodynamics without needing the notion of the statistical

ensembles [26]. For an isolated system, the evolution towards a state of higher volume is statis-

tically favored, resulting in the system spending a significant fraction of its time in the state of

maximum volume. This state of maximum volume corresponds to thermodynamic equilibrium.

This phenomenon explains the increase in entropy observed upon the removal of a constraint

and the general tendency for systems to evolve towards a state of maximum entropy [26].



24 Chapter 2. Thermodynamics: An overview

However, the dependence of the coarse-grained measurement in the Boltzmann entropy re-

veals some inadequacy in the description of small quantum systems, where an experimenter

usually has precise control over the quantum degrees of freedom. In this case, the volume term

VE reduces to 1, and the description of Boltzmann entropy vanishes.

2.3.3 Observational entropy

The Von Neumann and Boltzmann entropy can be interpolated into another concept of en-

tropy, which is called observational entropy [54]. This concept of entropy is defined in a general

way based on the notion of a coarse-grained measurement, which we introduced in Eq. (2.40). In

this sense, let us consider a general coarse-graining measurement defined by the set C = {Πc}
of orthogonal projectors that satisfy the same relations in Eq. (2.40). Therefore, for any system

described by the state ρ (pure or mixed), the observational entropy is defined as:

SC
obs(ρ) ≡ −

∑
c

pc log

(
pc
Vc

)
(2.46)

where pc ≡ Tr{Πcρ} is the probability of observing the outcome c while Vc ≡ Tr{Πc} is the

volume term of Πc. Specially, we can rewrite this entropy as:

SC
obs = −

∑
c

pc log(pc) + pc log(Vc) = Ssh (pc) + ⟨SB(c)⟩pc

where Ssh (pc) = −
∑

c pc log(pc) is the Shannon entropy associated with the probabilities pc and

⟨SB(c)⟩pc is the mean of the Boltzmann entropy.

The generality of the type of coarse-graining introduced in the definition of observational

entropy allows us to restore the notions of Von Neumann and Boltzmann entropy as particular

cases associated with when we have specific coarse-grainings. In effect, these cases correspond

to the following:

I) When we have access to all physical information about the system, we can choose coarse-

graining Cψ = {|ψ⟩ ⟨ψ|} correspondent to the eigenstate of the system’s density operator

ρ =
∑

ψ ρψ |ψ⟩ ⟨ψ|. In this case each volume term is equal to one, i.e. Vψ = 1, therefore the

observational entropy recalls:

S
Cψ
obs(ρ) = −

∑
ψ

pψ log

(
pψ
Vψ

)
= Ssh(ρ) +

∑
ψ

⟨pψ log(Vψ)⟩ = Su(ρ), (2.47)

this situation corresponds when the measuremant is the most informative possible.

II) The second case, which restore the Boltzmann entropy is associated where we only access

to imprecisemeasuremnts, i.e. the set of coarse-graining is resctricted to the coarse-graning
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as CO = {|o⟩ ⟨o|}. Furthermore, after the measurement the system we will have full confi-

dence that the system’s state ρ is found in a given macrostateΠm, therefore the probability

po fall to be

po = Tr{|o⟩ ⟨o| ρ} = ⟨O| ρ |O⟩ = δmo

then, the observational entropy reduces to:

SCO
obs(ρ) = −

∑
o

po log

(
po
Vo

)
= Ssh(ρ) +

∑
o

po log(Vo)

= log(Vm) = SB(Πm) (2.48)

since p0 = δmo, it follows that Ssh(ρ) = −δmo log(δmo) = 0. Here, SB(Πm) denotes the

Boltzmann entropy associated with the volume generated by the macrostate Πm. On the

other hand, when the choice of macroscopic observable O is the energy of the system,

Eq. (2.48) corresponds to the Boltzmann entropy given in Eq. (2.41). Equivalently, if O

corresponds to a set of observables, then Eq. (2.48) reduces to the general expression for

Boltzmann entropy given in Eq. (2.42).

In summary, observational entropy provides us with a family of entropies, each associated

with a type of coarse-graining measurement. However, notice that we have no indication of

which coarse-graining measurement to choose or even any guiding criterion for such a choice.

Certainly, such arbitrariness in its definition, which can be considered a major positive point for

observational entropy, also becomes a negative point in its definition, since its connection with

thermodynamic entropy necessarily requires an appropriate choice of coarse-graining measure-

ment [25].

Nevertheless, even with such arbitrariness, it is still possible to obtain certain properties for

observational entropy. In effect, consider a coarse-graining measurement X = {Πx}; therefore,
some of the properties of observational entropy are:

i) If the system is governed by the finite d−dimensional Hamiltonian defined in the Hilbert

spaceHd
the observational entropy is bounded as

Su(ρ) ≤ SXObs(ρ) ≤ log(d). (2.49)

ii) The observational entropy is extensive in the limit where one expects it to be extensive.

Consider a composite system in the decorrelated state ρ = ρ1 ⊗ · · · ⊗ ρn and a composite
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coarse-graining X = X1 ⊗ · · · ⊗Xn with projectors Πx1 ⊗ · · · ⊗ Πxn . Then,

SX
obs

(ρ) =
n∑
j=1

S
Xj
obs

(ρj) (2.50)

iii) We have

SXobs(ρ) = Su

[∑
x

pxρ(x)

]
+
∑
x

pxD[ρ(x)∥ω(x)]. (2.51)

where D[·∥·] denotes the Kullback-Leibler divergence,
1
which is defined by D[ρ∥σ] =

Tr {ρ log ρ− ρ log σ}.

iv) We have Su(ρ) = SX
obs

(ρ) if and only if

ρ =
∑
x

pxω(x) (2.52)

for an arbitrary set of probabilities px.

v) If SX0
obs

(0) = Su[ρ(0)], then

∆SXt
obs

(t) = SXt
obs

(t)− SX0
obs

(0) ≥ 0. (2.53)

These properties are all presented and proven in [25]. In fact, the property in item v) is

substantially important in the context of observational entropy. Indeed, the second law of ther-

modynamics, both in closed and open systems, is formulated from the inequality in Eq. (2.53)

considering the coarse-graining measurement given by projectors of the form Eq. (2.39).

2.3.4 Diagonal entropy

Finally, let’s now revisit an important definition of entropy. To do this, consider the case where

we have a closed system which is described by some time-dependent Hamiltonian H(t). Then,

we define the diagonal entropy or d-entropy of any state ρ(t) by:

Sd[ρ(t)] ≡ −
∑
n

ρEnn(t) log[ρ
E
nn(t)] (2.54)

where the superscript E is associated of the instantaneous energy eigenbasis of the Hamiltonian

H(t).

1
In Appendix A.2, we present fundamental elements and key results from quantum information theory, with a

particular focus on the Kullback-Leibler divergence.
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The diagonal entropy was first introduced in Ref. [28]. In special, this entropy can be rewrite

as:

Sd[ρ(t)] = Su[ρ
E
diag(t)] (2.55)

where ρEdiag(t) is the diagonal part of the state ρ in instantaneous energy eigenbasis. Notice

that ρEdiag(t) is obtained by erasing the elements outside the main diagonal. Consequently, the

state obtained in this way necessarily depends on the energy basis, and therefore the property of

the associated Von Neumann entropy of being invariant under unitary transformations does not

apply in this case, i.e., Su[ρ
E
diag(t)] ̸= Su[ρ

E(t)].

One of the motivations pointed out by Polkovnikov in Ref.[28] for the definition of diagonal

entropy is associated with some inherent problems related to Von Neumann entropy. To make

this discussion somewhat clearer, let’s discuss a problem presented in Ref.[22].

In effect, consider an observable O and a sufficiently complex system that was subject to a

process which started and ended in a distant past, and eventually achieved some steady state as

in

ρE(t) =
∑
mn

ρEnme
−i(Em−En)t |Em⟩ ⟨En| (2.56)

where the Hamiltonian of the system H is such that H |En⟩ = En |En⟩ for the final time-

dependent Hamiltonian. By the ergodic hypothesis time average of any thermodynamic observ-

able should be equivalent to the equilibrium ensemble average. Therefore, the average of the

observable O(t) is given by

⟨O(t)⟩ ≡ lim
T→∞

1

T

∫ T

0

dt⟨O(t)⟩, (2.57)

where the total time dependence of the average of O is in the density operator. Then, we can

expand the Eq.Eq. (2.57) as

⟨O(t)⟩ = lim
T→∞

1

T

∫ T

0

dt⟨O⟩

= lim
T→∞

1

T

∫ T

0

dtTr{ρ(t)O}

= lim
T→∞

1

T

∫ T

0

dt
∑
mn

ρEnme
−i(Em−En)t ⟨En| O |Em⟩

=
∑
mn

ρnmOnm lim
T→∞

1

T

∫ T

0

dt e−i(Em−En)t

=
∑
mn

ρEnmOnmδnm
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therefore, the time average of the observable O is:

⟨O(t)⟩ =
∑
n

ρEnnOnn, (2.58)

which is dependent only on the time-independent diagonal elements of the density operator in the

eigenbasis of the Hamiltonian. Thus, this development reveals that all relevant thermodynamic

information in a measurement is completely present in the diagonal elements of ρ in the energy

basis.

Consequently, since only the diagonal elements of the density operator become truly relevant

for a thermodynamicmeasurement, it follows that we have two possibilities for the VonNeumann

entropy, which are:

i) Von Neumann entropy contains additional information, which does not appear in any ther-

modynamic measurement,

ii) The time average of an observable is different from the time average of entropy for an

equilibrium ensemble.

In both cases, we see that the Von Neumann entropy faces difficulties in providing a correct

description that would be physically expected.

In all these developments, it is always assumed that theHamiltonian spectrum is non-degenerate,

or if it is degenerate, these degeneracies are not relevant to the system. Thus, we can then in-

terpret this entropy as a physical quantity that quantifies the amount of randomness observed in

the energy basis of the system [28]. Specifically, diagonal entropy can be identified as measuring

the total amount of information lost to a limited set of evaluable measurements.

Also in Ref.[28], several properties of diagonal entropy are presented and demonstrated. In

effect, many of these properties confer a thermodynamic character to this entropy, among which

we list some below.

i) Sd[ρ(t)] = Su[ρ(t)] if the state ρ(t) is stationary (diagonal).

ii) We can define the relative entropy of coherences by:

C ≡ Sd[ρ(t)]− Su[ρ(t)] (2.59)

which quantifies the amount of entropy that is "lost" when the coherence elements are

ignored.

iii) If the initial state is stationary then for any time-dependent process in a closed Hamiltonian

system we have

Sd[ρ(t)] ≥ Sd[ρ(0)] (2.60)
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iv) Diagonal entropy respect the fundamental thermodynamic relation

∆U = T∆S −
∑
j

∂ U

∂λj

∣∣∣∣∣
S

∆λj, (2.61)

which is given by:

∆U =
∑
j

∂ U

∂λj

∣∣∣∣∣
Sd

∆λj, (2.62)

which is direct consequence f the thermodynamic postulate that require the entropy to be

a unique function of energy E and the external parameters λj .

Formally, all this property is also proved in Ref.[28]. Here, I will give special attention to property

iv), which can be obtained by expanding the system’s energy as:

∆U =
∑
n

ρnn(t)En(t) ≈
∑
n

∆En(t)ρnn(0) +
∑
n

En(0)∆ρnn(t) (2.63)

where∆En(t) = En(t)−En(0) is the change in the instantaneous energy eigenstates due to the

time evolution while∆ρnn(t) = ρnn(t)− ρnn(0) is the change in the diagonal component of ρ in

energy eigenbasis. In Ref.[22] Polkovnikov identifies the terms contained in the Eq. (2.63) as:

• The first term in Eq. (2.63) is:

∆Ead ≡
∑
n

∆En(t)ρnn(0) (2.64)

which is the adiabatic change of the system’s energy, i.e. the work done by the system due

to the changes of the external parameters λi.

• The second term in Eq. (2.63) is

Q(t) ≡
∑
n

En(0)∆ρnn(t) (2.65)

which correspond to the non-adiabatic change of the energy, i.e. the heat generated by the

system when the process is non-quasi-static.

Another property and discussion of the diagonal entropy can be found in Ref.[28].

In this sense, the diagonal entropy can be connected to the notions of work and heat. Specifi-

cally, the heat introduced in Eq. (2.65) appears in both open and closed systems, which contradicts

the usual definition of heat that we introduced in Eq. (2.29). In effect, the heat term introduced

by Polkovnikov initially in Ref.[22] is associated with changes in the energy basis that are not
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adiabatic and can occur even in closed systems. Consequently, it is directly linked to the entropy

of the system and is non-negative if the system starts in some equilibrium state [22, 24].
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Chapter 3

Gauge invariant quantum
thermodynamics: Foundations

This chapter introduces the fundamental concepts associated with the principle of gauge invari-

ance in the context of quantum thermodynamics. In this sense, we begin by providing a concise

overview of gauge theories, both within the framework of physics and as a mathematical the-

ory. Specifically, we will initially present classical electrodynamics as a foundational example

and motivation for the principle of gauge invariance.

Subsequently, the remaining sections of this chapter focus on review of the work of Céleri

and Rudnicki [3] over gauge-invariant quantum thermodynamics, along with generalizations of

some specific aspects of this work. This involves constructing the emergent gauge group and

establishing the principle of gauge invariance inspired by the fundamental concepts of gauge

theory, as discussed in the first section.

With the emergent gauge group defined, we introduce the concept of invariant quantities, in

context of quantum thermodynamics, that form the invariant space associated with the emergent

gauge group in quantum thermodynamics.

Here, two generalization are employed with respect to the development in [3], they are:

• We consider the system has arbitrary number of the degeneracies which can changes in

relation a specific one parameter (time),

• The definition of invariant quantities is reformulated for a general case of the Haar average.

3.1 Brief overview of gauge theories

The principle of gauge or gauge invariance is a strong mathematical principle that underlies

several physical theories, for example, the standard model of particle physics. In effect, gauge

invariance emerges in physical theories, especially in field theories, from some mathematical

redundancy associated with their descriptions, which allows for the introduction of sets of trans-

formations that leave the equations of motion of the theory invariant. Among the theories that

exhibit gauge invariance, we can mention classical electrodynamics.
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Classical electrodynamics is a classical field theory that describes the interaction and evolu-

tion of electric fields E⃗(x⃗, t) and magnetic fields B⃗(x⃗, t) as well as their temporal evolutions. In

effect, such a description is provided by a set of equations, namely the four Maxwell’s equations,

along with the continuity equation for the volume charge density ρ(x⃗, t) and volume current

density J⃗(x⃗, t), which, in the absence of magnetic monopoles, are given by:

Coulomb’s law: ∇⃗ · D⃗(x⃗, t) = ρ(x⃗, t) (3.1)

Ampère’s law: ∇⃗ × H⃗(x⃗, t)− ∂D⃗(x⃗, t)

∂t
= J⃗(x⃗, t) (3.2)

Faraday’s law: ∇⃗ × E⃗(x⃗, t) +
∂B⃗(x⃗, t)

∂t
= 0⃗ (3.3)

Absence of free magnetic poles: ∇⃗ · B⃗(x⃗, t) = 0 (3.4)

Continuity equation:

∂ρ(x⃗, t)

∂t
+ ∇⃗ · J⃗(x⃗, t) = 0 (3.5)

in the S.I system. Here, D⃗(x⃗, t) and H⃗(x⃗, t) are the displacement electric field and magnetic field

respectively. Furthermore, in classical electrodynamics we have two others essentials elements

wich emerges from the Maxwell equations. In fact, from absence of free magnetic poles we have

∇⃗ · B⃗(x⃗, t) = 0 =⇒ ∃ A⃗(x, t) e.g., B⃗(x⃗, t) = ∇⃗ × A⃗(x, t) (3.6)

where A⃗(x⃗, t) is called vector potential. From Faraday’s Law,

0⃗ = ∇⃗ × E⃗(x⃗, t) +
∂B⃗(x⃗, t)

∂t

= ∇⃗ × E⃗(x⃗, t) +
∂∇⃗ × A⃗(x, t)

∂t

= ∇⃗ ×

(
E⃗(x⃗, t) +

∂A⃗(x, t)

∂t

)

then, exists a scalar function Φ(x, t) such that:

−∇⃗Φ(x⃗, t) = E⃗(x⃗, t) +
∂A⃗(x, t)

∂t
=⇒ E⃗(x⃗, t) = −∇⃗Φ(x⃗, t)− ∂A⃗(x, t)

∂t
(3.7)

whereΦ(x⃗, t) is called scalar potential. Then, the equations (3.6) and (3.7) define the fields E⃗(x⃗, t)

and B⃗(x⃗, t) in terms of a pair of potentials {Φ(x⃗, t), A⃗(x⃗, t)}. However, the mathematical formu-

lation of these two differential equations establishes a redundancy in the determination of the

fields under a specific transformation of the potentials. This transformation is called a gauge
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transformation and is given byΦ(x⃗, t) → Φ′(x⃗, t) = Φ(x⃗, t)− ∂α(x⃗, t)

∂t

A⃗(x⃗, t) → A⃗′(x⃗, t) = A⃗(x⃗, t) + ∇⃗α(x⃗, t)
(3.8)

where α(x⃗, t) is a scalar function (real or not) of class C≥2
. In fact, using the transformed po-

tentials we can see that the fields E⃗ ′(x⃗, t) and B⃗′(x⃗, t) (where the superscript ’ denote the fields

with the potentials Φ′(x⃗, t) and A⃗′(x⃗, t)) are equivalent to the fields E⃗(x⃗, t) and B⃗(x⃗, t). In an-

other words, the fields are invariant under this transformation, indeed we proof it below, for the

magnetic field:

B⃗′(x⃗, t) = ∇⃗ × A⃗′(x⃗, t)

= ∇⃗ ×
(
A⃗(x⃗, t) + ∇⃗α(x⃗, t)

)
= ∇⃗ × A⃗(x⃗, t) + ∇⃗ ×

(
∇⃗α(x⃗, t)

)
= ∇⃗ × A⃗(x⃗, t)

= B⃗(x⃗, t),

and for the electric field:

E⃗ ′(x⃗, t) = −∇⃗Φ′(x⃗, t)− ∂

∂t
A⃗′(x⃗, t)

= −∇⃗
(
Φ(x⃗, t)− ∂α(x⃗, t)

∂t

)
− ∂

∂t

(
A⃗(x⃗, t) + ∇⃗α(x⃗, t)

)
= −∇⃗Φ(x⃗, t)− ∂A⃗(x⃗, t)

∂t

= E⃗(x⃗, t).

Therefore, the gauge transformations of the potentials doesn’t modify the physics of the elec-

trical and magnetic field. In reality, the function α(x⃗, t) merely introduces redundancy in the

determination of the potentials. Thus, we can then impose a specific constraint on each poten-

tial, or even on both, such that the function α(x⃗, t) is determined to satisfy this constraint, which

is commonly referred to as a gauge. Fixing the function α(x⃗, t), or equivalently, fixing the gauge,

eliminates all redundancies in the description. In addition, when we can ensure that the function

α(x⃗, t) satisfies this gauge, we say that the gauge is realizable.

In this sense, go to a practical example. Let us consider the Lorenz gauge:

∇⃗ · A⃗(x⃗, t) + 1

c2
∂Φ(x⃗, t)

∂t
= 0. (3.9)

In addition, consider a pair of potentials {Φ1(x⃗, t), A⃗1(x⃗, t)} that do not satisfy the Lorenz gauge



34 Chapter 3. Gauge invariant quantum thermodynamics: Foundations

(3.9). Therefore, the Lorenz gauge can be realizable by a gauge transformation (3.8), then we

have:

0 = ∇⃗ · A⃗′
1(x⃗, t) +

1

c2
∂Φ′

1(x⃗, t)

∂t

= ∇⃗ · (A⃗1(x⃗, t) + ∇⃗α(x⃗, t)) + 1

c2
∂

∂t

(
Φ1(x⃗, t)−

1

c2
∂α(x⃗, t)

∂t

)
=

(
∇⃗ · A⃗1(x⃗, t) +

1

c2
∂Φ1(x⃗, t)

∂t

)
+

(
∇2α(x⃗, t)− 1

c2
∂2α(x⃗, t)

∂t2

)
thus, the function α(x⃗, t) satisfy the following differential equation(

∇2 − 1

c2
∂2

∂t2

)
α(x⃗, t) = −

(
∇⃗ · A⃗1(x⃗, t) +

1

c2
∂Φ1(x⃗, t)

∂t

)
. (3.10)

This results in a non-homogeneousD’Alembertwave equation forα(x⃗, t), where the non-homogeneous

term arises from the contributions of the potentials. Since α(x⃗, t) satisfy the equation (3.10), the

Lorenz gauge is achievable for a gauge transformation of the potential pair {Φ1(x⃗, t), A⃗1(x⃗, t)}.
Another interesting aspect to the gauge transformation defined in (3.8) is associated to the

group theory. In the literature, the gauge redundancy of the fields, arising from the transforma-

tion of the potentials (3.8), is often referred to as gauge symmetry. In fact, the gauge symmetry it

is not a symmetry of the system in the sense that it takes one physical state to a different physical

state. Instead, it is a redundancy in our mathematical description of the system.

However, the gauge transformation (3.8) can be associated with the notion of symmetry es-

tablished by group theory. In this context, the symmetry perspective is introduced by the group

formed by all elements that satisfy the transformation (3.8), which, in the case of electrodynamics,

corresponds to the group of unitary transformations U(1).
In this sense, we will demonstrate that the transformation of the potentials and their compo-

nents under an arbitrary transformation of the U(1) group is given by (3.8). To this end, we will

introduce the four-potential notation Aµ(x⃗, t) =
(
Φ(x⃗, t), A⃗(x⃗, t)

)
and the derivative operator

∂µ =

(
− 1

c2
∂

∂t
, ∇⃗
)
, which are more commonly used for treating classical electrodynamics as a

gauge theory. Within the context of the unitary group U(1), the most general element can be

expressed as Ω(x⃗, t) = e−α(x⃗,t), where α(x⃗, t) is an arbitrary complex scalar function. The trans-

formation of each component of the four-vector potential under a U(1) transformation is then

given by:

Aµ(x⃗, t) → A′
µ(x⃗, t) = Ω(x⃗, t) (Aµ(x⃗, t) + ∂µ) Ω

−1(x⃗, t)

= e−α(x⃗,t) (Aµ(x⃗, t) + ∂µ) e
α(x⃗,t)

= e−α(x⃗,t)Aµ(x⃗, t)e
α(x⃗,t) + e−α(x⃗,t)∂µe

α(x⃗,t)

= Aµ(x⃗, t) + ∂µα(x⃗, t), (3.11)
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which is equivalently with the gauge transformation defined in (3.8).

Therefore, since they gauge transformation of the potentials are can be written as a unitary

transformation follows that the gauge transformations of the potentials that ensure the invari-

ance of the fields E⃗(x⃗, t) and B⃗(x⃗, t) under Maxwell’s equations are given by the U(1) group.
This analysis establishes a elegant results: the electrodynamics as a abelian gauge theory which

respect to the unitary group U(1).
This invariance is not limited in over the fields in electrodynamics. Indeed, other structures

in electrodynamics are also invariant under transformations of the type described in Eq. (3.11).

In this sense, we define the eletromagnetic tensor by the following relation:

Fµν = ∂µAν − ∂νAµ. (3.12)

For notational simplicity, i will henceforth omit the arguments (x⃗, t) from the potentials and

fields. Then, we can write the field components as

Ei = F0i and Bi = −1

2
ϵijkFjk, (3.13)

where ϵijk is the levi-civita symbol [55]. Furthermore, we also introduce the Lagrangian L and

the action S, respectively, as:

L (Aµ, ∂νAµ) = −1

4
FµνF

µν − ejµAµ, (3.14)

S =

∫
R1,3

d4xL (Aµ, ∂νAµ) (3.15)

where the measure d4x is associated with the temporal component x0 = t and the spatial com-

ponents x⃗ = (x1, x2, x3).

Using the gauge transformation for the four-vector Aµ given in Eq. (3.11), we can show that

both the Maxwell tensor and the action remain invariant over this gauge transformation. Indeed,

for the Maxwell tensor we have:

Fµν(A
′
µν) = ∂µA

′
ν − ∂νA

′
µ

= ∂µ (Aν + ∂να)− ∂ν (Aµ + ∂µα)

= ∂µAν − ∂νAν + ∂µ∂να− ∂ν∂µα

= ∂µAν − ∂νAµ = Fµν (Aµν)
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and for the Action, we have

S [A′] =

∫
R1,3

d4xL
(
A′
µ, ∂νA

′
µ

)
=

∫
R1,3

d4x

[
−1

4
Fµν (A

′)F µν (A′)− ejµ
(
A′
µ

)]
=

∫
R1,3

d4x

[
−1

4
Fµν (A

′)F µν (A′)− ejµ (Aµ + ∂µα)

]
=

∫
R1,3

d4x

[
−1

4
Fµν(A)F

µν(A)− ejµ (Aµ + ∂µα)

]
(3.16)

=

∫
R1,3

d4x

[
−1

4
FµνF

µν − ejµAµ

]
− e

∫
R1,3

d4x [jµ∂µα] (3.17)

= S[A]− e

∫
R1,3

d4x [jµ∂µα] = S[A], (3.18)

note that, in this development, the transformation of the four-vector Aµ(x⃗, t) under the action

of the U(1) group generates, in the action S, a term associated with the components of the four-

current jµ, connected to the phase α that characterizes the group. However, using the invariance

of the Maxwell tensor, previously demonstrated, we obtain Eq. (3.16), and consequently, Eq. (3.17)

is naturally derived, allowing the identification of its first term as the action associated with the

four-potentialA. Furthermore, the invariance of the action under theU(1) group is then achieved
by showing that the integral associated with the current jµ and the phase α in Eq. (3.18) vanishes.

Indeed, we detail this result below:

∫
R1,3

d4x [jµ∂µα] =

∫
R1,3

d4x [∂µ(j
µα)− α∂µj

µ]

=

∫
∂R1,3

dΣ[jµα]−
∫

R1,3

d4x [α(∂µj
µ)] = 0, (3.19)

where we integrated by parts in the first line above and then applied the generalized Stokes

theorem, so that the volume integral of ∂µ(j
µα) over R1,3

can be written as an integral over the

boundary of R1,3
, denoted by ∂R1,3

, whose measure is denoted by dΣ. However, it is assumed

that the components jµ have finite support, i.e., they are defined over a subregion of ∂R1,3
with

finite measure. As a result, the first integral in Eq. (3.19) vanishes. On the other hand, the second

integral in Eq. (3.19) vanishes due to the continuity equation, i.e., ∂µj
µ = 0.

Notice that the result established by the invariance of the action under gauge transformations

of the group U(1) is even stronger than just the invariance of the fields. Indeed, besides ensuring

the invariance of the equations of motion, this result also provides us with the existence of a

conserved quantity Q (charge) due to Noether’s Theorem.

The invariance of electrodynamics under gauge transformations of the group U(1) was gen-
eralized by Yang and Mills in Ref. [56]. In this work, Yang and Mills provided an explanation for
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the conservation of isospin in collisions involving strong interactions based on the invariance of

motion equations over the transformations of the group SU(2) [56]. The transformations of the

group SU(2) do not commute with each other like the transformations of the group U(1) and
therefore are called non-abelian. Furthermore, the family of gauge theories over the group SU(d)
is called Yang-Mills theories.

The work of Yang-Mills for the strong interaction is a historical milestone for physics and

especially for modern gauge theories [57]. In fact, this work did not have much relevance when

first published in 1954, however, it pointed directions for a formulation of a gauge theory capable

of explaining the mechanism of spontaneous symmetry breaking [58–60] which was initially

proposed by Anderson in Ref.[61] in 1960. The explanation of the mechanism occurred in 1964

simultaneously by several independent groups [58, 59].

In this same decade, more precisely in 1961, Glashow in Ref.[62] proposed a theory for weak

and electromagnetic interaction based on a gauge theory with symmetry SU(2)×U(1)where the
groups SU(2) and U(1) are associated with weak and electromagnetic interactions, respectively.

Glashow’s initial proposal had some weaknesses, in particular, the Higgs mechanism was not in-

cluded in his description. However, in 1967 and 1968, physicists StevenWeinberg [63] and Abdus

Salam [64] incorporated the description of the Higgs mechanism into Glashow’s theory and thus

achieved the unification of weak and electromagnetic interactions in the so-called electroweak

theory as a gauge theory associated with the non-abelian symmetry group SU(2) × U(1) [63,
64]

1
.

Moreover, the strong interaction has also been described as a gauge theory. In summary, the

current description of the strong interaction that we know today as quantum chromodynamics

(QCD) has gone through various works [65], particularly regarding which symmetry group the

1
A reader with some knowledge of field theory should note that here we are identifying the weak interaction in

a simplified manner with respect to the associated gauge group. In fact, the group U(1) here is not exactly the same

unitary group as in electrodynamics, which we will denote as Uem(1), but rather the unitary group associated with

the weak hypercharge (Y ), which wewill denote byUY (1), while the special groupwill be denoted by SUL(2), since
the gauge transformations act only on left-handed fermions (and right-handed antifermions). Thus, in a simplified

way, what the Higgs mechanism does is, under certain conditions, spontaneously break the gauge symmetry of the

group SUL(2)×U(1)Y → Uem(1)when the Higgs field (a doublet of SUL(2)with weak hypercharge Y = 1, whose
first component is charged while the second is neutral) acquires a non-zero Vacuum Expectation Value (VEV). This

arises from the fact that the Higgs field is not invariant under all transformations of the group SUL(2) × U(1)Y ,
but it is invariant under all transformations of the group Uem(1). In this sense, after symmetry breaking, the original

4 massless vector bosons (which constitute the relevant degrees of freedom of the system when the Higgs field

has a zero VEV) of the electroweak interaction combine to form new effective vector bosons, in particular, the

photon, which is constituted by a linear combination of the original massless vector bosons, corresponding also to

the symmetric phase of the primordial electroweak interaction. However, in addition to the massless photon, there

are three other massive combinations that emerge in this mechanism, which acquire mass proportional to the VEV of

the Higgs field: theW+
andW−

bosons (responsible for mediating the charged weak interaction) and the Z0
boson

(responsible for mediating the neutral weak interaction). Thus, the photon and the massive vector bosonsW+
,W−

,

and Z0
are the relevant vector bosonic degrees of freedom in the broken phase of the electroweak interaction, where

the weak and electromagnetic interactions manifest in very different ways. The idea behind the proposed unification

initially refers to an informal description that often originates from the fact that the electric charge observed today,

associated with the gauge group Uem(1) of electromagnetism, can be written as a non-linear combination of the

couplings gL of the group SUL(2) and gY of the group UY (1).
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theory should be associated with; however, the group SU(3) has always been a strong candidate

for the theory [66–69]. In fact, it was in Ref.[70] that physicists Gell-Mann, Fritzsch, and Heinrich

Leutwyler conceived QCD as a gauge theory associated with the group SU(3).
The unification of the strong and electroweak interactions resulted in the formulation of the

standardmodel of particle physics, which is a gauge theory associatedwith the non-abelian group

U(1)× SU(2)× SU(3) [71].
Indeed, the fundamental field theories are strongly based on gauge invariance and conse-

quently on the employment of symmetry groups for the description of the theory. Additionally,

the formulation of a theory from a gauge invariance also provides a pathway for a geometric

formulation of the theory. This perspective is associated with the fact that symmetry groups are

Lie groups, i.e., differential manifolds equipped with group structures [72].

In particular, from a mathematical point of view, a gauge theory is the study of connections

in vector or principal bundles (vector spaces associated with each point of the manifold) that

satisfy some gauge invariant curvature condition in the manifold associated with the group [73,

74]. This group is called the gauge group, and in the most general scenario of gauge theories, the

potentials A and the tensors F transform under the gauge transformation

Aµ → A′
µ = V AµV

−1 + V ∂µV
−1

(3.20)

Fµν → F ′
µν = V FµνV

−1
(3.21)

where V is one element of the gauge group. If we choose V = eiα ∈ U(1), we obtain the same

result expressed in Eq. (3.11), which is a particular case, restricted to the unitary group, of how

gauge transformations act on the potentials. From a geometric perspective, the potentials A and

the tensors F correspond to connections and curvatures, respectively, associated with the variety

of the gauge group.

Thus, gauge theories are established on the solidmathematical framework of Lie group theory

[72, 75] and, consequently, in differential geometry and topology [74, 76].

3.2 Thermodynamic gauge group

Now, we will develop the main notions for our formalism, with the notions of gauge transfor-

mation and gauge group being the first elements that we will seek to develop. In summary, this

section follows the ideas initially proposed by Céleri and Rudnicki [3]. However, the formalism

developed in this article is limited to a particular case where the spectrum of the Hamiltonian of

the system is non-degenerate. Next, we will develop the entire formulation without this hypoth-

esis.

First of all, it is important to emphasize that classical and/or quantum thermodynamics is not

a gauge theory as we presented in the previous section. Indeed, their mathematical formulations
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do not involve the introduction of redundancies as discussed in Section 3.1. However, it is possible

to formulate a notion of gauge invariance for the theory in an emergent manner from the intrinsic

nature of the measurement processes that are performed in classical thermodynamics.

In fact, as we already discussed in Section 2.1, the precise description of all the constituents of

a thermodynamic system, in the classical context, would involve solving a system of differential

equations on the order of 1023 equations. But, this set of equations are the Newton’s law is

a second order ordinary differential equation which have the unique solution since the initial

position and velocity of all therms are known, this its is a simple application of the Theorem of

existence and uniqueness for ODEs [77].

However, obtaining solutions to these equations is computationally unfeasible, and the exact

description of this macroscopic system, by the Newton’s law, are impossible due to our compu-

tational limitation even though this solution exists and are unique.

Therefore, from this limitation the thermodynamics are developed over the fact of macro-

scopic measurements are extremely slow on the atomic scale of time, and they are extremely

coarse grained on the atomic scale of distance [5]. In special, a macroscopic observation cannot

respond to the great variety of atomic coordinates which evolves in time with typical atomic pe-

riods. In this sense, the classical thermodynamics is constructed under the paradigmatic notion

of the all measurement are a process of coarse-graining. Thus, the measurement process effec-

tively filters out redundant information, focusing solely on the variables relevant to the system’s

description. This redundant information are redundant only in the perspective of the classical

thermodynamics [3].

On the other hands, in the context of the quantum mechanics, all information of the system

are contained in a physical vector or more general in the density matrix operator ρ. Moreover, in

the context of quantum mechanics, our ability to manipulate systems allows for a quantum de-

scription that is substantially more comprehensive than a classical description encompassing the

entire physical system. This is particularly due to the intimate connection between the descrip-

tion of physical states and the eigenbasis (basis of the Hamiltonian) of the system’s Hamiltonian

operator [40].

Therefore, classical and quantum thermodynamics rely on very different paradigms. But the

connection of this paradigms given us a perspective for the gauge notion in quantum thermody-

namics. From this two distinct paradigms, motivate us to the introduce the concept of emergent

redundancy in the quantum thermodynamics from the parallel to the measurement in classical

thermodynamics.

In fact, since the physical states carries all physics information of the system we can see this

states plays the same role as the potentials in the field theories, i.e. all relevant thermodynamics

quantities are obtained by the physical states, more specific, the density matrix. Furthermore, in

the same spirit of the classical thermodynamics, the same notion of coarse-graining is extended

to the setting of quantum thermodynamics, implying that the all information are not necessary
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to the description of the relevant thermodynamics quantities [3].

This perspective given us the concept to the emergent gauge. In fact, the emergent gauge

is associated to the redundancies in the thermodynamics theory, which not is fundamental as a

gauge transformation in Electrodynamics or other field theories, but emerges from the nature of

this description. Then, the emergent gauge not is fundamental, but he carries information about

the symmetries and redundancies of the system in the thermodynamics context.

Having established the necessary background, we can now turn our attention to the con-

struction of a framework for gauge-invariant quantum thermodynamics. First, we note the usual

development presented in the section 2.2 are been considered from the start point to the this

framework. Then, we will introduce a set of fundamental assumptions of this framework:

(i) All theory are defined over a finite d−dimension Hilbert space which us denote byHd
.

(ii) The thermodynamics quantities are all treated as functionals of the densitymatrix ρ ≡ ρ(t).

(iii) The gauge transformation are unitary linear transformation.

(iv) The gauge transformation preserves the energy (2.25) of the system.

The first assumption set all framework over a finite arbitrary d dimensional Hilbert space.

In fact, this assumption is associated to a fact that a very large class of quantum systems which

are interesting in quantum thermodynamics (qubits, heat machines, spins chains) are defined

in a finite dimensional Hilbert space. A infinite dimensional extension can be considered, but

mathematics problems can be emerges from this, like a divergences in operators.

The second hypothesis follows from the usual thermodynamics quantities presented in the

section 2.2. Furthermore, the density matrix ρ is a physical state who carrier all physics informa-

tion of the dynamics in this scenarios. Then, since all thermodynamics are treated as functionals

of the density matrix we can evaluate all framework over the coarse-graining perspective for a

quantum thermodynamics.

The last two assumptions are the particularly relevant from us. The item (iii) characterizes

a gauge transformation and reduces all possible transformation to the unitary transformations

which is natural choice since the linearity and unitary nature of quantum mechanics. Therefore,

the assumptions (ii) and (iii) they characterize that the state ρ transformed by the gauge action

must transform by:

ρ→ VtρV
†
t , (3.22)

where Vt are an unitary transformation onHd
which is a candidate to a gauge transformation.

Lastly, the assumption (iv) is necessary to the eliminate a arbitrarly of a gauge transformation

in (iii). In fact, this assumption introduce the principle of emergent gauge invariance in the

quantum thermodynamics which is formally defined below.
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Definition 1. (Gauge energy invariance [3]) An unitary transformations Vt : Hd → Hd are ad-
missible gauge transformation if it preserve the mean energy, independently of a particular state of
the system i.e.

U[VtρV
†
t ] = U[ρ] (3.23)

for all ρ ∈ L1
(
Hd
)
.

Definition (1) establishes the principle of invariance for the formalism of gauge-invariant

quantum thermodynamics. In effect, equality (3.23) fixes the gauge transformation Vt in order to

eliminate the triviality, as previously mentioned, regarding hypothesis (iii) of the theory.

Based on this, we will construct the general form of the transformations Vt that satisfy equal-

ity (3.23); in this sense, we will present the following proposition.

Proposition 1. Every unitary transformation Vt that satisfies the equality (3.23) of Definition 1
commutes with the Hamiltonian H ≡ H(t), i.e.

[Vt, H] = [V †
t , H] = 0. (3.24)

Proof. If Vt satisfies the equality (3.23), then, from the definition of usual mean energy, we have

the following development

U[VtρV
†
t ] = U[ρ] =⇒ Tr{VtρV †

t H} = Tr{ρH}

=⇒ Tr{ρV †
t HVt} = Tr{ρH}

=⇒ Tr
{
ρ
(
V †
t HVt −H

)}
= 0

for all ρ ∈ L1(Hd). Therefore, if we choose a ρ such that ρ = |j⟩ ⟨k| where {|n⟩} is a arbitrary

orthonormal basis we have:

0 = Tr
{
ρ
(
V †
t HVt −H

)}
=

∑
n

⟨n|

[
|j⟩ ⟨k|

(∑
l,m

al,m |l⟩ ⟨m| −
∑
q,r

bq,r |q⟩ ⟨r|

)]
|n⟩

=
∑
n,l,m

al,mδn,jδk,lδm,n −
∑
n,q,r

bq,rδn,jδk,qδr,n

= ak,j − bk,j

therefore ak,j = bk,j where ak,j = (V †
t HVt)k,j and bk,j = (H)k,j . Thus, all matrix elements are

equal which implies:

V †
t HVt −H = 0⃗ =⇒ HVt −HV †

t = 0⃗ =⇒ [H,Vt] = 0⃗
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where 0⃗ denotes the null vector. From this, the first equality are obtained. The second equality is

directly, since H is hermitian operator we have

[V †
t , H]† = (V †

t H −HV †
t )

† = (HVt − VtH) = [H,Vt]

therefore we obtain [Vt, H] = [V †
t , H] = 0⃗, as wished.

This result is interesting and will have significant consequences for future developments. In

particular, the gauge transformation Vt acts on the Hamiltonian operator in a manner analogous

to a unitary channel, as mentioned in Section 2.2. Furthermore, it is important to note regarding

this result that, in the context of resource theory, we have thermal operations [78, 79], which

are defined as quantum channels that commute with the total Hamiltonian, which is the sum of

the Hamiltonians of the system, the reservoir, and the interaction between the system and the

reservoir.

In our definition, the gauge transformation Vt does not equate to thermal operations, since

the transformation Vt does not include the interaction of a thermal bath with the system in such a

way that the thermal bath can be traced out from the system without affecting the determination

of the gauge transformation Vt. However, the transformations Vt form a particular subset of

thermal operations, where the bath-environment interaction is irrelevant [3].

Now, let us proceed with the construction of the gauge transformation in order to have a

general expression for any given Hamiltonian. Since, by hypothesis, the gauge is unitary, it

follows that the transformations Vt are representations of the unitary group of dimension d,

i.e., U(d), the set of all linear transformations (matrices in this context) of order d × d that are

unitary. In fact, the group U(d) will be the starting point for obtaining the group associated with
our framework. In the sense of group representation theory, and since the Hamiltonian H is a

Hermitian operator, we can write this as

H(t) = ut

(
p⊕

k=1

λk(t)1nkt

)
u†t = uth(t)u

†
t , h(t) ≡

p⊕
k=1

λk(t)1nkt (3.25)

where p is the number of its distinct eigenvalues, nkt is the multiplicity of each eigenvalue λk(t),

that is, nkt are the instantaneous degeneracy degrees such that

p∑
k=1

nkt = d for each instant of time

t and 1nkt is the identitymatrixwhose dimension isnkt . This implies that the degrees of degeneracy

can change in time, but the constraint

p∑
k=1

nkt = d is always satisfied in reason the Hamiltonian

is hermitian operator for all values of t. In sequence, we can consider the construction to theory

under this assumption with purpose to generalize the initially work proposed in [3].
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Since the Hamiltonian can be decomposed as in (3.25), we can obtain a decomposition for

the operators Vt such that equality (3.23) is satisfied. In particular, Vt can be decomposed into

irreducible representations of some unitary group. In fact, we will show this result below.

Proposition 2. Let Vt : Hd → Hd be a unitary transformation defined on the d-dimensional
Hilbert space Hd. Then, if [Vt, H] = 0⃗, the transformation Vt can be written as:

Vt = utVtu†t , with Vt =
p⊕

k=1

vkt , (3.26)

with vkt ∈ U(nkt ) and Vt ∈ U(d), where the set U(d) represents the group of d× d unitary matrices.

Proof. Since the Hamiltonian operator H is hermitian follows from the decomposition of (3.25)

and the equality (3.23) the following development:

[Ht, Vt] = 0⃗ =⇒ uthu
†
tVt − Vtuthu

†
t = 0⃗

=⇒ hu†tVtut − u†tVtuth = 0⃗

=⇒
[
h, u†tVtut

]
= 0⃗

=⇒ [h,Vt] = 0⃗

where Vt = u†tVtut. Expanding this commutator:

[h,Vt] =

(∑
l

λl |l⟩ ⟨l|

)(∑
m,n

(Vt)mn |m⟩ ⟨n|

)
−

(∑
m,n

(Vt)mn |m⟩ ⟨n|

)(∑
l

λl |l⟩ ⟨l|

)
=

∑
m,n

λm (Vt)mn |m⟩ ⟨n| −
∑
m,n

λn (Vt)mn |m⟩ ⟨n| .

Now, for the element j, k we have:

⟨j| [h,Vt] |k⟩ = 0⃗ =⇒
∑
m,n

λm (Vt)mn δj,mδn,k −
∑
m,n

λn (Vt)mn δj,mδn,k = 0

=⇒ (Vt)jk λj − (Vt)jk λk = 0

=⇒ (Vt)jk (λj − λk) = 0.

Therefore, if λj ̸= λk the last equality implies that (Vt)jk = 0 and, for symmetry (Vt)kj = 0

then the block jk is a simple diagonal block matrix which we denote by vkt , in addition vkt ∈ U(1)
since Vt is unitary. On the other hands, if λj = λk then the matrix element (Vt)jk are arbitrary,
real or complex and zero or nonzero. Additionally, the matrix block j, k are non diagonal which

implies that vkt ∈ U(nkt > 1) which nkt is degree of degenerated of each eigenvalue.
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Consequently, the matrix Vt can be decomposed into a direct sum of unitary matrices vkt , each

associated with the group U(nkt ≥ 1), as follows:

Vt =
p⊕

k=1

vkt =⇒ u†tVtut =

p⊕
k=1

vkt =⇒ Vt = ut

p⊕
k=1

vkt u
†
t ,

and thus, we have arrived at the desired result.

The result of Proposition 2 is associated with the obtaining of a set of irreducible representa-

tions vkt of the unitary group U(nkt ); in particular, each unitary representation is associated with

a Hilbert subspace of Hd
that we denote by Hk. In effect, the matrix Vt is then a block diagonal

matrix, with each vkt being one of its elements.

With the general expression for the gauge transformation Vt at hand, we can then define the

gauge group for quantum thermodynamics. In fact, this gauge group is formally defined by:

Definition 2. (Thermodynamic group) Let H ≡ H(t) be a time dependent Hamiltonian operator
defined on a d-dimensional Hilbert spaceHd and ut be defined as in Eq. (3.25). Then, the thermody-
namics gauge group is defined as the following set of transformations

TH =

{
Vt ∈ U(d)| [Vt, H] = 0, Vt = ut

(
p⊕

k=1

vkt

)
u†t

}
(3.27)

where vkt ∈ U(nkt ) ⊂ U(d) and Γ = {nkt }k=1,...,p is the set of labels of the degeneracies of the
eigenvalues of H at time t.

The thermodynamic or gauge group is associated to each instant t ∈ (t−ϵ, t+ϵ)with arbitrary
ϵ > 0. Therefore, all gauge transformations are defined in instantaneous form with is related to

changes in the degeneracy set Γ.

From the topological point of view the thermodynamic gauge group can be analyzed by the

by the introduction to isomorphic group GT with is associated to each matrix Vt in (3.26). The

following proposition, establishes the group GT:

Proposition 3. (GT-group) The emergent gauge group is isomorphic to the gauge group GT defined
by:

GT = U(n1
t )× U(n2

t )× ...× U(nkt ), (3.28)

for each instant t, where × denote the Cartesian product.

Proof. Trivial.

Since the group GT is isomorphic to the group EH , we will sometimes refer to GT as the

emergent gauge group or simply gauge group.
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The gauge group is directly associated to the decomposition of the gauge Vt in him irreducible

representations vkt given in (3.26) and consequently to the subgroups U(nkt ) of U(d). In fact,

this groups is construct by a finite Cartesian product of the compact Lie subgroups, therefore,

GT is also compact Lie group, whose Lie algebra we denote by gT. In special, the dimension

of the Lie algebra of the gauge group is specially interesting to this framework, firstly this Lie

Algebra is associated to the Hilbert space Hd
which is decomposed in the following direct sum:

Hd =

p⊕
k=1

Hk. This isomorphism is represented below in Fig 3.1.

Figure 3.1: Schematic representation of the isomorphism between the differential manifold of the

thermodynamic group TH and the gauge group GT. This isomorphism allows us to identify the general

structure of the Hamiltonian symmetry unitaries Vt as a direct sum of unitaries vkt associated with

each Hilbert subspaceHk.

From the Proposition 2 we can see that the dimension of Lie algebra of GT is determined

by the degeneracies in the Hamiltonian spectrum. Specially, in the case of the Hamiltonian is

non-degenerated each vkt matrix is a simple element of unitary group U(1), i.e.vkt is complex a

number which is completely identified by one parameter. On the other hands, if each λk(t) is a

degenerated eigenvalue, for example double degenerated, the matrix vkt is a unitary 2× 2matrix

and vkt ∈ U(2) which elements can be are nonzero.

Then, the dimension of Lie algebra of theGT group in these cases are dim{gT} = dim{U(1)}+
...+dim{U(1)} = d and dim{gT} = dim{U(2)}+ ...+dimU(2) = 4d. This reveals the follow-

ing result: degeneracies in the Hamiltonian spectrum implies in more redundancies in the system

which are related to the dimension of the Lie algebra of the gauge group. From the topological

perspective, gauge group, which is a Lie group, defines a manifold which dimension is given by

dim{gT} =

p∑
k=1

dim{U(nkt )} =

p∑
k=1

(nkt )
2, (3.29)
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where the maximum dimension of this Lie algebra is obtained when nkt = d, therefore in this

case dim{gT} = d2, which occurs when the Hamiltonian spectrum is completely degenerated,

i.e. all eigenvalues are equal.

Since the degeneracies of the Hamiltonian can be changed in time, the dimension of the mani-

fold of the gauge group changes in time. Consequently, for a time-dependent Hamiltonian evolv-

ing under a specified protocol, the gauge group continuously adapts to encompass submanifolds

within the maximal manifold defined by H, specifically when its spectrum attains the maximum

possible degeneracy. In fact, for a given Hamiltonian the case when all eigenvalues are equal is

impossible, however, there exists a maximum number of degeneracies that can occur, so for a

given Hamiltonian the maximum dimension of the Lie algebra of the gauge group is

max [dim{gT}] = max
t∈R

[
p∑

k=1

dimU(nkt )

]
≤ d2. (3.30)

This construct establishes themathematical formalism from the thermodynamics or emergent

gauge group. Indeed, so far we have only constructed the notion of gauge group and gauge

transformation for thermodynamics, but we have not yet introduced any aspects related to the

description of quantum thermodynamics. In this sense, in the following section we will introduce

the notion of functionals and invariant spaces, which is where we will construct new quantities

of interest for quantum thermodynamics.

3.3 Gauge theory of GT-group

The thermodynamics group is the fundamental element in the formalism we are establishing.

However, the notion of invariance introduced in Definition 1 should not be restricted simply to

the unitary transformations Vt that we constructed in Proposition 2. In fact, the main physical

quantities in the context of thermodynamics, such as work for example, are not invariant under

the gauge transformation Vt, indeed, note that:

Wu[VtρV
†
t ] =

∫ τ

0

dtTr

{
VtρV

†
t

dH

dt

}
=

∫ τ

0

dtTr

{
ρ

[
d(V †

t HVt)

dt
− dV †

t

dt
HVt − V †

t H
dVt
dt

]}

=

∫ τ

0

dtTr

{
ρ
dH

dt
−
[
−HρV †

t

dVt
dt

+ ρHV †
t

dVt
dt

]}
=

∫ τ

0

dtTr

{
ρ
dH

dt
+ [ρ,H]V †

t

dVt
dt

}
= Wu [ρ] +

∫ τ

0

dtTr

{
[ρ,H]V †

t

dVt
dt

}
.



3.3. Gauge theory of GT-group 47

Consequently, we have that Wu[VtρV
†
t ] ̸= Wu[ρ] since the equality [ρ,H] = 0 does not

always hold. In particular, this follows from the fact that certain functionals of the density ma-

trix operator are not necessarily invariant under unitary transformations. In this sense, we will

construct a notion such that functionals, especially the functionals relevant in the context of

thermodynamics, are invariant under the gauge transformation Vt.

From this perspective, the subscript u, introduced in all thermodynamics quantities in the

section 2.2, plays a important to denotes the usual thermodynamics quantities since further we

going to introduce a new analogous notions (heat and work) which are invariant counterpart

with respect to the emergent gauge group.

To this end, we will construct the notions of invariant Hilbert spaces in the context of the

thermodynamic gauge group. In effect, note that the gauge group, defined by the isomorphism

(3.28), is the product of different unitary groups, all of which are compact Lie groups [80]. There-

fore, it follows that the gauge group is also a compact Lie group, and thus there exists a unique

normalized, left and right invariant measure [80] associated with the group GT, which we denote

by:

dGT = dµ
[
U(n1

t )
]
× dµ

[
U(n2

t )
]
× ...× dµ [U(npt )] (3.31)

where dµ
[
U(nkt )

]
are the Haar measure associated to unitary group U(nkt ) for all values of k, and

dGT is a multidimensional Haar measure. In apppendix B.2 we formally present the Definition of

Haar measure for compact Lie groups and some properties.

Since this measure is defined with respect to time, and as the set of degeneracies of the Hamil-

tonian may change, it is necessary to introduce a general Haar measure that preserves the maxi-

mal measure element obtained when the system has d degeneracies. In effect, the Haar measure

associated with the group U(d) is then decomposed into:

dµ[U(d)] = dGT · dGcT, (3.32)

where dGT is defined in (3.31) and dGcT denotes the complementary measure with respect to the

Haar measure of the gauge group defined in Eq. (3.31).

In effect, both dGT and dGcT are normalized Haar measures. However, we must introduce dGcT
to ensure that the dimensionality of the measure is always guaranteed; in this sense, we com-

plete the dimensionality until we achieve the maximum possible dimensionality, equivalently,

the maximum configuration of degeneracies. Indeed, this technical aspect allows us to modify

the measure dGT across any interval associated with the parameter t since the complementary

measure ensures the preservation of dimensionality. Nevertheless, note that the complementary

measure is merely a mathematical artifact introduced to ensure the consistency of the modifica-

tion of the gauge group’s measure, such that it is only relevant to consider the integration with

respect to the induced measure of the thermodynamic gauge group.
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With this in mind, we can then define the notion of invariant quantities with respect to the

gauge group, using group averaging techniques. This leads to the definition of gauge-invariant

quantities or physical quantities as follows:

Definition 3. (Gauge-invariant quantities). Given functional (linear or not) F [ρ] which are not
invariant over unitary transformation, its counterpart invariant with respect to the thermodynamic
gauge group is

Finv[ρ] =

∫
dGTF

[
VtρV

†
t

]
, (3.33)

and if F [ρ] is invariant over unitary transformation, its counterpart invariant with respect to the
emergent gauge group is:

Finv[ρ] = F [D(ρ)] , (3.34)

whereD is a linear operator inHd defined by D(·) ≡
∫
dGTVt(·)V †

t , Vt is given in (3.26) and dGT

is the multi dimensional Haar measure on the group GT defined in (3.31).

Definition 3 establishes the notion of invariant quantities. In particular, in the context of

the first law of thermodynamics, we are interested in studying the functionalsWu[ρ] and Qu[ρ],

both of which are linear and non-invariant under unitary transformations, thus their invariant

counterparts are given by Eq. (3.33). In special, the subset of all linear functionals obtained by

(3.33) forms a subspace of the dual spaceHd′
of the Hilbert spaceHd

.

Furthermore, with Definition 3, we obtain the key elements for our formulation of thermo-

dynamics as a gauge theory. Schematically, these elements are represented in Figure 3.2 below.

The Haar integral which appears in the Definition 3 can be interpreted by the averaging of

the integrand over all elements in the group and this implies that this integral can remove all re-

dundancies established by the group whose induced the Haar measure [81]. Here, the discussion

of dimension of Lie algebra of the gauge group returns, in special we can see that the contributed

of the degeneracies can increase the dimension of the Lie algebra of the gauge group and, con-

versely, the integral is evaluated over the more elements with respect to the non-degenerate case.

Another important aspect is associated to the two definitions of gauge invariant quantities in

3. In fact, the objective of gauge transformation employed here is associated to capture and wash

away redundancies information in quantum states, whose carriers of quantum information of the

physical system. However, the assumption of the gauge is a linear and unitary transformation any

physical quantities invariant under unitary transformation is immediately invariant over Haar

integral, therefore if we assume the unique definition in Eq. (3.33) we have Finv[ρ] = F [ρ] and no

redundancy information has been eliminated. Therefore, the definition Eq. (3.33) is not enough to

define the invariant quantities, in this sense we extend the initial propose in [3] introducing the

second notion in Eq. (3.34). Specially, for functionals invariant under the unitary transformation
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Figure 3.2: GT-thermodynamics. The density operator acts as a gauge potential, with the Hamil-

tonian’s internal symmetries constrained by average energy invariance. This defines the thermody-

namic group TH , formed by all unitaries Vt commuting with H . The Lie group GT, isomorphic to

TH is built and connect to the irreps of each k-eigenspace of H , inducing the Haar measure dµGT.

Physical quantities, treated as a gauge fields, emerges through Haar averaging over GT group.

the linear operator D eliminate the redundancy information in density operator and apply this

in functional F .

3.3.1 Quantum twirling operator

Definition 3 introduces the linear operator D. Indeed, this operator is sufficiently important in

our context as it guarantees the elimination of redundancies in the state described by the density

matrix. Furthermore, we can connect it to an important class of operators: the quantum twirling

operators.

Moreover, we can formally present this

D : L1(Hd) → L1(Hd)inv ⊂ L1(Hd)

ρ → D(ρ) = ut

(∫
dGTVtρEV†

t

)
u†t , (3.35)

where ρE = u†tρut correspond the density matrix in energy eigenbasis (denoted by superscript

E). The subspaceL1(Hd)inv of theL
1(Hd) is the Hilbert space of the invariant states with respect

to the Haar average.

Particularly, from the perspective of information theory, specially, from the quantum infor-

mation theory, the operator D(ρ) is a quantum channel [41, 82]. In this sense, we are motivate
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to define the following auxiliary operator:

ΛGT
: L1(Hd) → L1(Hd)inv ⊂ L1(Hd)

X(t) ∈ L1(Hd) → ΛGT
[X(t)] =

∫
dGTVtX(t)V†

t (3.36)

for some operatorX(t), which are called quantumTwirling operator [82, 83]. In fact, the Twirling

operator (3.36), or superoperator, appears in the context of the unitary k−designer [83–85] asso-

ciated a noisy quantum channel. Particularly, the integral in (3.36) can be evaluated analytically

for any operator X , since X is Haar integrable and the Haar measure is known, specially by the

general Haar measure induced by the gauge group (3.31) we have:

Xdd(t) ≡ ΛGT
[X(t)] =

∫
dGTVtX(t)V†

t =

p≤d⊕
k=1

Tr{Xnkt
(t)}

nkt
1nkt (3.37)

where Xnkt
= Πnkt

XΠnkt
with Πnkt

the projector associated to the each subspace spanned for the

eigenvectors related to the kth eigenenergy.

The result obtained in Eq. (3.37) is known in the literature [86]. Moreover, its derivation

requires the use of several technical details that involve the use of group averaging techniques

and results from group representation theory. In this sense, the interested reader can refer to

Appendix B, more specifically in section B.2.

With equality in Eq. (3.37), we can obtain some properties associated with the quantum

twirling operator. In particular, we will show that it is a unital quantum channel; more details

can be found in Appendix B.2. That is, we will demonstrate that the quantum twirling operator is

a completely positive trace-preserving (CPTP) map and that ΛGT
[1] = 1. In this sense, we have:

• Since the quantum twirling operator is given by (3.37), it follows that for any density matrix

ρ, we will have:

ΛGT
[ρ(t)] =

p≤d⊕
k=1

Tr
{
ρnkt (t)

}
nkt

1nkt . (3.38)

In other words, the matrix resulting from the quantum twirling operator is a diagonal ma-

trix whose diagonal elements are formed by sums of the diagonal elements of the matrix

ρ. Therefore, all of these are positive, and thus the map ΛGT
preserves the positivity of the

density operator.

• This operator preservers the trace. Indeed:

Tr {ΛGT
[ρ]} = Tr

{∫
dGTVtρV†

t

}
=

∫
dGTTr

{
VtρV†

t

}
= Tr{ρ}. (3.39)
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Since the cyclicity of the trace gives us Tr
{
VtρV†

t

}
= Tr

{
ρV†

tVt
}
= Tr{ρ}, because the

matrices Vt are unitary. Therefore, the map ΛGT
preserves the trace.

• Finally, note that for the identity operator we have:

ΛGT
[1] =

∫
dGTVt1V†

t =

∫
dGTVtV†

t =

∫
dGT1 = 1 (3.40)

therefore, the quantum twirling operator is a unital quantum channel.

In fact, the property that the quantum twirling operator is a unital quantum channel will be

extremely useful for proving some properties of functionals such as the entropy that we will

define in Chapter 4.

Certainly, we can introduce a twirling operator that allows our linear operatorD to be written

as:

D[ρ(t)] = ut

(∫
dGTVtρE(t)V†

t

)
u†t = utΛGT

[ρE(t)]u†t = utρ
E
dd(t)u

†
t (3.41)

where

ρEdd(t) = ΛGT
[ρE(t)] =

p≤d⊕
k=1

Tr{ρE
nkt
(t)}

nkt
1nkt , ρnkt = Πnkt

ρEΠnkt
. (3.42)

Then, in the case of the functionals, which are invariant under the unitary transformations, they

functionals can be writen explicity in terms of the Twirling operator:

Finv[ρ(t)] = F [D(ρ)] = F
[
utΛGT

[ρE(t)]u†t

]
= F

[
ΛGT

[ρE(t)]
]
= F [ρEdd(t)] (3.43)

since the ut is a unitary transformation. In the context of Haar integral, Finv[ρ] is associated a

functional evaluated using the averaging of the density matrix in energy eigenbasis over all ele-

ments in gauge group, i.e. the redundancy information has been eliminated in energy eigenbasis.

3.3.2 Invariant states

In effect, the property that characterizes ΛGT
as a unital quantum channel, i.e., Eq. (3.40), shows

us that the state ρ =
1
d
is a fixed point of the operatorΛGT

. In fact, just as this operator, there may

be other states that are fixed points of ΛGT
. In summary, these states are those that are naturally

invariant under the thermodynamic gauge group. Note that in this case, the discussion is distinct

from that which we used to introduce the second definition of invariant quantities in the previous

section; here, we have states that are invariant not under unitary transformations but rather by

the gauge transformation defined by Eq. (3.26).
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So, let us now define the set of these invariant states as:

Definition 4. (Invariant States) The set of invariants states over the gauge group is defined by:

Einv =
{
ρ ∈ L1(Hd)|D[ρ] = ρ

}
. (3.44)

Note that the equality D[ρ] = ρ can be rewritten in terms of the Twirling operator through

the following development:

D[ρ] = ρ =⇒ utΛGT
[ρE(t)]u†t = ρ (3.45)

=⇒ ΛGT
[ρE(t)] = ρE(t). (3.46)

Certainly, invariant states represent a peculiar and interesting subset of states that emerge

from the mathematical formulation of this formalism. With this in mind, we will explore what

types of states ρ belong to the set Einv.

First, we will consider the case where the invariance arises from the Haar average. Thus, from

Eq. (3.37) for the operator ρE , we must have:

ΛGT
[ρE] = ρE =⇒

Tr{ρnkt (t)}
nkt

= ρEmm (3.47)

for all the nkt labels of m, that is, {m1,m2, ...,mk} associated with the subspace Hk, it follows

immediately that ρE must necessarily be diagonal. Furthermore, Eq. (3.47) provides us with a

linear system of nkt equations, which are of the form:

(1− nkt )ρ
E
m1m1

+
k∑
l=2

ρEmlml = 0

ρm1m1 + (1− nkt )ρm2m2 +
k∑
l=3

ρEmlml = 0

.

.

.

k−1∑
l=1

ρEmlml + (1− nkt )ρ
E
mkmk

= 0

. (3.48)

This set of nkt equations is linearly dependent and provides infinitely many solutions. However,

the solutions of the system are fixed by a constraint among all the elements of the density oper-

ator. In fact, by subtracting each equation pairwise, it is possible to obtain that:

ρEm1,m1
= ρEm2,m2

= . . . = ρEmk,mk (3.49)

In other words, we obtain that a given block is invariant if all the elements of the density matrix

associated with that subspace are equal; consequently, this is the condition that each block is
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maximally mixed in its subspace. In fact, this further implies that if ρE is a state invariant under

the Haar average, we can associate this state as being one obtained from a Twirling with the

Haar measure defined by Eq. (3.31). Consequently, a state will be invariant with respect to the

average if all its blocks are invariant, i.e., maximally mixed with respect to each subspace Hk.

Certainly, this result is already expected and well-known in the context of quantum computing

and resource theories [41, 82, 87].

On the other hand, the coarse-graining defined by the Haar measure in Eq. (3.31) allows an-

other type of state invariance to emerge. Certainly, since the gauge is not just any unitary trans-

formation, its commutativity property allows other states to be invariant. In this context, for

example, the Gibbs states:

ρG =
e−βH

Z
(3.50)

where β is the inverse of the temperature and Z is a partition function given by Z = Tr
{
e−βH

}
.

Effectively, these states are naturally invariant since we can treat them as functions of the Hamil-

tonian, and consequently, this state commutes with the matrices of the gauge group, thus the

state is invariant under Haar averages. In summary, all states with explicit dependence on the

Hamiltonian are invariant states.

Finally, it is also worth mentioning the particular case where there are no degeneracies in

the system. In this case, the induced measure of the gauge group is given by a product of Haar

measures of the group U(1), that is:

dGT =
d∏

k=1

dµ[U(1)]. (3.51)

Consequently, the Haar average of any density operator reduces from Eq (3.42) to:

d⊕
k=1

Tr{ρE |k⟩ ⟨k|}
nkt

= ρEdiag (3.52)

where nkt = 1 for all k. That is, the Haar average reduces to the diagonal part of the energy basis

density matrix. Consequently, the criterion for invariance under the Haar average reduces to the

imposition that ρE be diagonal.

In summary, this construction leads us to formalize the following result.

Proposition 4. Consider the operator ρ ∈ L1(Hd), then ρ belongs to the set Einv if and only if it is
diagonal in the energy basis and satisfies at least one of the following properties:

(i) Each block nkt of the operator ρ
E
dd is maximally mixed in its subspaceHk,

(ii) The state ρ is associated with some statistical ensemble.
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3.4 Some considerations of the gauge approach

With Sections 3.2 and 3.3, we have constructed the fundamental notions of the gauge formal-

ism for quantum thermodynamics. However, there are some important considerations we must

address before proceeding with the work.

First, in consequence the constraint established by Definition 1, there is a natural class of

quantities which are gauge-invariant by construction. These are all quantities solely defined on

the equilibriummanifold. More general, they quantities which solely depend on the Hamiltonian,

e.g., the microcanonical state are preserved [3].

The first point is associated to the existence of two transformations here. The first set of

transformation are the unitary transformations that are the elements on gauge group GT, which

describes the symmetry transformations on the system and not dynamical processes. These trans-

formations their role is to identify the set of states, for each instant of time, that cannot be distin-

guished by measuring thermodynamic variables. The other set of transformations are associated

to physical process, which can be any complete positive and trace preserving map, including

adiabatic (reversible) transformations, quenches and others. These are the ones governing the

time evolution of the physical system, which implies our theory applies to both equilibrium and

non-equilibrium transformations [3].

Finally, there is a crucial point for us to discuss: the choice of the invariance principle. In

summary, the entire development done in Sections 3.2 and 3.3 is based on the hypotheses of

the theory mentioned at the beginning of Section 3.2. Indeed, the non-triviality of the theory

is ensured by hypothesis (iv), which establishes a gauge invariance criterion and determines the

entire subsequent construction of the theory.

However, hypothesis (iv) admits a generalization, at least from the mathematical perspective

of the theory. Indeed, instead of characterizing the theory by fixing the principle based on energy

invariance, we can state it more generally for any observable O as follows:

Definition 5. (Gauge observable invariance) An unitary transformations Vt : Hd → Hd are admis-
sible gauge transformation if the preserve the expected value of a fixed observableO, independently
of a particular state of the system i.e.

⟨O⟩ρ = ⟨O⟩VtρV †
t

⇐⇒ Tr {Oρ} = Tr
{
VtρV

†
t O
}

(3.53)

for all ρ ∈ L1
(
Hd
)
.

Indeed, the choice O = H retrieves Definition 1 and consequently all the results obtained

in Sections 3.2 and 3.3. However, the generalized version of the invariance principle leads to

analogous results, which are:

• The comutativity relation:

[Vt,O] = [V †
t ,O] = 0⃗.



3.4. Some considerations of the gauge approach 55

• The decomposition of the observable O:

O = uOt O(t)u
O†
t , O(t) =

p≤d⊕
k=1

λO(t)1nkt

where uOt is the matrix that diagonalizes the observable O, and nkt is the degeneracy of

each eigenvalue of the observable O.

• The general form of the gauge transformation:

Vt = uOt Vtu
O†
t , Vt =

p≤d⊕
k=1

vkt

with vkt ∈ U(nkt ).

• The gauge group is defined by:

TO =

{
Vt ∈ U(d)| [Vt,O] = 0, Vt = uOt

(
p⊕

k=1

vkt

)
uO†
t

}
. (3.54)

• The Haar measure induced from the gauge group:

dGT = dµ
[
U(n1

t )
]
× dµ

[
U(n2

t )
]
× ...× dµ [U(npt )] . (3.55)

where p ≤ d.

In other words, the entire theory is developed analogously. However, the gauge group is modified

such that the topological structure of the Haar measure is associated with the degeneracy degrees

of the observableO. Consequently, the manifold defined by the gauge groupmay be distinct from

that of the Hamiltonian operator.

Furthermore, certain complications arise from this generalized choice. Indeed, we will see

in the following sections that the choice of the invariance principle over the Hamiltonian leads

to various simplifications in usual expressions within the thermodynamics context, particularly

showing certain consistencies with existing literature results, thus favoring the choice of this

principle.

Nonetheless, it is important to consider that this generalization arises from a mathematical

perspective on the theory. In this sense, the initial choice of the invariance principle over energy

introduced in Ref. [3] brings a physical significance that relates to the relevance of the energy

basis in the context of quantum thermodynamics. Since the coarse-graining introduced by the

definition of invariant quantities is then based on the manifold of the gauge group associated

with the Hamiltonian, it consequently relates to the energy basis.
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Chapter 4

Laws of quantum thermodynamics in
gauge approach

In this chapter, we study the Laws of quantum thermodynamics over the perspective of the

gauge-invariant approach establishes in the last chapter.

In this sense, we separate the chapter into two sections, with the first dedicated to obtaining

the concepts of heat and work that have already been derived for continuous protocols in the

work of Céleri and Rudnicki [3]. Thus, we derive in detail all the expressions obtained in their

work and discuss the physical aspects associated with the invariant quantities of heat and work,

bringing a new perspective on their interpretations.

In the following section, we develop the notion of entropy in the context of gauge-invariant

quantum thermodynamics and discuss its properties and relationships with other entropies, such

as observational and diagonal entropy. Here, all results and discussions are based on original

findings from this work, which are grounded in the extension of Definition 3 that we introduced

in the previous chapter.

4.1 First law in gauge invariant quantum thermodynamics

The definition of invariant quantities under the thermodynamic group, as well as the Haar

average of the elements of the thermodynamic group, is the starting point for obtaining the in-

variant counterparts associated with any functionals. In this sense, we will now construct the

first law of thermodynamics in an invariant form over the thermodynamic group and the Haar

average associated with the functionals. For this, we can use Definition 3 applied to the usual

notions of work Eq. (2.30) and usual heat Eq. (2.29). Here, the label u introduced in Section 2.2

becomes non-trivial and differentiates the new functionals obtained. These results are initially

presented in [3], which are given the following Theorem.

Theorem 1. (Gauge-InvariantWork). LetH(t) be a time-dependent Hamiltonian whose decom-
position is given by Eq. (3.25), and let ut be the diagonalizing unitary matrix of the Hamiltonian,
i.e., H(t) = uth(t)u

†
t , where h(t) is differentiable for all t ∈ R. Then, the notion of work that is
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invariant with respect to the thermodynamic gauge group is given by

Winv [ρ] =

∫ τ

0

dtTr
{
ρutḣu

†
t

}
. (4.1)

Proof. Firstly, we derive the notion of invariant work and, subsequently, we obtain the invariant

heat. In this sense, from Definition 3 of invariant quantities, the invariant work is given by

Winv [ρ] =

∫
dGTWu

[
VtρV

†
t

]
=

∫
dGT

∫ τ

0

dtTr
{
VtρV

†
t Ḣ
}

=

∫
dGT

∫ τ

0

dtTr
{
ρutV†

t u
†
tḢutVtu

†
t

}
=

∫ τ

0

dtTr
{
ρutgtu

†
t

}
, (4.2)

where gt ≡
∫

dGT V†
t

(
u†tḢut

)
Vt. In this case, we commute the Haar integral and the integral

over t since, given the continuity of the protocol g(t), it follows that H(t) is modified continu-

ously, as is its eigenbasis.

Now, using the decomposition of theHamiltonian in Eq. (3.25),We can expand the parentheses

above to yield:

u†tḢut = u†t

(
u̇thu

†
t + utḣu

†
t + uthu̇

†
t

)
ut

= ḣ+ u†t u̇th+ hu̇†tut

= ḣ+ hu̇†tut − u̇†tuth

= ḣ+
[
h, u̇†tut

]
.

Then, the gt can be write as

gt =

∫
dGT V†

t

(
ḣ+

[
h, u̇†tut

])
Vt

=

∫
dGT V†

t ḣVt +
∫

dGT V†
t

[
h, u̇†tut

]
Vt

= ḣ

∫
dGT

[
p⊕

k=1

1nkt

]
+ [h, b(t)] (4.3)
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with bt =

[
h,

∫
dGT V†

t u̇
†
tutVt

]
. Then, substituting Eq. (4.3) into the expression given by Eq. (4.2)

we obtain

Winv [ρ] =

∫ τ

0

dtTr
{
ρutbtu

†
t

}
=

∫ τ

0

dtTr

{
ρut

(
ḣ

∫
dGT

[
p⊕

k=1

1nkt

]
+ [h, bt]

)
u†t

}

=

∫ τ

0

dtTr

{
ρutḣu

†
t

∫
dGT

[
p⊕

k=1

1nkt

]}
+ Tr

{
ρut [h, bt]u

†
t

}
. (4.4)

Now, we evaluate the two Haar integrals in Eq. (4.4). First, we have

∫
dGT

p⊕
k=1

1nkt =
∫

dGT 1d = 1d, (4.5)

since the Haar measure is normalized.

From the second Haar integral, let us consider a partition of the interval [0, τ ] into intervals

[til , tis ] such that

⋃
iq∈L[til , tis ] = [0, τ ], where L is a set of indices and each set [til , tis ] corre-

sponds to an interval where the configuration of degeneracies nkt of the Hamiltonian is fixed.

Consequently, the Haar measure dGT of the thermodynamic group is fixed in each interval. This

decomposition allows us to write ∫ τ

0

dt · =
∑
iq∈L

∫ tis

til

dt · (4.6)

Therefore, the commutator of h and bt are given by∫ τ

0

dtTr
{
ρut [h, bt]u

†
t

}
=

[
h,

∫
dGT V†

t u̇
†
tutVt

]
=

∑
iq∈L

∫ tis

tip

dtTr

{
ρ

[
h,

p⊕
k=1

bk(t)1nkt

]}
= 0

where ∫
dGT V†

t u̇
†
tutVt =

p⊕
k=1

bk(t)1nkt (4.7)
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for some function bk(t) since the Haar measure over any unitary subgroup is a diagonal matrix,

which commutes with h therefore we obtain [h, b(t)] = 0 in each interval [tip , tis ] i.e.

[h, b(t)] =

[
h,

p⊕
k=1

bk(t)1ηkt

]
=

[
p⊕

k=1

λk(t)1ηkt ,
p⊕

k=1

bk(t)1ηkt

]
= 0. (4.8)

Therefore, substituting Eq. (4.5) and Eq. (4.8) in Eq. (4.4) we obtain the invariant work

introduced in Eq. (4.1).

Now, we prove the invariance property of this functional, in fact:

Winv[VtρV
†
t ] =

∫ τ

0

dtTr
[
VtρV

†
t utḣu

†
t

]
=

∫ τ

0

dtTr
[
ρutV†

t ḣVtu
†
t

]
=

∫ τ

0

dtTr
[
ρutḣu

†
t

]
= Winv[ρ] (4.9)

since V†
t ḣVt = V†

tVtḣ = ḣ. Therefore, the invariant work is invariant under the gauge transfor-

mation as desired and this finish this proof.

In sequence, we formally introduce the expression for the invariant heat in the following

theorem.

Theorem 2. (Gauge-invariant Heat) Over the same assumptions of the invariant work Theorem 1.
Then the notion of heat which is invariant with respect to the thermodynamic gauge is given by

Qinv[ρ] = Qu[ρ] +Qc[ρ] (4.10)

where Qu[ρ] is the usual heat defined in Eq. (2.29) and

Qc[ρ] ≡
∫ τ

0

dtTr
{
ρu̇thu

†
t + ρuthu̇

†
t

}
(4.11)

is the coherent heat.

Proof. In fact this proof is similar to Theorem 1. Indeed, using the Definition 3 we have

Qinv [ρ] =

∫
dGTQu

[
VtρV

†
t

]
=

∫
dGT

∫ τ

0

dtTr

{
d

dt

(
VtρV

t
t

)
H

}
=

∫
dGT

∫ τ

0

dtTr
{(
V̇tρV

†
t + Vtρ̇V

†
t + VtρV̇

†
t

)
H
}

= I1 + I2 (4.12)
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where I1 and I2 are defined by

I1 ≡
∫

dGT

∫ τ

0

dtTr
{(
Vtρ̇V

†
t

)
H
}

I2 ≡ I3 + I4, where

I3 ≡
∫

dGT

∫ τ

0

dtTr
{(
V̇tρV

†
t

)
H
}

I4 ≡
∫

dGT

∫ τ

0

dtTr
{(
Vtρ

˙
V †
t

)
H
}

. (4.13)

For simplicity, i will subsequently treat each term separately. Firstly, for I1 we have:

I1 =

∫
dGT

∫ τ

0

dtTr
{
Vtρ̇V

†
t H
}

=

∫
dGT

∫ τ

0

dtTr {ρ̇H}

=

∫ τ

0

dtTr {ρ̇H} = Qu[ρ], (4.14)

since the Haar measure is normalized. Therefore the first term in Eq. (4.12) is the usual heat de-

fined in Eq. (2.29). We must now evaluate I2 and I3 for this, we compute the following derivatives

of Vt and V
†
t :

V̇t =
d

dt

(
utVtu†t

)
= u̇tVtu†t + utV̇tu†t + utVtu̇†t (4.15)

˙
V †
t =

d

dt

(
utV†

t u
†
t

)
= u̇tV†

t u
†
t + ut

˙V†
t u

†
t + utV†

t u̇
†
t . (4.16)

Firstly, for I3 we have

I3 =

∫
dGT

∫ T

0

dtTr
{(
V̇tρV

†
t

)
H
}

=

∫
dGT

∫ τ

0

dtTr
{
ρVtH

[
u̇tVtu†t + utV̇tu†t + utVtu̇†t

]}
=

∫
dGT

∫ τ

0

dtTr
{
ρutV†

t hu
†
t

[
u̇tVtu†t + utV̇tu†t + utVtu̇†t

]}
=

∫
dGT

∫ τ

0

dtTr
{
ρ
[
utV†

t hV̇tu
†
t + utV†

t hu
†
t u̇tVtu

†
t

]}
+

+

∫
dGT

∫ τ

0

dtTr
{
ρutV†

t hVtu̇
†
t

}
. (4.17)
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The development for I4 is similar, in effect we have:

I4 ≡
∫

dGT

∫ τ

0

dtTr
{(
Vtρ

˙
V †
t

)
H
}

=

∫
dGT

∫ τ

0

dtTr
{
ρ
[
u̇tV†

t u
†
t + ut

˙V†
t u

†
t + utV†

t u̇
†
t

]
uthu

†
tutVtu

†
t

}
=

∫
dGT

∫ τ

0

dtTr
{
ρ
[
utV̇†

t hVtu
†
t + utV†

t u̇
†
tuthVtu

†
t

]}
+

+

∫
dGT

∫ τ

0

dtTr
{
ρu̇thu

†
t

}
. (4.18)

Then, substituting Eq. (4.17) and Eq. (4.18) in I2 we obtain:

I2 = I3 + I4

=

∫
dGT

∫ τ

0

dtTr
{
ρuthu̇

†
t

}
+

∫
dGT

∫ τ

0

dtTr
{
ρu̇thu

†
t

}
+

+

∫
dGT

∫ τ

0

dtTr
{
ρ
[
utV†

t hV̇tu
†
t + utV†

t hu
†
t u̇tVtu

†
t

]}
+

+

∫
dGT

∫ τ

0

dtTr
{
ρ
[
utV̇†

t hVtu
†
t + utV†

t u̇
†
tuthVtu

†
t

]}
=

∫ τ

0

dtTr
{
ρ
[
uthu̇

†
t + u̇thu

†
t

]}∫
dGT 1nkt +Qd[ρ]

= Qc[ρ] +Qd[ρ] (4.19)

where Qc[ρ] is the coherent heat defined in Eq (4.11) and Qd[ρ] is given by

Qd[ρ] =

∫
dGT

∫ τ

0

dtTr
{
ρ
[
utV†

t hV̇tu
†
t + utV̇†

t hVtu
†
t

]}
+

∫
dGT

∫ τ

0

dtTr
{
ρ
[
utV†

t hu
†
t u̇tVtu

†
t + utV†

t u̇
†
tuthVtu

†
t

]}
. (4.20)

Indeed, let us show Qd[ρ] = 0. Using the unitary property of Vt and ut we can write:

Qd[ρ] =

∫
dGT

∫ τ

0

dtTr
{
ρuth

[
V†
t V̇t + V̇†

tVt
]
u†t

}
+

+

∫
dGT

∫ τ

0

dtTr
{
ρut

[
hV†

t u
†
t u̇tVt − V†

t u
†

t u̇tVth
]
u†t

}
=

∫
dGT

∫ τ

0

dtTr

{
ρuth

d(VtV†
t )

dt
u†t

}
+ (4.21)

+
∑
iq∈L

∫ tis

tip

dtTr

{
ρut

[
h,

∫
dGT V†

t u
†
t u̇tVt

]
u†t

}
. (4.22)
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First, since VtV†
t = 1d the Integral in Eq. (4.21) is zero. The second integral appearing in Eq. (4.22)

vanishes due to the application of the Haar average, in fact, note that

∫
dGT V†

t u
†
t u̇tVt =

p⊕
k=1

r(t)1nkt (4.23)

for some function r(t) in each interval [til , tis ] which is constructed in the same way as we did in

the proof of the Theorem 1. Therefore, Qd = 0 and I2 in Eq. (4.19) reduces to Qc, from this and

from Eq. (4.14) the invariant heat in Eq. (4.12) becomes the sum of the usual Qu and coherent Qc

heat as desired.

Lastly, we proof the invariance of the invariant heat over the gauge transformation, indeed

Qinv[VtρV
†
t ] = Qu[VtρV

†
t ] +Qc[VtρV

†
t ]

= Qu[ρ] +Qc[ρ] +Qr[ρ] +Qc[VtρV
†
t ] (4.24)

where Qr is defined by:

Qr[ρ] ≡
∫ τ

0

dtTr
{
ρ
[
utV†

t hu
†
t u̇tVtu

†
t + utV†

t u̇
†
tuthVtu

†
t

]}
. (4.25)

In this sense, we will then show that Q ≡ Qr[ρ] + Qc[VtρV
†
t ] is equal to zero. In this sense we

expand Qr[ρ] as follow

Qr[ρ] =

∫ τ

0

dtTr
{
ρ
[
utV†

t hu
†
t u̇tVtu

†
t + utV†

t u̇
†
tuthVtu

†
t

]}
=

∫ τ

0

dtTr
{
ρ
[
V †
t Hu̇tu

†
tVt + V †

t utu̇
†
tHVt

]}
=

∫ τ

0

dtTr
{
VtρV

†
t

[
Hu̇tu

†
t + utu̇

†
tH
]}

, (4.26)

and we rewrite Qc[VtρV
†
t ] as:

Qc[VtρV
†
t ] =

∫ τ

0

dtTr
{
VtρV

†
t

[
u̇thu

†
t + uthu̇

†
t

]}
=

∫ τ

0

dtTr
{
VtρV

†
t

[
u̇tu

†
tH +Hutu̇

†
t

]}
. (4.27)

Using Eq. (4.26) and Eq. (4.27) we obtain for Q:

Q =

∫ τ

0

dtTr
{
VtρV

†
t

[
Hu̇tu

†
t + utu̇

†
tH + u̇tu

†
tH +Hutu̇

†
t

]}
=

∫ τ

0

dtTr

{
VtρV

†
t

[
d(utu

†
t)

dt
, H

]}
= 0
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since ut is unitary and we have utu̇
†
t = −u̇tu†t . Thus the invariant heat in Eq. (4.24) becomes

invariant under the thermodynamic group.

4.1.1 Discussion of invariant work and heat

In Theorems 1 and 2, we formally introduced the invariant counterparts associated with work

and heat, respectively. With this in mind, we will now discuss the physical implications of these

quantities in the context of gauge-invariant quantum thermodynamics.

First, note that under the notion of invariance we established, the heat associated with the

system is given by the sum of two contributions, which are Qu and Qc, defined by Eq. (2.29) and

Eq. (4.11), respectively. Indeed, as we discussed in Chapter 2, the usual heat Qu, initially intro-

duced in the seminal work of Alicki in Ref.[15], describes the amount of heat exchanged between

the environment and the system over a given protocol. Furthermore, as we showed in Chap-

ter 2, closed systems, i.e., under unitary evolution, do not exchange heat with the environment;

consequently, we have Qu = 0 in closed systems.

However, note that the invariant heat in Eq. (4.10) is not necessarily zero in the case of a closed

system. In fact, in this scenario, the formalism introduced in Chapter 3 for invariant quantities

indicates that throughout a given dynamics, whether unitary or not, the energy part of the system

referred to as heat has another contribution, which we denote as Qc.

The termQc introduced in Eq. (4.11) was originally derived in the work of Céleri and Rudnicki

in Ref.[3] using the gauge invariance of the first law of thermodynamics as per Definition 1. In this

work, the authors showed that such a contribution emerges as a consequence of the production

of coherence in the energy basis. In fact, expanding Qc with the density operator in the energy

basis {|an(t)⟩} given by ρ(t) =
∑

j,k ρ
E
j,k(t) |aj⟩ ⟨ak|, we obtain:

Qc[ρ(t)] =

∫ τ

0

dtTr
{
ρ(t)

(
u̇thu

†
t + uthu̇

†
t

)}
=

∫ τ

0

dtTr

{∑
j,k,n

ρEjkλn (|ȧj⟩ ⟨ak|+ |aj⟩ ⟨ȧk|) |an⟩ ⟨an|

}

=

∫ τ

0

dt
∑
j,k,n,m

ρEjk [λn ⟨am|ȧj⟩ δk,n + λn ⟨ȧk|an⟩ δm,j] δn,m

=

∫ τ

0

dt
∑
n,m

ρEmn(t) ⟨ȧn(t)|am(t)⟩ (λm(t)− λn(t)) (4.28)

where we changed some dummy labels and used the orthogonality of the state basis {|an(t)⟩}
such that we have:

⟨an|am⟩ = δn,m =⇒ d(⟨an|am⟩)
dt

= 0 =⇒ ⟨an|ȧm⟩ = −⟨ȧn|am⟩ . (4.29)
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In summary, note that the expression for Qc in Eq. (4.28) depends only on the terms associated

with the coherences in the energy basis, thus justifying the designation of the quantity Qc as

coherent heat [3]. As a consequence, coherent heat emerges as a result of the transitions that

occur in the energy basis, which are fundamentally connected to irreversibility (heat generation)

[3].

Indeed, the connection of coherent heat as a measure of irreversibility is fundamentally as-

sociated with the symmetries present in the system relative to the symmetry established by the

gauge group GT. In fact, this quantity is directly related to changes in the energy basis structure,

which is captured by the rate of change of the matrices ut. In this sense, note that this variation

occurs fundamentally due to the time dependence of the system’s Hamiltonian H(t). In partic-

ular, if the time dependence of the Hamiltonian arises from a control parameter g(t), then the

rate at which this parameter varies induces an increase in the production of quantum coherences,

which can even be associated with a non-adiabaticity aspect. Indeed, at the end of this chapter,

we explicitly show how the speed of a protocol g(t) in a qubit system induces the production of

quantum coherences and drives the system away from the quasi-static regime.

On the other hand, the structure of the gauge group also determines the form of the matrices

ut, which particularly depends on degenerate eigenvalue terms that modify the dimension of the

manifold of the group GT. In this sense, if the control parameter g(t) is capable of modifying,

even adiabatically, this structure in the Hamiltonian, there will be a change, resulting in a gain of

coherence through the coherent heat term. In particular, for systems exhibiting phase transitions,

changes in the degeneracy structure are often linked to some type of quantum phase transition,

whether in the ground state or excited state.

However, note that the principle of gauge invariance is formulated based on the invariance

of energy, implying the validity of the first law of thermodynamics. For this reason, we can then

obtain a relation between coherent heat and invariant work, both for open and closed systems,

which is given by the following expression:

Winv[ρ(t)] = Wu[ρ(t)]−Qc[ρ(t)], (4.30)

this can be easily verified with a bit of algebra.

Eq. (4.30) shows us that the invariant work corresponds to the contribution of the usual work

free from coherences in the energy basis. In fact, we can obtain this result by expanding the
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invariant work term as follows.

Winv[ρ] =

∫ τ

0

dtTr
{
ρEḣ

}
=

∫ τ

0

dtTr

{∑
j,k,n

ρEjkλ̇n |aj⟩ ⟨ak|
(
|an⟩ ⟨an|+

d

dt
(|an⟩ ⟨an|)

)}

=

∫ τ

0

dt
∑
j,n,m

ρEjnλ̇nρ
E
jkδj,mδk,m

=

∫ τ

0

dt
∑
n

ρEnn(t)λ̇n(t). (4.31)

In this way, note that coherent heat can be understood as a contribution from the work

associated with coherences. That is, the initial developments by Céleri and Rudnicki in Ref. [3]

perform a split of the usual work into two contributions, where the part connected to the coher-

ences in the energy basis is naturally understood as heat since it is necessary for the construction

of invariant heat, ensuring invariance over the thermodynamic group, which cannot be achieved

solely by the usual and coherent terms in isolation.

Furthermore, note that this result is necessarily a consequence of the construction of physical

quantities according toDefinition 3, which are invariant under the thermodynamic group. Indeed,

throughout the proofs of Theorem 1 and Theorem 2, it becomes clear that the invariant quantities

are obtained if and only if the Haar average over the thermodynamic group is applied at each

time interval. Moreover, the differentiability of the eigenvectors that constitute the energy basis

is fundamental for the expressions associated with invariant heat and work to be obtained.

Certainly, this discussion becomes relevant as it clarifies that it is the formalism of the gauge

theory of the thermodynamic group GT , developed by Céleri and Rudnicki in Ref. [3], that leads

to these results. Thus, the split of work is a consequence of the established axioms and not an

initial imposition.

Nevertheless, as much as coherent heat is associated with the production of coherence in the

energy basis, it is interesting to note that invariant heat is, like invariant work, independent of

coherences. Note that:

Qinv [ρ] =

∫ τ

0

dtTr {Hρ̇}+ Tr
{
ρu̇thu

†
t + ρuthu̇

†
t

}
=

∫ τ

0

dtTr

{
h
d

dt

(
u†tρut

)}
=

∫ τ

0

dtTr

{∑
j,k,n

λn(t) |ak⟩ ⟨ak|
(
ρ̇Ejk |aj⟩ ⟨ak|+

d(|aj⟩ ⟨ak|)
dt

)}

=

∫ τ

0

dt
∑
n

λn(t)ρ̇
E
nn(t). (4.32)
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Nevertheless, it is also possible to verify that energy is independent of the coherences in the

energy basis; indeed,

U = Tr{ρH} = Tr{ρEh} =
∑
n

ρEnn(t)λn(t). (4.33)

In summary, the results obtained in Eq. (4.31), Eq. (4.32), and Eq. (4.33) are intuitively expected

and fully compatible with classical notions of work and heat [3]. However, the independence of

coherences in the energy basis in the expressions for invariant heat andwork contradicts previous

notions in quantum thermodynamics [3]. Nevertheless, this does not imply that coherence does

not play a role in energy transfer processes. The generation of coherence is related to the rate

at which energy is transferred from a system in the form of work or heat, thus affecting all

thermodynamic processes such as work extraction and the efficiency of thermal machines [3].

In addition to the discussion about closed systems, there are other particular contexts that

shed light on the nature and physical meaning associated with invariant heat and work. With

this in mind, let us consider an example presented in Ref.[3] associated with the non-unitary

dynamics of a single qubit described by the Hamiltonian H(t) = g(t)σz , where g(t) is a time-

dependent function.

While the dynamics are non-unitary, the density operator ρ(t) satisfies the following Lindblad

equation:

ρ̇(t) = −i [H(t), ρ(t)] +D [ρ(t)] , (4.34)

with D being the non-unitary part of the dynamics (dissipator). Furthemore, let us consider the

following dissipator:

Dd[ρ] = −Γdec

2
[σz, [σz, ρ]] (4.35)

where σz are the z−th Pauli matrix, Γdec represents the decoherence rateDd is called the dephas-

ing quantum channel. The second quantum channel is called generalized amplitude damping

which is described by the dissipator:

Da[ρ] =Γa(n̄+ 1)

[
σ−ρσ+ − 1

2

{
σ+σ−, ρ

}]
+ Γan̄

[
σ+ρσ− − 1

2

{
σ−σ+, ρ

}]
(4.36)

where σ±
are the usual spin ladder operators, n̄ = (e−βω − 1)−1

stands for the mean excitation

number of the bath mode with frequency ω and β stands for the inverse temperature while Γa is

the decoherence rate.

Note then that, since the HamiltonianH(t) is always diagonal, it follows thatH(t) is already

in its energy basis. By convention, we can diagonalize it so that h(t) = −gtσz , hence ḣ = −ġtσz ,
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and in this case, the invariant work is given by:

Winv[ρ] =

∫ τ

0

dtTr {−ρ(t)ġ(t)σz} =

∫ τ

0

dt ġ(t) [ρ22(t)− ρ11(t)] .

On the other hand, since the matrices ut are time-independent, the coherent heat of the

system is zero, indicating that there is no production of coherence in the energy basis. Thus,

immediately from equality 4.30, we obtain that the invariant work, in this case, is equal to the

usual work, i.e.,Winv = Wu.

Note that this analysis holds for any dissipator D. In the same vein, we can evaluate the

invariant heat, which, in both cases, reduces to the usual heat, i.e., Qinv = Qu. Thus, we obtain:

Qinv[ρ] =

∫ τ

0

dt g(t) Tr{σzD [ρ(t)]} =

∫ τ

0

dt g(t) [(D [(ρ(t)])11)− (D [ρ(t)])22] .

Now, note that in the casewhere the dissipator is given by Eq. (4.35), we haveQinv = Qu =

0 since all coherence is destroyed by the decoherence process induced by the action of the bath.

On the other hand, when the dissipator is given by Eq. (4.36), in addition to the decoherence pro-

cess, there is also an energy exchange between the system and the bath, which is identified as heat.

Integrating the invariant heat identifies the function ΦE(t) ≡ g(t) [(D [(ρ(t)])11)− (D [ρ(t)])22]

associated with the instantaneous energy flow.

This simple example reveals some interesting points about our formalism. First, note that

when we have Hamiltonians that are always diagonal, as in the example discussed, we will not

have the production of coherence in the energy basis, and thus the expressions obtained for

invariant work and heat reduce to the usual notions of quantum thermodynamics presented in

Ref. [15]. This ensures consistency with existing developments in the literature [3].

This analysis, along with what we have already discussed in Chapter 3, shows us that the

gauge theory of the group GT is a theory about how the energy basis of a given Hamiltonian

changes over some dynamics. The transitions in the energy basis generate coherence that appears

in our description associated with the coherent heat term Qc.

At the end of this chapter, we will present two examples that were initially explored by Céleri

and Rudnicki in Ref. [3], which illustrate this discussion when we have systems where changes

occur in the energy basis. In these applications, we will show the connection between coherent

heat and the relative entropy of coherences as well as with the notion of invariant entropy that

we will introduce in Section 4.2.

4.1.2 Covariant derivative and their properties

In the sense of the Gauge theory like introduced in the Section 3.1 we going to introduce an-

other interesting element here, indeed, the notion of covariant derivative and we analyze some
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properties of this covariant derivative. Then, the formal notion of covariant derivative are intro-

duced in the following definition.

Definition 6. (Covariant derivative) Let us introduce a Hermitian potential At ≡ iu̇tu
†
t . Then, we

can deine the covariant derivative by:

∇t : L(Hd) → L(Hd)

ϕ ∈ L(Hd) → ∇t(ϕ) =
∂

∂t
(ϕ) + i[At, ϕ] (4.37)

for all operator ϕ ≡ ϕ(t), where L(H) is the vector space of the bounded operators inHd.

Proposition 5. (Transformation of covariant derivative). The covariant derivative operator, defined
in Eq. (4.37), transforms under the emergent gauge transformation Vt as follows:

∇t(ϕ) → ∇t
′(ϕ) = V †

t

[
∇t(VtϕV

†
t )
]
Vt =

∂ϕ

∂t
+ i[A′

t, ϕ] (4.38)

where A′
t ≡ V †

t AtVt − iV †
t V̇t.

Proof.

∇t

(
VtϕV

†
t

)
=

∂

∂t

(
VtϕV

†
t

)
+ i
[
At, VtϕV

†
t

]
= V̇tϕV

†
t + Vtϕ̇V

†
t + Vtϕ

˙
V †
t +

[
At, VtϕV

†
t

]
= Vtϕ̇V

†
t + iVt

(
V †
t AtVt − iV †

t V̇t

)
ϕV †

t

− iVtϕ
(
V †
t AtVt − iV †

t V̇t

)
V †
t

= Vtϕ̇V
†
t + iVt (A

′
tϕ− ϕA′

t)V
†
t

= Vt

(
ϕ̇+ i [A′

t, ϕ]
)
V †
t

= Vt [∇t
′ (ϕ)]V †

t .

Therefore, we have:

∇t

(
VtϕV

†
t

)
= Vt∇t

′ (ϕ)V †
t =⇒ ∇t

′ (ϕ) = V †
t

[
∇t

(
VtϕV

†
t

)]
Vt

and the result is obtained.

Theorem 3. The invariant work and heat can be written as:

Winv[ρ] =

∫ τ

0

dtTr {ρ∇t(H)} , (4.39)

Qinv[ρ] =

∫ τ

0

dtTr {H∇t(ρ)} . (4.40)
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Proof. First, we will derive the expression for the invariant work. Note that obtaining Eq. (4.40)

is equivalent to showing that ∇t(H) = utḣu
†
t . Starting from this, we have the following devel-

opment.

∇t(H) =
∂

∂t
H + i [At, H]

=
∂

∂t

(
uthu

†
t

)
+ i
[
At, uthu

†
t

]
= u̇thu

†
t + utḣu

†
t + uthu̇

†
t + i(Atuthu

†
t − uthu

†
tAt

)
= u̇thu

†
t + utḣu

†
t + uthu̇

†
t + i

(
iu̇tu

†
tuthu

†
t − uthu

†
t u̇tu

†
t

)
= u̇thu

†
t + utḣu

†
t + uthu̇

†
t −
(
u̇thu

†
t − uthu

†
t u̇tu

†
t

)
= utḣu

†
t + uthu̇

†
t + uthu

†
t u̇tu

†
t

= utḣu
†
t + uthu̇

†
t − uthu̇

†
tutu

†
t

= utḣu
†
t + uthu̇

†
t − uthu̇

†
t

= utḣu
†
t

therefore∇t(H) = utḣu
†
t as wished.

To obtain the expression in Eq. (4.40), we will perform a direct derivation starting from

Eq. (4.40). In effect, we have:∫ τ

0

dtTr {H∇t(ρ)} =

∫ τ

0

dtTr {Hρ̇+ i [At, ρ]}

=

∫ τ

0

dtTr
{
Hρ̇+Hρu̇tu

†
t −Hu̇tu

†
tρ
}

=

∫ τ

0

dtTr
{
Hρ̇+ uthu

†
tρu̇tu

†
t − uthu

†
t u̇

†
tu

†ρ
}

=

∫ τ

0

dtTr
{
Hρ̇+ ρu̇thu

†
t − ρuth

(
u†t u̇t

)
u†t

}
=

∫ τ

0

dtTr
{
Hρ̇+ ρu̇thu

†
t + ρuth

(
u̇†tut

)
u†t

}
=

∫ τ

0

dtTr
{
Hρ̇+ ρ

(
u̇thu

†
t + uthu̇

†
t

)}
= Qu [ρ] +Qc [ρ]

= Qinv[ρ]

therefore Qinv[ρ] =

∫ τ

0

dtTr {H∇t(ρ)} as desired.
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Corollary 1. (Invariance of covariant derivative) The invariant work and heat are invariant under
the covariant derivative, i.e.

Winv[ρ] =

∫ τ

0

dtTr [ρ∇t(H)] =

∫ τ

0

dtTr [ρ∇t
′(H)] (4.41)

Qinv[ρ] =

∫ τ

0

dtTr [H∇t(ρ)] =

∫ τ

0

dtTr [H∇t
′(ρ)] (4.42)

where∇t
′(·) are defined in Eq. (4.38).

Proof. It follows from Theorem 1 that Winv is invariant under the thermodynamic group, i.e.

Winv[VtρV
†
t ] = Winv[ρ]. Therefore, we obtain

Winv[ρ] =

∫ τ

0

dtTr {ρ∇t (H)} = Winv

[
VtρV

†
t

]
=

∫ τ

0

dtTr {ρ∇t
′ (H)} ,

with proves Eq. (4.41). On the other hand, note that the invariant heat, expressed in terms of the

covariant derivative in Eq. (4.40), under the action of the thermodynamic group, is given by:

Qinv[VtρV
†
t ] =

∫ τ

0

dtTr
{
H∇t

(
VtρV

†
t

)}
=

∫ τ

0

dtTr
{
V †
t HVt∇t

(
V †
t ρVt

)}
=

∫ τ

0

dtTr
{
H
[
V †
t ∇t

(
VtρV

†
t

)
Vt

]}
=

∫ τ

0

dtTr {H∇t
′ (ρ)} .

Therefore, using the invariance of heat under the thermodynamic group, i.eQinv[VtρV
†
t ] =

Qinv[ρ], we obtain

Qinv[ρ] =

∫ τ

0

dtTr {H∇t(ρ)} = Qinv[VtρV
†
t ] =

∫ τ

0

dtTr {H∇t
′ (ρ)}

and the equality Eq. (4.42) is atingible.

4.2 Entropy in gauge invariant quantum thermodynamics

Having obtained the new formulations for quantities such as heat and work, we will proceed

with the construction of gauge invariant quantum thermodynamics by developing the notion of

entropy associated with the second law.

As we discussed in Section 2.3, quantum thermodynamics and, more specifically, information

theory have introduced various notions of entropy, which have distinct interpretations and their

applicability may be restricted to particular contexts [88]. Consequently, defining the notion of
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entropy within this formalism involves the choice of a functional related to some entropy that

we refer to as the usual one. In particular, we understand that a natural choice is to adopt Von

Neumann entropy as the usual entropy.

Indeed, in Chapter 2, we introduced and discussed some concepts of candidates for micro-

scopic thermodynamic entropy. However, note that among the mentioned entropies, Boltzmann

entropy is necessarily excluded since we cannot associate it as a functional of the density opera-

tor and therefore it does not meet the basic hypotheses of the theory discussed in Chapter 3. On

the other hand, note that we can view both observational entropy and diagonal entropy as the

application of a modified density operator on Von Neumann entropy.

Thus, the natural choice to bemade is VonNeumann entropy, whichwe interpret as ameasure

of information in Quantum Mechanics.

Therefore, since the Von Neumann entropy is invariant under unitary transformation we can

use the Definition Eq. (3.34) of the invariant quantities to construct the invariant entropy version.

In this sense, we formally established this in the following theorem.

Theorem 4. (GT-entropy) The notion of invariant entropy under the emergent gauge group is the
gauge entropy which is denoted as SGT

and gives by:

SGT
[ρ(t)] = Su[ρ

E
dd(t)], (4.43)

where ρEdd is defined in Eq. (3.42).

Proof. First, since the Von Neumann entropy is invariant under the unitary transformation the

notion of invariant Von Neumann entropy is given by:

SGT
[ρ(t)] ≡ Sinv[ρ(t)] = Su[DGT

](ρ(t))] = Su[ρ
E
dd],

with ρEdd defined in Eq. (3.42).

Thus, we finally have the notion of gauge entropy formulated. In this sense, it is now appropri-

ate to explore some properties associated with this entropy. In summary, the main characteristics

of gauge entropy are associated with the aspects of the state ρEdd(t). In particular, the notion of

invariant states that we introduced in Chapter 3 will be of certain relevance in this section.

In fact, gauge entropy is obtained from the Haar integral with the induced measure from the

gauge group defined by Eq. (3.31). Consequently, since the Haar integration process is analogous

to a type of coarse-graining, we can then define a specific type of coarse-graining given by:

C = {Πnkt
}, (4.44)
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in which each projector Πnkt
is associated with the Hilbert subspace Hk of the energy basis.

Certainly, it is easy to verify that these projectors satisfy the relations:
Πnkt

Πnmt
= δk,mΠnkt∑

k

Πnkt
= 1d

(4.45)

where δk,m is the Kronecker delta. Thus, the set C is indeed a coarse-graining as defined in [89,

90]. In this sense, we are motivated to define the volume of each subspace by Vk = Tr{Πnkt
}.

With this, the GT -entropy reduces to the following:

SGT
[ρ(t)] = Su[ρ

E
dd(t)]

= −Tr
{
ρEdd(t) log(ρ

E
dd(t))

}
= −Tr

{
Tr{ρE

nkt
(t)}

nkt
Πnkt

log

[
Tr{ρE

nkt
(t)}

nkt
Πnkt

]}

= −
p∑

k=1

Tr{ρEnkt (t)} log

[
Tr{ρE

nkt
(t)}

nkt

]

note that nkt = Vk = Tr{Πnkt
}, then we can writhe the GT-entropy as:

SGT
[ρ(t)] = −

p∑
k=1

Tr{ρEnkt (t)} log

[
Tr{ρE

nkt
(t)}

Vk

]
(4.46)

Thus, the GT -entropy can be expressed similarly to an observational entropy [54] where

the "coarse-graining" is defined by Eq. (4.44). Consequently, the derivation of Eq. (4.46) guarantees

that the GT -entropy possesses all the properties that we stated in Section 2.3.3.

However, note that the notion of coarse-graining introduced by the set C defined in Eq. (4.44)

is not necessarily connected to the physical notion of coarse-graining as discussed in Chapter

3. In summary, there is no imposition regarding the possibility that the energy levels are dis-

tinguishable. In other words, from a conceptual perspective, even though we can associate the

GT -entropy with observational entropy, we cannot claim that both are equivalent.

Furthermore, the distinction between these two notions of entropy becomes even clearer as

we evaluate the GT -entropy considering invariant states. Indeed, we introduced in Definition 4

the notion of invariant states; consequently, the GT -entropy for any invariant state ρinv is such

that:

SGT
[ρinv] = Su[D(ρinv)] = Su[ρinv(t)]. (4.47)
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That is, no coarse-graining measurement is applied to the state, and the GT -entropy re-

duces to Von Neumann entropy. A particular importance of this discussion arises when we con-

sider the case of states that are invariant under the second condition we presented in Proposition

4, that is, when the states are determined solely by the Hamiltonian operator. Therefore, states

described by statistical ensembles, such as the canonical or microcanonical ensemble, are invari-

ant, and thus the description of the GT -entropy reduces to the Gibbs entropy associated with

these distributions.

Therefore, the GT -entropy is consistent with Gibbs entropy for thermal states in equilibrium.

In summary, note that this result is independent of the gauge group, as long as the Haar measure

is associated with the Hamiltonian of the system. Thus, we see a subtle difference here between

observational entropy, which is consistent with Gibbs entropy for states in thermal equilibrium

if and only if there is an appropriate choice of coarse-graining.

Now, we will discuss the continuity of the GT -entropy. In fact, we know that Von Neumann

entropy is a continuous function [41, 50], so it would be natural to expect such behavior for

the GT -entropy. However, note that the state ρEdd is obtained through a map associated with

the quantum twirling operator in Eq. (3.36). Furthermore, the Haar measure induced by the

thermodynamic group is associatedwith a parameter, which can be, for example, time. As a result,

certain modifications in the gauge group, equivalently in the distribution of the Hamiltonian’s

degeneracies, may cause the gauge entropy to exhibit some type of discontinuity.

Still, in this context, we will evaluate some interesting cases. First, note that if we have a

time-dependent Hamiltonian H(t) associated with a controllable parameter g(t) that behaves

well, then the thermodynamic group will change smoothly, and any possible change in the con-

figuration of degeneracies should not produce any discontinuity in the GT -entropy. Similarly, if

g(t) does not modify the degeneracies of the Hamiltonian, the gauge group remains the same,

and thus the gauge entropy should not exhibit any discontinuity.

On the other hand, cases where the parameter g(t) is not well behaved may cause certain

discontinuities. In Chapter 5, we present, in one of our applications, a particular case that reveals

this behavior. Next, we will discuss how the GT -entropy relates to diagonal entropy.

4.3 GT-entropy and diagonal entropy

Initially, we showed that the GT -entropy can be written as an observational-type entropy.

However, we can approximate gauge entropy as diagonal entropy, which we understand to be

the natural way to comprehend the physical meaning of the GT -entropy. In this sense, let us begin
our discussion by establishing a limiting case for the GT -entropy that emerges in the absence of

degeneracies in the spectrum of the Hamiltonian, which is presented as a corollary of Theorem

4.

Corollary 2. The GT-entropy coincides with the diagonal entropy if:
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(a) If a Hamiltonian exhibits no degeneracies,

(b) If a ρ(t) is invariant accordingly to the Definition 4.

Proof. We begin by proving case (a). Indeed, if the Hamiltonian has no degeneracies, the gauge

group GT can be written as:

GT = U(1)× ...× U(1) =
d∏
i=1

U(1).

Therefore, the general expression of the density operator Eq. (3.42) reduces to:

ρEdd(t) =
d⊕

k=1

Tr
{
ρE(t) |k⟩ ⟨k|

}
nkt

11 = ρEdiag(t) (4.48)

where ρEdiag is the density operator with the off-diagonal (in the the energy eigenbasis) elements

removed. Therefore, the GT-entropy becomes:

SGT
[ρ(t)] = Su[ρ

E
diag(t)] = Sd[ρ(t)] (4.49)

where Sd[ρ(t)] is the diagonal entropy.

For the case (b), if ρ is a invariant state we have:

D[ρ(t)] = ρ =⇒ ΛGT
[ρE(t)] = ρEdiag(t) (4.50)

therefore, the GT-entropy becomes:

SGT
[ρ(t)] = Su[ΛGT

[ρE(t)]] = Su[ρ
E
diag] = Sd[ρ(t)] (4.51)

then, the corollary is proved.

In general, we are not interested in working with invariant states, as the description becomes

redundant. Therefore, in these cases, the diagonal entropy emerges from the GT -entropy due to

the absence of degeneracies, which is consistent with the definition of diagonal entropy since it

is well-defined, generally, when the system has no degeneracies or when these are not relevant

[28].

Next, we will explore in more detail the relationship between gauge entropy and diagonal

entropy. In fact, as we refine this relationship, we will be able to assign a physical meaning to

the GT -entropy, thus allowing us to establish the formulation for the second law in our theory.

Therefore, let us consider the following properties of gauge entropy associated with diagonal

entropy.

Properties 1. The following properties holds:
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(iii) The GT-entropy is greater than the diagonal entropy, i.e.

SGT
[ρ(t)] ≥ Sd[ρ(t)]. (4.52)

(iv) If there exists at least one non-degenerate level in the spectrum of the Hamiltonian, then the
GT-entropy can be written as:

SGT
[ρ(t)] = Sd[ρ(t)] + SΓ[ft] (4.53)

where s[ft] ≡ −Tr{ft log(|ft|)} and ft is a block diagonal matrix given by

ft =



(
Non degenerate

−ρEkk(t)

)
0

0

 Degenerate
Tr{ρE(t)Πnkt

}
nkt



 (4.54)

which each block of ft is diagonal.

(v) SΓ[ft] defined above is non-negative, i.e SΓ[ft] ≥ 0. And the equality is saturable if ρ(t) is a
invariant state accordingly to the Definition 4 or the Hamiltonian spectrum is non degenerated.

Proof. First, let us demonstrate property (iii). Since the Haar average of an operator is equal to

the Haar average of the diagonal part of that same operator (proved in Appendix B.3), it follows

that the gauge entropy is:

SGT
[ρ(t)] = Su[ΛGT

[ρE(t)]] = Su[ΛGT
[ρEdiag(t)]]. (4.55)

Thus, since the quantum twirling operator ΛGT
is a unital quantum channel, it follows from

the Data Processing Inequality that:

D
[
ρEdiag(t)∥σ(t)

]
≥ D

[
ΛGT

[ρEdiag(t)]∥ΛGT
[σ(t)]

]
(4.56)

for any operator σ where D[·∥·] is the Kullback–Leibler divergence. Therefore, let us take σ =

1, which leads to the following result, as well as from the definition of the Kullback–Leibler

divergence:

D
[
ρEdiag(t)∥σ(t)

]
= Tr

{
ρEdiag(t) log[ρ

E
diag(t)]− ρEdiag(t) log (1)

}
= Tr{ρEdiag(t) log[ρEdiag(t)]}

= −Sd[ρ(t)]. (4.57)
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On the other hands, we have:

D
[
ΛGT

[ρEdiag(t)]∥ΛGT
[σ(t)]

]
= Tr

{
ΛGT

[ρEdiag(t)] log[ΛGT
[ρEdiag(t)]]

}
= −SGT

[ρ(t)]. (4.58)

Therefore, from the Data processing inequality in Eq. (4.56), we have:

−Sd[ρ(t)] ≥ −SGT
[ρ(t)] =⇒ Sd[ρ(t)] ≤ SGT

[ρ(t)] (4.59)

and the property (iii) is proved.

In sequence, we prove the item (iv). We go to construct the therm SΓ[ft] from SGT
[ρ(t)]. Let

us consider the Hamiltonian H which spectrum has a such number of degeneracies, therefore,

we can split the GT-entropy as

SGT
[ρ] = −Tr

{
ρEdd log(ρ

E
dd)
}

= −
∑
n

(ρEdd)nn log[(ρ
E
dd)nn]

= −
∑
m

(ρEdd)mm log[(ρEdd)mm]−
∑
k

(ρEdd)kk log[(ρ
E
dd)kk], (4.60)

the labels m and k refer to the average elements of ρE associated with the U(1) group and the

U(nkt > 1) group, respectively.

On the other hands, we can split the diagonal entropy such as

Sd[ρ] = −
d∑

n=1

(ρEnn) log(ρ
E
nn)

= −
∑
m

(ρEmm) log(ρ
E
mm)−

∑
k

(ρEkk) log(ρ
E
kk) (4.61)

Then, substituting Eq.(4.61) into Eq.(4.60), we obtain the following expression:

SGT
[ρ] = Sd[ρ] +

∑
k

(ρEkk) log[(ρ
E
kk)]−

∑
k

(ρEdd)kk log[(ρ
E
dd)kk]. (4.62)

Now we introduce the functional SΓ[ft] = −Tr{ft log(|ft|)} and we define ft, for we have the

compact notation, by

ft ≡

(⊕
k

−ρEkk11

)⊕(⊕
k

Tr{ρE
nkt
}

nkt
1nkt

)
. (4.63)

In fact, ft are a diagonalmatrix composed by two diagonal blocks, the first block are associated

to all density matrix in energy eigenbasis and the second block we have the average Haar of all
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density matrix elements associated to groups U(nkt > 1), that is, Eq.(4.63) is the compact form

of the equality in Eq.(4.54). Consequently, using the relation Eq. (4.62), the functional SΓ[ft] and

the ft defined by Eq. (4.63) the equality Eq. (4.53) is obtained.

Now, we prove (v). Indeed, from (iv) we have:

SΓ[ft] = SGT
[ρ(t)]− Sd[ρ(t)] ≥ 0. (4.64)

Since from item (iii) we have that SGT
[ρ(t)] ≥ Sd[ρ(t)]. On the other hand, the cases where

the equality holds result directly from Corollary 4.3. Thus, all properties are demonstrated as

desired.

First, note that the bound established for gauge entropy in property (iii) also allows us to

obtain the following chain of inequalities:

0 ≤ Su[ρ(t)] ≤ Sd[ρ(t)] ≤ SGT
[ρ(t)] ≤ log(dim{Hd}), (4.65)

where the last inequality follows from the concavity of the Von Neumann entropy functional.

Moreover, note that we constructed the term SΓ under the assumption that the Hamiltonian

has at least one non-degenerate state. However, we can easily extend this result to any possible

configuration of degeneracy. To this end, we need to introduce a quantity called the Holevo

asymmetry measure, which was initially introduced in the context of finite groups in Ref. [82]

and later extended to any Lie groups in Ref. [83]. Thus, let us define it.

Definition 7. (Holevo asymmetry measure [83]). Let us consider a some group Lie group G which
elements are denoted by g and the Haar measure induced by G is dµ. Then, for any unitary matrices
Vg and distribution probability function p(g) the quantity SΓ defined by:

SΓ ≡ Su[Λ
p
µ[ρ(t)]]− Su[ρ(t)], Λpµ[ρ(t)] ≡

∫
dµ p(g)Vgρ(t)V

†
g (4.66)

is called Holevo asymmetry measure.

Notice that, taking the case where the Haar integral is uniform, that is, p(g) = 1, and con-

sidering the group G as the thermodynamic group, we can identify SΓ introduced by Eq.(4.53)

as the Holevo asymmetry measure in Eq.(4.66) by inspection, noting that the expression for ft

emerges in the particular case where we have at least one non-degenerate state, whereas the

Holevo asymmetry measure always exists.

The Holevo asymmetry measure is an important physical quantity that appears in the context

of Information Theory [41, 82, 83, 87]. Physically, SΓ quantifies the asymmetry present in the

original state ρ concerning the group G associated with the quantum twirling operator. There-

fore, in the context of the thermodynamic group, the asymmetry of a quantum state is related to

how much the diagonal elements of the density operator ρ, in the energy basis, projected onto
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each subspace Hk differ from the configuration of maximum randomness in that same subspace

Hk.

Furthermore, the introduction of the Holevo asymmetry gives us a new way to evaluate the

continuity of the GT -entropy. In fact, since diagonal entropy is a continuous function, we can

then establish a continuity condition for the GT -entropy by imposing that these entropy’s become

sufficiently close, thus we have:

|SGT
[ρ(t)]− Sd[ρ(t)]| = SΓ < ϵ, ∀ϵ > 0 (4.67)

Thus, note that the condition for the diagonal entropy to emerge as a particular case of gauge en-

tropy is described in terms of the Holevo asymmetry, with equality reached when SΓ is arbitrarily

small. Also, note that we have already proven the implication that the absence of degeneracies

implies equality between gauge and diagonal entropy; however, we have not shown the con-

verse of this statement. In fact, considering states that are not symmetric with respect to the

gauge group, we can easily verify this assertion. To this end, let us consider the Data Processing

Inequality given by:

D [ρ(t)∥σ(t)] ≥ D [ΛGT
[ρ(t)]∥ΛGT

[σ(t)]] (4.68)

where the equality holds if and only if

ρ = σ1/2 (ΛGT
[σ(t)])−1/2 (ΛGT

[ρ(t)]) (ΛGT
[σ(t)])−1/2 σ1/2. (4.69)

Therefore, if σ = 1, and using the fact of the quantum twirling operator is a unital quantum

channel these expressions reduces to:

SGT
[ρEdiag(t)] = Su[ρ

E
diag] ⇐⇒ ρEdiag = ΛGT

[ρEdiag] (4.70)

which is an contradiction, because we suppose that ρ is not invariant state. Then, for states

which are not invariant the equality between diagonal and gauge entropy never is achieved.

Consequently, the entropy’s are equal if and only if the associated thermodynamic group is given

by

G =
d∏

k=1

U(1)

i.e. the case of the Hamiltonian has no degeneracies.

With this, we can then conceive a physical interpretation for gauge entropy. In fact, while

diagonal entropy is understood as quantifying the amount of randomness observed in the energy
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eigenbasis of the system, gauge entropy quantifies this randomness more in relation to the ran-

domness associated with the degeneracy configuration of the Hamiltonian, which appears in the

form of the symmetry of the thermodynamic group.

Finally, we will ensure that gauge entropy satisfies the same thermodynamic properties as

diagonal entropy [28]. In fact, we can use the operatorD to construct the other relation between

diagonal and gauge entropy. To do this, let us consider the state σ ≡ D(ρ) = utρddu
†
t ; since

ut is not trivially the state, σ is not in the energy eigenbasis, but this state is invariant over

the thermodynamic group. Therefore, if we consider the state σ, we can evaluate the diagonal

entropy of this state; now note that

σEdiag = u†tσut = ρEdd (4.71)

therefore the diagonal entropy of σ is:

Sd[σ] = Sd[ρ
E
dd] = SGT

[ρ] (4.72)

which implies that: the GT-entropy can be viewed of the diagonal entropy. This equality implies

that the some thermodynamics properties for the diagonal entropy must be valid for the gauge

entropy, in special this prove the following relation:

∆SGT
[ρ(t)] = SGT

[ρ(t)]− SGT
[ρ(0)] ≥ 0 (4.73)

which describes the gauge entropy production in closed system.

4.4 Simple Applications

Having obtained the invariant quantities for heat and work as in Ref. [3] and also the GT -
entropy, we will now revisit some of the application examples presented in Ref. [3], which illus-

trate the applicability of the gauge theory formalism of the thermodynamic group GT . Further-
more, both applications agree with what we discussed in Section 4.1 regarding the behavior of

coherent heat and its relation to the production of coherence in a dynamics that involve modifi-

cations in the energy basis.

4.4.1 Driven single qubit

Consider the problem of a single qubit in a guided magnetic field, which is driven by a protocol

g(t) and is described by the following time-dependent Hamiltonian:

H = σz + g(t)σx =

(
1 g(t)

g(t) −1

)
(4.74)
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where σz and σx are the Pauli matrices associated with the z and x components, respectively. In

fact, this Hamiltonian is a very special case of the Landau-Zener model [47, 91–93]. Specifically,

here g(t) is a smooth continuous time-dependent function that describes the controlled injection

or extraction of energy in the system. In this sense, this system is closed, and the evolution of the

density matrix follows the Liouville-Von Neumann Eq. (2.21); therefore, the usual heat is zero,

i.e., Qu[ρ] = 0.

Our goal will be to obtain expressions for the invariant heat and work. In fact, let us start by

obtaining the eigenvalues λ(t), which can be easily obtained from Eq. (4.74), given by:

λ±(t) = ±λ, λ ≡
√

1 + g(t)2. (4.75)

Furthermore, the normalized eigenvectors associated with each eigenvalue are given by:

|a0(t)⟩ =


− g(t)√

2λ(λ+ 1)

1 + λ(t)√
2λ(λ+ 1)

 , |a1(t)⟩ =


1 + λ√
2λ(λ+ 1)

g(t)√
2λ(λ+ 1)

 , (4.76)

and consequently, the matrix ut associated with the energy basis of the Hamiltonian in Eq. (4.74)

is given by:

ut =


− g(t)√

2λ(λ+ 1)

1 + λ√
2λ(λ+ 1)

1 + λ(t)√
2λ(λ+ 1)

g(t)√
2λ(λ+ 1)

 . (4.77)

Since the set{|a0(t)⟩ , |a1(t)⟩} is orthonormal basis, the following relations hold:⟨ȧ0(t)|a1(t)⟩ = −⟨a0(t)|ȧ1(t)⟩ =
ġ(t)

2λ2
,

⟨ȧ0(t)|a0(t)⟩ = ⟨ȧ1(t)|a1(t)⟩ = 0
. (4.78)

With this, we can already obtain the expressions for invariant work and coherent heat. Indeed,

using Eq. (4.31), we obtain that the invariant work is given by:

Winv[ρ(t)] =

∫ τ

0

dt
1∑

n=0

ρEn,n(t)λ̇n(t) =

∫ τ

0

dt
g(t)

(
ρE11(t)− ρE00(t)

)√
1 + g2(t)

. (4.79)
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On the other hand, the coherent heat is easily obtained using Eq. (4.32), which gives us that:

Qc[ρ(t)] =

∫ τ

0

dt
1∑

n,m=0

ρEmn(t) ⟨ȧn(t)|am(t)⟩ (λm(t)− λn(t))

=

∫ τ

0

dt ρ01(t)
ġ(t)

2λ2
· (−2λ)− ρ10(t)

ġ(t)

2λ2
· (2λ)

= 2

∫ τ

0

dtRe[ρE01(t)]
ġ(t)√

1 + g(t)2
. (4.80)

Finally, note that both Eq. (4.79) and Eq. (4.80) depend on the coefficients of the density

operator. To obtain these terms, we must solve the Liouville-Von Neumann equation considering

the Hamiltonian given in Eq. (4.74). In this sense, we must have, considering the operators in the

energy basis:

d ρE

dt
= −i[h, ρE]

= −i

[
1∑

n,m=0

λn(t)ρ
E
nm(t) |an⟩ ⟨am| −

1∑
n,j=0

ρEjn(t)λn(t) |aj⟩ ⟨an|

]
= −i

[
λ0ρ

E
00 |a0⟩ ⟨a0|+ λ0ρ

E
01 |a0⟩ ⟨a1|+ λ1ρ

E
10 |a1⟩ ⟨a0|+ λ1ρ

E
11 |a1⟩ ⟨a1|

]
+

+ i
[
ρE00λ0 |a0⟩ ⟨a0|+ ρE10λ0 |a1⟩ ⟨a0|+ ρE01λ1 |a0⟩ ⟨a1|+ ρE11λ1 |a1⟩ ⟨a1|

]
= −i

[(
λ0ρ

E
01 − λ1ρ

E
01

)
|a0⟩ ⟨a1|+ (λ1ρ

E
01 − λ0ρ

E
10) |a1⟩ ⟨a0|

]
= −2iλ0

[
ρE01 |a0⟩ ⟨a1| − ρE10 |a1⟩ ⟨a0|

]
. (4.81)

On the other hands, we can expand the derivative of ρE(t) as:

d ρE

dt
=

d

dt

(
1∑

j,k=0

ρEj,k |aj⟩ ⟨ak|

)

=
1∑

j,k=0

ρ̇Ej,k |aj⟩ ⟨ak|+ ρ̇Ej,k |ȧj⟩ ⟨ak|+ ρ̇Ej,k |aj⟩ ⟨ȧk|

= ρ̇00 |a0⟩ ⟨a0|+ ρ̇10 |a1⟩ ⟨a0|+ ρ̇01 |a0⟩ ⟨a1|+ ρ̇11 |a1⟩ ⟨a1|+

+ ρ00 |ȧ0⟩ ⟨a0|+ ρ10 |ȧ1⟩ ⟨a0|+ ρ01 |ȧ0⟩ ⟨a1|+ ρ11 |ȧ1⟩ ⟨a1|+

+ ρ00 |a0⟩ ⟨ȧ0|+ ρ10 |a1⟩ ⟨ȧ0|+ ρ01 |a0⟩ ⟨ȧ1|+ ρ11 |a1⟩ ⟨ȧ1| . (4.82)

Given the equalities between Eq. (4.81) and Eq. (4.82) and using the relationships between

the eigenstates |a0⟩ and |a1⟩ expressed in Eq. (1), we can obtain the following set of ordinary
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differential equations: 

ρ̇E11 = − ġ(t)
2λ2

(
ρE12 + ρE21

)
ρ̇E12 = 2iλρE12 +

ġ(t)

2λ2
(
ρE11 − ρE22

)
ρ̇E21 = −2iλρE21 −

ġ(t)

2λ2
(
ρE22 − ρE11

)
ρ̇E22 =

ġ(t)

2λ2
(
ρE12 + ρE21

)
.

(4.83)

The system displayed in Eq. (4.83) is not analytically integrable. However, with an initial

condition in hand, the system in Eq. (4.83) can be easily solved numerically.

Then, in order to retrieve the results developed by Céleri and Rudnicki in Ref. [3], let us choose

g(t) = cos(t). Regarding the GT -entropy, note that the eigenvalues are given by Eq. (4.75), and

since g2 is always positive, it follows that λ0(t) ≤ λ1(t) for every instant of time t, meaning

that the system is non-degenerate. Consequently, the GT -entropy reduces to diagonal entropy,

as shown in the previous section.

Thus, by choosing the initial state as the ground state of the Hamiltonian in Eq. (4.74), i.e.,

ρ(0) = |a0(t = 0)⟩ ⟨a0(t = 0)|, we manage to obtain the invariant heat and work as well as the

coherence entropy Eq. (2.59), which we present in Figure 4.1.

Figure 4.1: Invariant work, Invariant Heat and Coherence for single qubit with drive in Hamiltonian

in Eq. (4.74).

Unlike the example we presented in Section 4.1, this example contrasts with what we expect

from usual quantum thermodynamics when assuming unitary evolution [17, 94, 95]. However,

this result is perfectly consistent with the definitions of heat introduced in closed systems for

quantum adiabatic processes [22, 24, 28]. Our findings establish a strong physical foundation

– the gauge theory of the thermodynamic group GT – for understanding the link between heat
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in closed quantum systems and energy delocalization. This principle explains the oscillatory

behavior of heat during closed evolution, where coherences fluctuate over time.

4.4.2 Driven spin chains

The Landau-Zener model described by the Hamiltonian in Eq. (4.74) presents certain inherent

difficulties in the formalism. In particular, these difficulties emerge when we think about how to

generalize the previous development to many-body systems, which are particularly relevant in

the context of quantum thermodynamics [47, 96, 97]. However, we often find ourselves relying on

numerical methods due to the impossibility of an analytic treatment of certain systems. Indeed,

one of the difficulties we encounter is in evaluating the coherent heat, given the need to obtain

the derivatives of the matrices ut. However, at least in the context of closed systems, we can

simplify this process through the first law of thermodynamics.

In this sense, we will show a practical approach to addressing the problem associated with

determining the invariant heat and work. To this end, we will consider Hamiltonians of the form:

H(t) = H0 + g(t)H1 (4.84)

where g(t) is the control protocol associated with the coherent injection of energy into the sys-

tem. Moreover,H0 andH1 are two Hermitian operators that may or may not commute with each

other.

Now, let us consider that we have an initial state prepared at t ≤ 0, given by ρ(0). It fol-

lows that if ρ(0) is some pure state, then the temporal evolution can be obtained by solving the

Schrödinger equation with H(t) using some numerical method. If ρ(0) is a thermal state, its

evolution is then determined by the solution of the Liouville-Von Neumann equation.

Thus, as H(t) is given by Eq. (4.84), we can obtain that the derivative of the system’s energy

is given by:

dU[ρ(t)]

dt
=

d

dt
Tr {ρH} = Tr

{
ρ
d

dt
[H0 + g(t)H1]

}
=

d g(t)

dt
Tr {ρH1} . (4.85)
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On the other hand, the derivative of the energy also gives us the following development:

dU[ρ(t)]

dt
=

d

dt
Tr {ρH}

= Tr

{
ρ(t)

d

dt
(uthu

†
t)

}
= Tr

{
ρ
(
u̇thu

†
t + uthu̇

†
t

)}
+ Tr

{
ρ(utḣtu

†
t)
}

=
d

dt

[∫ τ

0

dtTr
{
ρ
(
u̇thu

†
t + uthu̇

†
t

)}
+ Tr

{
ρ(utḣtu

†
t)
}]

=
dQc[ρ(t)]

dt
+

dWinv[ρ](t)

dt
. (4.86)

With Eqs. (4.85) and Eq. (4.86) at hand, we can obtain the coherent heat in an alternative

way, which is then given by:

dQc[ρ(t)]

dt
=

dU[ρ(t)]

dt
− dWinv[ρ(t)]

dt
. (4.87)

Thus, the problem for the case where the system dynamics is unitary can be expressed by the

following set of equations.

Winv[ρ(t)] =

∫ τ

0

dtTr

{
ρE(t)

dh(t)

dt

}

dU[ρ(t)]

dt
=

d g(t)

dt
Tr {ρ(t)H1}

dQc[ρ(t)]

dt
=

dU[ρ(t)]

dt
− dWinv[ρ(t)]

dt

. (4.88)

In this sense, we will apply this technique to study the unitary dynamics of the following

Hamiltonian:

H(t) = − k

2j
J2
x − g(t)Jz (4.89)

where Jα =
∑N

i=1 σ
α
i /2; (α = x, y, z) are the collective spin operators, with σαi denoting the

α Pauli matrix acting on the i-th site of a chain of N = 2j sites, and j is the total angular

momentum.

The Hamiltonian presented in Equation Eq. (4.89) represents a specific case of the widely

recognized Lipkin-Meshkov-Glick (LMG) model, as detailed in references [98–100]. The LMG

model has been extensively investigated in various fields, including nuclear physics [101], optics

[102], quantum information [103], and condensed matter physics [104], among others.

In particular, the Lipkin-Meshkov-Glick (LMG) model is relevant to our context due to the
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existence of degenerate energy levels for certain values of the magnetic field g(t). In particular,

for g < k, the energy levels are doubly degenerate, while for g > k, the Hamiltonian in Eq. (4.89)

exhibits no degeneracies in the thermodynamic limit [103, 105]. Indeed, at this moment we are

only interested in obtaining a model that can serve as a platform to test our formalism; there-

fore, we have no particular interest in effects associated with the model, such as quantum phase

transitions, which we will explore in the following chapter.

For simplicity, let us consider k = 1, and the function associated with the magnetic field will

be given by: g(t) = β tanh(αt). The choice of the hyperbolic tangent function as a protocol is

strategic [3], as the parameters α and β allow us to control the speed and amplitude of the proto-

col, respectively. For arbitrarily large values of α, i.e. α → ∞, the dynamics of the Hamiltonian

operator tends toward a sudden quench; on the other hand, when we take the opposite limit, i.e.,

α → 0, we obtain the case of very slow driving.

For the LMGmodel, aswith the previousmodel, we need to solve the time-dependent Schrödinger

equation. In this sense, we have two paths to follow. The first path consists of writing the state

|ψ⟩ as:

|ψ(t)⟩ =
j∑

m=−j

fm(t) |j,m⟩ (4.90)

where we expand the state in the angular momentum basis {|j,m⟩} with time-dependent coef-

ficients fm(t). Then, substituting the above state into the Schrödinger equation and taking the

inner product with the bra ⟨j, n|, we obtain the following development:

i
d

dt
⟨j, n|ψ(t)⟩ = − k

2j
⟨j, n|J2

x |ψ(t)⟩⟩ − g(t) ⟨j, n|Jz |ψ(t)⟩⟩

= − k

2j
⟨j, n|

J2
+ + J2

− + {J+, J−}
4

|ψ⟩ − g(t)nfn(t)

= − k

8j

[
⟨j, n|J2

−|ψ⟩+ ⟨j, n|J2
+|ψ⟩+ ⟨j, n|{J+, J−}|ψ⟩

]
− g(t)nfn(t)

= − k

8j

[√
(j + n+ 2)(j − n− 1)(j + n+ 1)(j − n)fn+2(t)+

+
√

(j − n+ 2)(j + n− 1)(j − n+ 1)(j + n)fn−2(t) + 2(j(j + 1)− n2)fn(t)
]

− g(t)nfn(t).

Therefore, we obtain the following expression:

iḟn(t) = − k

8j

[√
(j + n+ 2)(j − n− 1)(j + n+ 1)(j − n)fn+2(t)

+
√

(j − n+ 2)(j + n− 1)(j − n+ 1)(j + n)fn−2(t)
]
−
[
(j(j + 1)− n2)

4j
+ ng(t)

]
fn(t),

(4.91)
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which defines a recursive expression for the coefficients fn(t) of the state ψ(t) as 2j + 1 linear

first-order differential equations. Thus, studying the time-dependent dynamics of the LMGmodel

can be done using the above expression and implementing a suitable numerical method for its

solution. Indeed, it is worth noting that the implementation of numerical methods such as fourth-

or fifth-order Runge-Kutta for solving the above system is valid; however, this is only efficient for

low values of j. In fact, since it is interesting to study the dynamics of the system for large values

of j to approach the thermodynamic limit, these numerical methods become somewhat imprecise,

and their convergence is affected. This can be compensated for by excessively increasing the time

step, leading to a significant increase in computation time. With this in mind, this approach is not

very efficient. However, a way to circumvent this issue is by using the ‘mesolve‘ method from the

QuTiP framework [106], which, through adaptive methods, can handle these high-dimensional

systems with good accuracy.

In Figure 4.2, we can see the distinction between the GT -entropy and diagonal entropy for

various values of amplitude intensity β.

Figure 4.2: GT -entropy and diagonal entropy as functions of time for the ground state of the Hamil-

tonian (4.89) at t = 0 as a function of time, with the amplitude parameter β = 0.5 and β = 1.5
respectively in figures (a) and (b). We choose j = 50 and α = 1 for all curves.

As expected, figure Eq. (4.2) exemplifies the result we showed in Ineq. (4.52), thus highlighting

the increase of entropy in degenerate systems. Next, in Figure 4.3, we obtained the behavior

of the GT -entropy for different values of the protocol speed α. The coherent heat under the

same conditions as Figure 4.3 is shown in Figure 4.4. As expected, the behavior obtained for the

coherent heat in Figure 4.4 agrees with the way the GT -entropy scales, as well as with the findings
in Ref. [3].
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Figure 4.3: Behavior of the gauge entropy for the evolution of the ground state of the Hamilto-

nian (4.89) at t = 0 for β = 0.5 in (a) and β = 1.5 in (b) for different values of the speed of the

protocol α. We choose j = 50 for all curves.

Figure 4.4: Coherent heat for the LMG model. The initial state is the ground state of the Hamilto-

nian (4.89) at t = 0 for β = 0.5 in (a) and β = 1.5 in (b), for distinct values of the speed of the

protocol α. We choose j = 50 for all curves.

This example shows how the coherent heat scales with the generation of coherences. Over

time, we shift from an adiabatic Hamiltonian transformation (which is too slow to generate coher-

ences) to a regime where coherences are created. This transition is accompanied by an increase

in heat generation. In this regime, rapid changes in the Hamiltonian inevitably induce transitions

between energy eigenstates, and these transitions are associated with heat production.
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Chapter 5

Gauge approach to thermodynamics of
critical systems

In this chapter we will introduce a novel approach to the study of quantum critical systems under

the view of gauge invariant quantum thermodynamics.

Since the thermodynamics of the critical systems are the main focus of this chapter, we will

start the first section of this chapter with a brief overview of the quantum phase transition. The

following sections of this chapter constitutes the original development in the gauge-invariant

quantum thermodynamics. In this sense, we introduce the specific derivation of the expressions

for the invariant work and heat associated to the quench dynamics.

Finally, we will apply this formalism to study the quantum phase transition of two different

spin models: Landau-Zener model and Lipkin-Meshkov-Glick model.

5.1 Quantum phase transition

In the context of classical physics, phase transitions are a type of critical phenomenon that involve

changes in the macroscopic properties of a system. Particularly in equilibrium thermodynamics,

a phase change occurs when a certain parameter, usually temperature, reaches a critical value

at which certain thermodynamic quantities exhibit non-analytic behavior, thereby marking the

phase transition [5]. In this context, a classic example is the liquid-solid phase transition of wa-

ter, which occurs when the temperature decreases to the critical temperature of Tc = 273.15◦K .

Beyond this value, the macroscopic structure of water shifts to the solid phase. During this pro-

cess, as water solidifies into ice, both the specific volume and the thermodynamic entropy of the

system become discontinuous, which is the non-analyticity that marks this phase transition [5,

107].

The liquid-solid phase transition of water is just one of the various examples of phase tran-

sitions that occur in classical systems. Other examples include magnetic systems, which may

exhibit transitions between ferromagnetic and paramagnetic phases, other simple fluids like wa-

ter, as well as fluid mixtures [107]. A precise understanding of this phenomenon was achieved
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through statistical mechanics, more specifically by the modern techniques introduced by the

renormalization group [107, 108].

However, prior to the establishment of the renormalization group formalism, several theories,

generally phenomenological, were developed to provide explanations for the phase transition

phenomenon, with particular emphasis on Landau’s phenomenological theory.

Landau’s phenomenological description introduced new elements and concepts for under-

standing phase transitions. In particular, his theory involved developing an expansion of the

Gibbs free energy functional f in terms of a function η ≡ η(g), which is called the order param-

eter, defined as follows:

η(g) ̸= 0 if g < gc

η(g) = 0 if g > gc
. (5.1)

The argument ( g ) corresponds to the physical quantity that drives the phase transition; in

the classical context, g generally represents temperature. Moreover, the value gc in Eq. (5.1) is

known as the critical point, which marks the phase transition that occurs between the ordered

phase g < gc and the disordered phase g > gc. Along with the existence of order parameters,

Landau’s theory also predicted the existence of critical exponents, which describe how certain

physical quantities behave throughout a phase transition.

Furthermore, Landau’s theory, based on the order parameter in Eq. (5.1), allows for the clas-

sification of a phase transition into two types. The first type is the first-order phase transition,

characterized by an abrupt change in the order parameter η; consequently, Landau’s functional

f shows a discontinuity at the critical point gc . On the other hand, when the higher than second

order derivatives of the functional f exhibit discontinuity, the phase transition is said to be of

second order.

Indeed, the advances brought by these concepts were truly significant in understanding phase

transitions, even though these initial definitions were not sufficient to explain phase transitions in

general. However, the introduction of the renormalization group through the works of Kenneth

G.Wilson [109–111] provided an explanation for the phase transition phenomenon. In particular,

the renormalization group made it possible to calculate the critical exponents, which were not

precisely calculable within Landau’s phenomenological framework [107].

So far, we have discussed aspects associated with phase transitions that occur in classical

systems, which are generally driven by temperature. However, phase transitions can also be

observed beyond the classical limit, particularly in the context of quantum systems [112].

Indeed, in quantum systems at ( T = 0 ), we can observe quantum phase transitions (QPT),

which, unlike classical phase transitions, are not driven by temperature but rather by some con-

trol parameter g associated with the Hamiltonian of the system. However, note that at T = 0, the
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Gibbs free energy reduces to the ground state energy, and consequently, statistical averages are

replaced by ground state averages. Thus, the quantum phases of the system become characterized

by the ground state.

With this in mind, let us consider a Hamiltonian H(g) that depends on a dimensionless cou-

pling parameter g. In essence, we are interested in Hamiltonians of the following type:

H(g) = H0 + gH1, (5.2)

whereH0 andH1 are two arbitrary observables. Notice that ifH0 andH1 commute, i.e., [H0, H1] =

0, then there exists a common basis in whichH0 andH1 can be simultaneously diagonalized. On

the other hand, if these operators do not commute, i.e., [H0, H1] ̸= 0, it is not possible to diago-

nalize them simultaneously. Consequently, the non-commutativity of the operators H0 and H1

implies that the ground state and eigenenergy of the HamiltonianH(g) are expressed as functions

of the coupling parameter g.

In this sense, the presence of the operatorH1 in a system initially described byH0 introduces

quantum fluctuations that are controlled by the coupling parameter g. Indeed, the strength of the

coupling g establishes a competitive relationship between the operatorsH0 andH1 that make up

the Hamiltonian, such that, for g ≪ 1, the system is dominated by H0, whereas for g ≫ 1, the

system tends to be dominated by the contributions of H1. Therefore, since the parameter g can

be continuously modified, there must exist a critical value gc such that the energy gap∆ between

the ground state and the first excited state is minimized, resulting in a singularity in the ground

state for g = gc.

In this context, the critical value gc is called the quantum critical point (QCP), analogous to

the critical point introduced in the context of classical phase transitions. Thus, as the system

approaches the thermodynamic limit, the gap ∆ might close, and a singularity may develop in

the ground state and ground state energy [112]. In the context of the QPT, this constitutes a

continuous quantum phase transition. Especially as the system approaches the QCP, both for

g < gc and g > gc

∆ ∼ K |g − gc|zν , (5.3)

where z and ν are the dynamic and correlation length critical exponents andK is the energy scale

of characteristic microscopic coupling. In fact, the relation (5.3) can be made formal by a mapping

between the partition function of a d-dimensional quantum system and a (d + 1)-dimensional

classical system [112–114]. This mapping associates the inverse of the quantum energy gap with

a diverging correlation length in the classical model’s "time" direction. This correlation length

diverges with an exponent.
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In this sense, let us observe the behavior of the partition function Z in the limit as T ap-

proaches zero. Indeed, let the partition function be given by:

Z(β) = Tr{e−βH}, (5.4)

where H is the Hamiltonian and β ≡ (kBT )
−1
. In fact, we can reconstruct all thermodynamic

quantities from Z . Notice that we can identify the operator e−βH equivalently as the time evolu-

tion operator including the time interval τ = ℏβ, therefore:

e−βH → U(τ) ≡ e−(τ/ℏ)H , τ = ℏβ, (5.5)

where operator U(τ) is the imaginary-time propagator. This operator is equivalent to the time

evolution operator e−iHt/ℏ, if we identify the time interval t with the imaginary value t = −iℏβ.
Since the mapping in Equation (5.5) is a rotation associated with the time interval τ , we can

obtain subintervals of time δτ , such that

e−βH → U(τ) ≡ e−(τ/ℏ)H =
(
e−(δτ/ℏ)H)N

(5.6)

where δτ is an imaginary time interval that is small on the relevant time scales, and N is a large

integer such that Nδτ = ℏβ.
So when we write the partition function as

Z(β) =
∑
n

⟨n| e−βH |n⟩ =
∑
n

⟨n| e−(τ/ℏ)H |n⟩ (5.7)

=
∑
n

⟨n| e−(δτ/ℏ)H |n⟩

=
∑
n

∑
m1,...,mN

⟨n| e−(δτ/ℏ)H |m1⟩ ⟨m1| e−(δτ/ℏ)H |m2⟩ ... ⟨mN | e−(δτ/ℏ)H |n⟩

(5.8)

where in (5.8) we introduced the complete and orthogonal set {|mi⟩}i=1,...,N for every factor in

the expression of Z(β).

First, note that in Eq. (5.7), the partition function Z is the sum of transition amplitudes as-

sociated with the imaginary time the system returns to the same state after an imaginary time

t = −iτ . The thermodynamic properties of a quantum system are inextricably linked to its

dynamics in imaginary time, a departure from the classical statistical mechanics framework.

In classical systems, dynamics and thermodynamics can be treated as independent entities,

with the position and momentum variables in the partition function being mutually independent.

However, the non-commutativity of position and momentum operators in quantum mechanics

necessitates a unified approach to dynamics and thermodynamics, resulting in a more elaborate
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treatment.

The expression of the quantum partition function in Eq. (5.8) has the same form resembles

a classical partition function formulated using a transfer matrix T, since we indentify T with

e−δτH/ℏ. This implies that the imaginary time dimension in the quantum system can be inter-

preted as an extra spatial dimension in a classical system. Consequently, a d-dimensional quan-

tum system will exhibit a partition function analogous to that of a classical system in (d + 1)

dimensions.

However, this extra spatial dimension has a finite extent, being limited by ℏβ = ℏ(kBT )−1
in

units of time. Therefore, as T → 0, the size of the additional spatial dimension diverges, and the

dual classical system becomes fully (d+ 1)-dimensional.

This result provides us with an elegant connection between a quantum system that is d-

dimensional and a (d + 1)-dimensional classical system when T = 0. In this sense, we may

expect to be able to describe quantum phase transitions using the same tools as for classical phase

transitions. In particular, since diverging correlation lengths are a generic feature of classical

continuous phase transitions [112], this implies diverging correlation length ξ and correlation

time ξτ at the continuous quantum phase transition (QPT), since both are effective correlation

lengths in a dual classical system. We also expect that as the system approaches the quantum

critical point by letting the parameter g move towards gc, they will diverge according to some

critical exponents.

ξ ∼ K |g − gc|−ν and ξτ ∼ ξz. (5.9)

Then, utilizing the relations in Eq.(5.9), we arrive at the result stated in Eq.(5.3) for the char-

acteristic energy scale ∆, which is defined by the energy gap to the lowest excitation above the

ground state. In this sense, the energy scale ∆ can be related as the lenght scale by

∆ ∼ ξ−z ∼ K|g − gc|zν (5.10)

when g → gc.

For the case of T = 0, a schematic representation of the phase diagram for a quantum phase

transition is shown in Figure 5.1.

In fact, the quantum phase transition are characterized by the null temperature. However, a

quantum phase transition (QPT) can also occur at non-zero temperatures. [112, 114], In particular,

it can occur even in systems at high temperatures. [47, 96].

Indeed, let Lτ be the size of the extra spatial dimension given by ℏβ. As we consider T > 0,

the size of the extra dimension Lτ decreases. Thus, if g is far enough from the quantum critical

point gc such that the correlation time ξτ is less than Lτ , the non-zero temperature does not affect

the behavior of the system. Consequently, the system is fully quantum, as thermal fluctuations
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Figure 5.1: Schematic representation of a diagram of quantum phase transition at T = 0. The ordered
phase exists only at T = 0 and below the quantum critical point gc, which is represented by the blue

line. Above the quantum critical point lies a region loosely bounded by T ∼ |g − gc|zν , where the
temperature scaling can be observed. This figure was created by the author, inspired by the illustra-

tions in Ref. [112].

cannot excite the ground states since the energy scale of the thermal fluctuations is always smaller

than the energy scale associated with the gap of the quantum system, that is, ∆ > β−1
.

On the other hand, as g → gc, the correlation time will be such that ξτ > ℏβ. Therefore, un-
like the case when T = 0, the d-dimensional quantum system will be mapped to a d-dimensional

classical system. In this case, quantum phase transitions can still occur, being present in a region

called "quantum critical," see Figure 5.2, which is characterized by β−1 > ∆, where the energy

scales of the thermal fluctuations at the critical point are greater than the energy scale of the gap

between the ground state. In the quantum critical region, once we have β−1 > ∆, the thermal

Figure 5.2: Schematic representation of a diagram of quantum phase transition at T ̸= 0. A line of

finite temperature critical points, indicated in red, ends at the quantum critical point. The shaded area

surrounding this line is where classical critical phenomena are observed. This figure was created by

the author, inspired by the illustrations in Ref. [112].

energies are capable of exciting the ground state. Consequently, the physical behavior of the
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thermal excitations is governed by the quantum critical point [112]. In this case, both thermal

and quantum fluctuations play equally significant roles in the quantum phase transition. Fur-

thermore, the system cannot be treated as a classical system but rather by a continuous quantum

field theory.

5.2 QPT in gauge GT-theory

Critical effects, in particular, quantum phase transitions, are especially interesting in the context

of quantum thermodynamics. The criticality associated with these transitions can induce signifi-

cant effects, such as the production of entropy and the generation of quantum coherence [47, 61,

96]. In this sense, work protocols have proven to be valuable tools for investigating criticalities,

especially in quenches during quantum phase transitions (QPTs).

In a quench, the control parameter of a system is rapidly varied, driving the system through

a quantum critical point, where its fundamental properties change abruptly. By monitoring the

evolution of the work done during this process, it is possible to identify signatures of criticality,

such as the closing of the energy gap and the increase in work fluctuations [94, 115].

These protocols allow for the quantification of the average work and work distributions [94].

These are sensitive to changes in the characteristics of the system, such as the presence of low-

energy excitations and the non-equilibrium dynamics induced by the quench [94, 116].

In this sense, we construct a specific protocol for study quantum phase transitions in gauge

invariant quantum thermodynamics. For this, we construct a specific Hamiltonian inspired in

the quench protocol [94]. Indeed, let us consider the following general Hamiltonian:

Hα(t) = H0 + [g0 + δgfα(t)]H1, fα(t) =
1

2
+

1

2
tanh(α(t− τ)). (5.11)

Here,H0 andH1 are two Hermitian operators that generally do not commute, i.e., [H0, H1] ̸=
0, and both are time-independent. Furthermore, g0 is a fixed parameter in the Hamiltonian, and

the protocol is defined by the function fα(t), which modifies the Hamiltonian over time in such a

way that from a given instant t = τ , the Hamiltonian smoothly changes so that the total coupling

associated with the operatorH1 changes from g0 to g = g0+δg. In Figure 5.3, we plot the protocol

function fα(t) for different values of the speed α.

The choice of the protocol given by the function fα(t) allows us to control, smoothly, the

modification of the Hamiltonian Hα(t). In particular, the limiting case of high velocities, that

is, α → ∞, is extremely relevant for our objective of constructing a mathematical description

analogous to a quench. Indeed, in the high-velocity regime, we can obtain the following relations
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Figure 5.3: Representation of the protocol function fα(t) for different values of α, we use τ = 0 and

τ = 5 respectively in the panels (a) and (b).

for the function fα(t):
lim
α→∞

fα(t) = lim
α→∞

[
1

2
+

1

2
tanh(α(t− τ))

]
= θ(t− τ),

lim
α→∞

d[fα(t)]

dt
= lim

α→∞

[α
2
sech2(α(t− τ))

]
= δ(t− τ),

(5.12)

where θ(t− τ) and δ(t− τ) are the Heaveside function and delta Dirac distribution respectively,

which are defined as:

• The Heaviside function is a simple unit step function defined by:

θ(t− τ) =

0, if t < τ,

1, if t ≥ τ.
(5.13)

• Delta Dirac distribution are characterized by:∫
E

dt δ(t− τ)ϕ(t) = ϕ(τ) and

∫
E

dt δ(t− τ) = 1 (5.14)

where E ⊂ R is any interval of the line centered at τ , and ϕ(t) is an arbitrary test function,

i.e., ϕ ∈ C∞
c .

In fact, the second equality—for the limit of

d fα
dt

—in Eq. (1) is also valid in the sense of distribu-

tions. Furthermore, the relevant properties can be found in any standard text on mathematical

physics, such as [55, 117, 118], or even in more advanced treatments of functional analysis and

the theory of distributions, such as [119, 120].
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1

Proceeding with our objective, let us then evaluate the work associated with the protocol

described by the Hamiltonian given by Eq (5.11). Indeed, we have:

Wu[ρ(t)] =

∫ tf

0

dtTr

{
ρ(t)

d(Hα(t))

dt

}
=

∫ tf

0

dtTr {ρ(t)δgH1}
d fα(t)

dt
(5.16)

where the protocol occurs in t ∈ [0, tf ]. Specifically, we are interested in the case where the

protocol occurs rapidly enough that it corresponds to taking the limit as α → ∞. Furthermore,

the dynamics in a quench protocol must be such that at t = 0, the initial state evolves under

the action of the post-quench Hamiltonian; that is, in addition to enforcing the limit for high

velocities of the protocol, we must use that tf = τ + ϵ, where τ and ϵ are arbitrarily small.

Indeed, by applying these conditions to Eq. (5.16), we obtain the following development:

Wu,∞[ρ(t)] ≡ lim
α→∞

Wu[ρ(t) (5.17)

= lim
α→∞

∫ τ+ϵ

0

dtTr {ρ(t)δgH1}
d fα(t)

dt

=

∫ τ+ϵ

0

dtTr {ρ(t)δgH1} δ(t− τ) (5.18)

=
1

2
Tr {ρ(τ)δgH1} , (5.19)

in which, in Eq. (5.18), we use the distributional convergence of the protocol function fα(t) to

the Dirac delta distribution. Finally, we evaluate the integral and obtain Eq. (5.19), which is the

work performed by the system with the protocol function fα(t) in the rapid velocity limit.

Moreover, in this same limit of the protocol function fα(t), we have that:

Hα(t) → Hg(t), where Hg(t) = H0 + [g0 + δgθ(t− τ)]H1, (5.20)

1
For a critical reader, we provide further details regarding the precise use of the Dirac delta function. Specifically,

we define the one-dimensional Dirac delta function, δ, as a linear functional on the Sobolev spaceW 1,p(Ω) = {f ∈
Lp(Ω ⊂ R) | f ′ ∈ Lp, where f ′

denotes the weak derivative of f}, mapping to the field K = R or C. That is, we
consider δ : W 1,p → K, where, for every f ∈ W 1,p(Ω), we have the distributional equality

⟨f, δ⟩Lp(Ω⊂R) = f(0). (5.15)

Thus, the Dirac delta function is defined as an element of the dual space ofW 1,p(Ω), which is precisely the Sobolev

space W−1,p
0 (Ω).

From a functional analysis perspective, in Sobolev spaces, classical notions of continuity and differentiation are

replaced by concepts of "almost everywhere" continuity and weak derivatives. Consequently, operations involving

the Dirac delta function becomewell-posed in the distributional sense. More precisely, the weak formulation ensures

that differentiation extends naturally to distributions, and elements of W−1,p
0 (Ω) can be interpreted as continuous

linear functionals acting on W 1,p(Ω). This approach not only legitimizes the use of the delta function in rigor-

ous mathematical settings but also aligns with the broader framework of Sobolev embedding theorems and duality

principles in functional spaces.
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since α → ∞ and, therefore, for t = τ we have: δgH1 = Hg − Hg0 where Hg0 ≡ H0 + g0H1.

Using this, we can write the following equalities:

Wu,∞[ρ(t)] =
1

2
Tr {ρ(τ)δgH1} =

1

2
Tr {ρ(τ)Hg − ρ(τ)Hg0} . (5.21)

Therefore, the expression (5.21) gives us two equalities for the work, defined in the Alicki sense,

for this protocol.

Then, since we have the expression for this protocol, we can define invariant work and heat

in quenches. Firstly, we introduce the notion of invariant work to the quench limit for fα(t)

dynamics by the following theorem:

Theorem 5. (Gauge-Invariant work for quench). Let the Hamiltonian defined in (5.11), where H0

andH1 may or may not commute. Then, the invariant work associated with a quench limit for fα(t)
dynamics of arbitrary amplitude δg are given by:

Winv[ρt] =
1

2
Tr
{
ρEdiag(τ)Hg(τ)− ρEdd(τ)Hg0(τ)

}
(5.22)

where ρEdd is given by (3.42) in instant t = τ . If the Hamiltonian as not degenerate energy level the
expression (5.22) reduces to:

Winv[ρ] =
1

2
Tr
{
(Hg −Hg0) ρ

E
diag(τ)

}
. (5.23)

Proof. Using Eq. (5.19) and the Definition 3 we have:

Winv [ρ] =

∫
dGTWu,∞[Vtρ(t)V

†
t ]

=

∫
dGT

1

2
Tr
{
Vτρ(τ)V

†
τ [Hg −Hg0 ]

}
=

1

2
Tr {ρ(τ)Hg} −

1

2
Tr

{∫
dGT

(
Vτρ(τ)V

†
τ

)
Hg0

}
=

1

2
Tr {ρ(τ)Hg} −

1

2
Tr
{
ΛGT

[ρE(τ)]Hg0

}
=

1

2
Tr
{
ρEdiag(τ)Hg − ρEdd(τ)Hg0

}
where the superscript E, here, denote the energy eigenbasis in instant τ , i.e. XE = u†τXuτ for

some matrix X and ρEdd are given in Eq. (3.42).

In the particular case where the Hamiltonian exhibits no degeneracy in its energy levels, i.e.

n1 = n2 = ... = nd = 1, therefore:

ρEdd(τ) =
d⊕

k=1

Tr
{
ρEnk(τ)

}
1

11 = ρEdiag(τ)
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which is the density operator with the off-diagonal (in the the energy eigenbasis) elements re-

moved. Then, the expression for the invariant work in this case follow as:

Winv[ρ] =
1

2
Tr
{
(Hg −Hg0) ρ

E
diag(τ)

}
as wished.

On the other hands, the expression of invariant heat is easy obtained from the First Law of

Thermodynamics.

Furthermore, in the same spirit of the Chapter 4, we going to obtain the expression for the

invariant heat. Indeed, this quantity is presented in the following Theorem.

Theorem 6. (Gauge-Invariant heat for quenches). Under the same assumptions of Theorem 5. Then,
the notion of invariant heat is given by

Qinv[ρ] = Qu[ρ] +Qc[ρ], (5.24)

where

Qc[ρ] =
1

2
Tr
{(
ρEdd(τ)− ρE(τ)

)
Hg0

}
. (5.25)

Proof. This proof is simple, considering the regime of high speed of the protocol function fα(t)

and using the Definition 3 we have the following development:

Qinv [ρ] =

∫
dGTQu

[
VtρV

†
t

]
=

∫
dGT

∫ τ

0

dtTr

{
H(t)

d

dt

(
VtρV

†
t

)}
= Qu[ρ] +

∫
dGT

∫ τ

0

dtTr

{
H(t)

(
dVt
dt

ρV †
t + Vtρ

dV †
t

dt

)}

+

∫
dGT

∫ τ

0

dtTr

{
VtρV

†
t

dH(t)

dt
− VtρV

†
t

dH(t)

dt

}
= Qu[ρ] +

∫
dGT

∫ τ

0

dtTr

{
ρ
d

dt
(VtH(t)V †

t )

}
−Winv[ρ]

= Qu[ρ] +Wu,∞[ρ]−Winv[ρ]

= Qu[ρ] +
1

2
Tr {ρ(τ)Hg(τ)− ρ(τ)Hg0} −

1

2
Tr
{
ρ(τ)Hg(τ)− ρEddHg0

}
= Qu[ρ] +

1

2
Tr
{(
ρEdd − ρE

)
Hg0 ,

}
,
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where we using the commuting relation between the Hamiltonian and the gauge transformation

i.e. [Vt, H] = 0. Then, defining:

Qc[ρ] ≡
1

2
Tr
{(
ρEdd − ρE

)
H0,

}
we have the desired.

Before we proceed with the discussions on the invariant heat and work obtained for a quench

process, note that we can rewrite the expressions for both functionals. Indeed, using Eq. (5.19),

we can obtain the invariant work through the following development:

Winv[ρ] =

∫
dGT

δg

2
Tr{Vτρ(τ)V †

τ H1}

=
δg

2
Tr

{∫
dGT Vτρ(τ)V

†
τ H1

}
=

δg

2
Tr{ρEdd(τ)H1}. (5.26)

Similarly, the coherent heat can be rewritten; in fact, starting from the development made in

the proof of Theorem 6, we have:

Qinv[ρ] = Qu[ρ] +Wu,∞[ρ]−Winv[ρ]

= Qu[ρ] +
1

2
Tr {ρ(τ)δgH1} −

δg

2
Tr{ρEdd(τ)H1}

= Qu[ρ] +
δg

2
Tr
{(
ρE(τ)− ρEdd(τ)

)
H1,

}
, (5.27)

which identifies the coherent heat as:

Qc[ρ] =
δg

2
Tr
{(
ρE(τ)− ρEdd(τ)

)
H1

}
. (5.28)

Note that the development from the Hamiltonian (5.11) becomes equivalent to the develop-

ment arising from the high-velocity limit obtained by taking α → ∞, as given in Eq. (5.20). In

this sense, the problem of treating a Hamiltonian as given in Eq. (5.2) involves constructing a

time-dependent counterpart as in Eq. (5.11). Subsequently, all the results we obtained are analo-

gous.

5.2.1 Discussion of invariant work and heat

Now, just as we did in Chapter 4, we will discuss a bit about the physical meaning of the expres-

sions associated with the invariant heat and work obtained from Theorem 5 and Theorem 6, as

well as the equivalent expressions obtained in Eq. (5.26) and Eq. (5.28).



5.2. QPT in gauge GT-theory 101

In fact, the expressions for invariant heat and work obtained in this section follow the same

spirit as the quantities obtained by Céleri and Rudnicki in Ref. [3] and reproduced in Chapter 4.

From a purely mathematical perspective, the results of Theorem 5 and Theorem 6 relax the dif-

ferentiability hypothesis of the energy basis ut, thus allowing a new class of physical processes

associated with abrupt and instantaneous modifications within the framework of the thermo-

dynamic group GT. For this reason, the physical meaning associated with these quantities, as

discussed in Chapter 4, must also be extended.

Indeed, when we consider physical processes associated with abrupt modifications in the

Hamiltonian, consequently in its energy basis, we cannot perform similar developments as those

made in Chapter 4 that avoid the explicit calculation of the Haar average. In this context, the

Haar average over the states ρ has an explicit dependence on the structure of degeneracies of the

Hamiltonian due to the thermodynamic group GT being given as in Eq. (3.28).

Consequently, the thermodynamic quantities we obtained here become connected to this

structure of degeneracies of the Hamiltonian. As a result, the first significant modification we ob-

serve is regarding the coherent heatQc, which depends not only on the coherences in the energy

basis, as we obtained in Eq. (4.32). Starting from Eq. (5.25) and writing ρE(τ) = ρEdiag(τ)+ρ
E
c (τ),

where ρEdiag(τ) and ρ
E
c (τ) are the diagonal (populations) and off-diagonal (coherences) parts of

the density operator in the energy basis, we have:

Qc[ρ] =
1

2
Tr
{
(ρEdd − ρE)Hg0

}
=

1

2
Tr
{
(ρEdd − ρEdiag)Hg0

}
− 1

2
Tr
{
ρEc Hg0

}
. (5.29)

The first term that appears in Eq. (5.29) contains contributions from the populations, which

emerge when there are degeneracies in the spectrum of the Hamiltonian. In fact, notice that

when degeneracies do not exist or are extinguished, i.e., ρEdd(τ) = ρEdiag(τ), Eq. (5.29) gives us:

Qc[ρ] =
1

2
Tr
{(
ρEdiag − ρEdiag

)
Hg0

}
− 1

2
Tr
{
ρEc Hg0

}
= −1

2
Tr
{
ρEc Hg0

}
(5.30)

In this case, we recover what was obtained in Eq. (4.32) for Qc. Due to this, it might be

inappropriate to call the term Qc as coherent heat; however, due to the lack of a sufficiently

precise name that encapsulates its physical meaning in its entirety, we will still refer to it as

coherent heat.

Notice that the split made in Eq. (5.29) indicates a relationship between the coherent heat

and the GT-entropy. In fact, as shown by Céleri and Rudnicki in Ref. [3], the notion of coherent

heat is connected to the production of coherence in the energy basis, which is also related to the

production of coherence that, in turn, connects to the diagonal entropy.

However, this result is precisely a particular case of the connection between coherent heat and

GT-entropy. Since the hypotheses used in Ref [3] render the contributions from the degeneracies

in the group GT irrelevant, the description given by the diagonal entropy becomes sufficiently
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accurate.

On the other hand, considering our scenario, in which the presence of degeneracies cannot

be avoided, we observe that the coherent heat has contributions of a similar nature to those

obtained for the GT-entropy in Eq. (4.53). Thus, the first term that emerges in Qc in Eq. (5.29)

would be connected to the asymmetry of the state in the energy basis, which is quantified in the

GT-entropy through the Holevo asymmetry. Therefore, states that are asymmetric with respect

to the thermodynamic group GT naturally lead to an entropy production that also appears as

a contribution in the coherent heat term. Evidently, the second contribution that appears in

Eq. (5.29), being directly connected to the coherences, would be associated with diagonal entropy

as in Eq. (4.53).

Moreover, just as we established a connection between the invariant work and coherent heat,

it is also possible to derive a relation between these two quantities in this context. Indeed, for

closed systems, we can establish a mathematical connection between the average work (under

the statistical notion of work) and the invariant work and heat as

2Qc[ρ] = ⟨W ⟩ − 2Winv[ρ]. (5.31)

Equation (5.31) is strictly analogous to the expression obtained in Eq. (4.30), which was already

intuitively expected.

We see that the coherent heat is fundamentally connected to the notion of inner friction in

quantum thermodynamics, a concept introduced to treat irreversibility in closed systems [23].

Here, this quantity, which is associated with the changes in the energy eigenbasis, naturally

emerges from the imposition of gauge invariance.

Since Winv[ρ] is only associated to transition energy levels and degeneracies, the coherent

heat is connected to the notion of inner friction in quantum thermodynamics [23]. Especially,

the inner friction unwanted transitions that one would typically associate with heat [23] and in

this context, this unwated transitions are associated to the abrupt change of energy eigenbasis

by the quench process. In this sense, the gauge invariance framework suggest, by construction,

that’s Qc[ρ] is can be interpreted by a heat contribution of total energy in the system, however,

this heat can be understood to inner friction that’s, in the context of closed systems, is associated

to the changes in energy eigenbasis.

Having made this discussion, we will now proceed with the application of this formalism to

two spin systems, one without degeneracy and the other with degeneracy.
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5.3 QPT in Landau-Zener model

Let us consider the dynamics of a single qubit described by the following Hamiltonian

HLZ(t) =

(
−∆

2
+ ag

)
σz + ϵσx, (5.32)

where σx and σz are Pauli matrices, and g stands for the strength of the externally controlled

magnetic field, whose coupling with the qubit is represented by a > 0. ϵ is associated with the

crossing (ϵ = 0) or non-crossing (ϵ > 0) energy levels and ∆ is the bare frequency of the qubit.

Hamiltonian Eq. (5.32) is the well-known Landau-Zener model, which is frequently employed

in studies of phase transitions as it is a prototype for critical systems [91, 96]. The system un-

dergoes a quantum phase transition at the critical point gc = ∆/2a and ϵ → 0. For ϵ > 0,

the transition is a first-order one, characterised by a discontinuous change in the order param-

eter. When ϵ = 0, the transition becomes a second-order one, exhibiting a continuous change

in the order parameter and associated critical fluctuations. A schematic representation of these

situations is presented in Fig. 5.4.

Figure 5.4: Schematic representation of the eigenenergies of the Landau-Zener Hamiltonian with

and without energy crossing and the rate of variation of the ground state energy with respect to the

control parameter g.

Based on the Hamiltonian (5.11), the time dependent version of Eq. (5.32) can be construct,

resulting in

HLZ(t) =

(
−∆

2
+ a(g0 + δgθ(t− τ))

)
σz + ϵσx. (5.33)
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In this way, Hg0 = (−∆/2 + ag0)σ
z + ϵσx and H1 = aσz . It is straightforward to compute

both the invariant work and heat associated to this quench.

First, we define, for simplicity, γ0 ≡ −∆/2 + ag0. For t ≥ τ , the Hamiltonian of the Landau-

Zener model is given by Eq. (5.33), which can be exactly diagonalized resulting in the eigenvalues

E0,1(g0) = ±E = ±
√

(aδg + γ0)2 + ϵ2 and respective normalized eigenvectors

|ag0⟩ =


− ϵ√

ϕ2 + ϵ2

ϕ√
ϕ2 + ϵ2

 , |ag1⟩ =


ϕ√

ϕ2 + ϵ2
ϵ√

ϕ2 + ϵ2

 (5.34)

where ϕ ≡
(√

(aδg + γ0)2 + ϵ2 + aδg + γ0

)
and g = g0 + δg.

In each process with g0 → g0 + δg, the initial Hamiltonian of the system is

Hg0 = (−∆/2 + ag0)σ
z + ϵσx

and we take the initial state of the system as ρ ≡ ρ(0) = |ag00 ⟩ ⟨ag00 |, that is

ρ =


1

2
− γ0

2
√
γ20 + ϵ2

− ϵ

2
√
γ20 + ϵ2

− ϵ

2
√
γ20 + ϵ2

1

2
+

γ0

2
√
γ20 + ϵ2

 , (5.35)

In the energy eigenbasis, we have ρE transformed by the unitary matrix defined by |ag0⟩ and
|ag1⟩. Its elements in this basis are given by

ρE11 =

√
γ20 + ϵ2

√
(aδg + γ0)2 + ϵ2 + aδgγ0 + γ20 + ϵ2

2
√
γ20 + ϵ2

√
(aδg + γ0)2 + ϵ2

ρE12 = ρE21 = − aδgϵ

2
√
γ20 + ϵ2

√
(aδg + γ0)2 + ϵ2

ρE22 =

√
γ20 + ϵ2

√
(aδg + γ0)2 + ϵ2 − γ0(aδg + γ0)− ϵ2

2
√
γ20 + ϵ2

√
(aδg + γ0)2 + ϵ2

. (5.36)

The operator ρEdiag is given by the diagonal matrix whose elements are (ρEdiag)jj = (ρE0 )jj

and (ρE
diag

)jk = 0. Similarly, the coherent density matrix in energy eigenbasis ρc is defined by

(ρEc )jk = (ρE0 )jk and (ρEc )jj = 0.

Now, we need to transform each Hamiltonian to the energy basis for t ≥ τ . Since H(τ) in

this basis is simply the diagonal matrix with its eigenvalues E0 and E1, we only need to obtain
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the representation of H0, which is given by

HE
0 =


− aδgγ0 + γ20 + ϵ2√

(aδg + γ0)2 + ϵ2
aδgϵ√

(aδg + γ0)2 + ϵ2

aδgϵ√
(aδg + γ0)2 + ϵ2

aδgγ0 + γ20 + ϵ2√
(aδg + γ0)2 + ϵ2

.


We can now compute the invariant work and heat. Making it term by term, we have

Tr
{
ρEdiagH

E
0

}
= − (aδgγ0 + γ20 + ϵ2)

2√
γ20 + ϵ2 ((aδg + γ0)2 + ϵ2)

(5.37)

Tr
{
ρEdiagH

E
}

= −aδgγ0 + γ20 + ϵ2√
m2 + ϵ2

(5.38)

Tr{ρEc HE
0 } = − a2g2ϵ2√

γ20 + ϵ2 ((ag + γ0)2 + ϵ2)
. (5.39)

Using these expressions, we can immediately obtain as seguintes expressões para o trabalho e

calor invariante. In fact, the invariant work is given by

Winv[ρ] = −aδg(aδg + γ0) (aδgγ0 + γ20 + ϵ2)

2
√
γ20 + ϵ2 ((aδg + γ0)2 + ϵ2)

, (5.40)

while, since we are considering a closed system, the invariant heat reduces to the coherent heat.

Therefore the heat takes the form

Qc[ρ] =
a2δg2ϵ2

2
√
γ20 + ϵ2 ((aδg + γ0)2 + ϵ2)

, (5.41)

Their derivative with respect to g0 are given by

dWinv[ρ]

dg0
= −

a2δgϵ2
(
a4δg4 + 3a3δg3γ0 + 2a2δg2γ20 + aδgγ0 (γ

2
0 + ϵ2) + (γ20 + ϵ2)

2
)

2 (γ20 + ϵ2)
3/2

((aδg + γ0)2 + ϵ2)2

(5.42)

dQc[ρ]

dg0
= −a

2δg2ϵ2 (ϵ2(2aδg + 3γ0) + γ0(aδg + γ0)(aδg + 3γ0))

2 (γ20 + ϵ2)
3/2

((aδg + γ0)2 + ϵ2)2
. (5.43)

Furthermore, diagonal entropy can be computed using ρE11 and ρ
E
22.

Figure 5.5 reveals the behaviour of the work [panel 5.5(a)], heat [panel 5.5(b)], and entropy in

the inset of [panel 5.5(b)] for distinct quenches from g0 to g = g0 + δg.

In particular, panel 5.5 (a) shows that the invariant work exhibits a similar behaviour to that

observed for the derivative of the ground state energy of the model, as shown in Fig. 5.4. This
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Figure 5.5: Invariant work (a), heat (b) and diagonal entropy per quench for Landau-Zener model.

In the inset of coherent heat, we plot the diagonal entropy per quench. We set a = 2, ∆ = 1 and

ϵ = 0.001 for different values of the quench amplitude δg. The dotted vertical lines marks the critical

point of the model.

similarity is especially pronounced in the regime of small quenches, i.e., δg → 0. Furthermore,

for small quenches, panel 5.5(b) indicates that the coherent heat approaches zero, suggesting a

negligible contribution of energy associated with the change of basis during the quench. Indeed,

forQc[ρ] ≈ 0 and considering the system with no degeneracies, we can connectWinv[ρ]with the

variation of the ground state energy with respect to the parameter g0 as

dE0

dg0
≈ 2

g0
Winv[ρ], (5.44)

which follows from the Hellman-Feynman Theorem [121]. In fact, from this theorem we have

dE0(g)

dg
= Tr {ρH1} =

2

g
Winv[ρ] +

2

g
Qc[ρ] (5.45)

since g ̸= 0, H1 = (1/g)(H(τ) − H0) and ρ = ρdiag + ρc. This result is valid if and only if the

spectrum of the Hamiltonian is not degenerated. In the particular case whereQc[ρ] ≈ 0, Eq. (5.45)

have only contributions from the invariant work. Which justifies the correspondence between

the variation of the ground state energy and the invariant work in Fig. 5.4 and Fig. 5.5 (a).

Another interesting aspect to consider in the Landau-Zener model is the case with energy

level crossing, i.e., ϵ = 0. In this case, the contribution of heat is zero, which is expected since

[H0, Hτ ] = 0. However, the model exhibits degeneracy at the critical point g0 = ∆/4a. At this

point, the thermodynamic group GT is isomorphic to the group U(2). Consequently, the Haar

measure induced by the thermodynamic group is dGgcT = dµ [U(2)]. Therefore, it follows that
the expression for the invariant work is modified to Winv[ρ] = −aδg/2 sgn (g0 −∆/2), where
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sgn(·) denotes the sign function.

Signatures of the QPT can be seen in the derivatives of invariant work and heat. As the system

approaches the critical point of the phase transition, these quantities exhibit divergent behaviour.

This divergence is visually evident in Fig. 5.6.

Figure 5.6: Derivative of invariant work (a) and heat (b) for different quenches for the Landau-Zener

model. In these plots, we set a = 2,∆ = 1, and ϵ = 0.001. The divergence appearing in the invariant

work (coherent heat) for small (large) values of the quench amplitude is evident.

5.4 QPT in Lipkin-Meshkov-Glick model

In Chapter 4, we briefly presented a particular case of the Lipkin-Meshkov-Glick model [98–100].

Now, we will return to discuss this model, focusing on its quantum phase transition. In this sense,

let us consider the Hamiltonian:

Hg = − k

2j

(
J2
z + γJ2

y

)
− gJx. (5.46)

The parameter 0 ≤ γ ≤ 1 denotes an anisotropy constant of the model, while the other constants

are described as in Chapter 4, that is, Jα =
∑N

i=1 σ
α
i /2; (α = x, y, z) are the collective spin

operators, with σαi denoting the α Pauli matrix acting on the i-th site of a chain of N = 2j sites,

where j is the total angular momentum and k > 0 denotes the coupling between the spins. The

parameter g ≥ 0 is the strength of the magnetic field along the x-axis.

As mentioned in Chapter 4, the LMG model has a variety of interesting applications. Fur-

thermore, the model exhibits a wealth of extremely interesting physical phenomena, such as the

presence of chaos [122] and critical phenomena like quantum phase transitions (QPT) [123, 124],
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excited state phase transitions (ESQPT) [125, 126], and dynamic phase transitions (DQPT) [127,

128].

The quantum phase transition in the LMG model occurs in the thermodynamic limit as j →
∞. In this scenario, the parity symmetry is broken as the magnetic field transitions from g < gc

(ferromagnetic phase) to g > gc (paramagnetic phase), with gc = k being the critical point of

the equilibrium phase transition [123]. A specific characteristic of these two phases is related to

the degeneracies of the Hamiltonian. While the ferromagnetic phase is doubly degenerate, the

paramagnetic phase is non-degenerate. Figure 5.7 illustrates these configurations.

Figure 5.7: Energy spectrum of LMGmodel in Eq. (5.46) for different values of γ. Here we used j = 10
for all panels. The vertical dotted line marks the critical point of the model.

The quantum phase transition in the LMG model can be identified through some quantities

that serve as order parameters for the model [91, 124]. In fact, two order parameters that we can

highlight are the average magnetizations of the spin chain and the transverse field, which are

given respectively by:

⟨Jx⟩ = Tr{ρgsg Jx} and ⟨Jz⟩ = Tr{ρgsg Jz} (5.47)

where ρgsg denotes the density operator associated with the ground state of the HamiltonianHg in

Eq. (5.46) for each value of g of the external magnetic field. In Figure 5.8, we present the behavior

of these order parameters for the QPT in the LMG model.

Having made this brief discussion, we will now evaluate how the formalism of the thermo-

dynamic group GT connects with the QPT in the LMG model.
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Figure 5.8: Average magnetizations of the spin chain ⟨Jz⟩ and the transverse magnetic field ⟨Jx⟩
normalized by j in the LMG Hamiltonian in Eq. (5.46) as order parameters.

Indeed, the presence of degeneracies in one of the phases of the LMGmodel leads to a modifi-

cation of the structure of the thermodynamic group. Thus, unlike the Landau-Zener model, here

the thermodynamic group has the general form given by:

GT = U(2)× U(2)× U(2)× . . .× U(2) (5.48)

for the ferromagnetic phase, since in the thermodynamic limit, the energy levels are all doubly

degenerate. On the other hand, in the paramagnetic phase, the thermodynamic group reduces to

the following structure:

GT = U(1)× U(1)× U(1)× . . .× U(1). (5.49)

From the perspective of the thermodynamic group, the ferromagnetic phase has greater re-

dundancy associated with the topological structure of the GT-group compared to the paramag-

netic phase.

Moreover, note that since we cannot practically reach the thermodynamic limit for a spin

chain associated with the LMG model, we are essentially describing a finite-dimensional system.

In this case, the structure of degeneracies in the model is subtly different; in fact, for values of

g < gc, there exists a certain number of eigenenergies that are doubly degenerate. However,

in finite dimensions, as the intensity of the magnetic field g is increased, the degeneracies that

initially exist solely due to the coupling of the spins are broken.
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As a result, as the degeneracies of the model are broken and the energy levels are split, the

thermodynamic group exhibits a symmetry breaking in one of its structures. Nonetheless, note

that the density operator ρEdd will not reduce to a complete dephasing as occurs in the Landau-

Zener model that we explored in the previous section. In this context, we must evaluate, for

each value of g associated with the Hamiltonian Hg, the structure of the thermodynamic group

in order to assess the Haar average of the density operator.

Now, we will proceed to obtain the expressions associated with invariant work and heat.

To this end, we consider the time-dependent counterpart associated with the Hamiltonian in

Eq. (5.46) as

Hg(t) = − k

2j

(
J2
x + γJ2

y

)
− (g0 + δgθ(t− τ))Jz. (5.50)

We then haveHg0 = −(k/2j)
(
J2
z + γJ2

y

)
−g0Jx andH1 = −Jx. In the present case, it is not

possible to obtain analytical expressions for the eigenvectors and/or eigenvalues in terms of the

control parameter g as we did for the Landau-Zener model. Therefore, we investigate this model

using numerical methods. However, before proceeding, we will rewrite the expressions for the

invariant work and heat in the more convenient form:

Winv[ρ] = −δg
2
Tr
{
ρEddJx

}
and Qc[ρ] = −δg

2
Tr
{(
ρE − ρEdd

)
Jx
}

(5.51)

this expressions follows from Eq. (5.26) e Eq. (5.28) respectively.

Here, we proceed by fixing the quench amplitude at δg = 0.01 and the anisotropy constant at

γ = 0.75. Previous numerical analyses have shown that the qualitative behavior of the quantities

is independent of these choices.

A direct consequence of the theory emerges from the expression for the invariant work. It is

an order parameter for the system, since the magnetisation ⟨Jα⟩ = Tr{ρJα} (with α = x, y, z)

is the usual order parameter in Eq. (5.47) signalling the quantum phase transition in the this

case [91].

We show such behaviour in Fig. 5.9 (a), where the order parameter feature of the work is clear.

The other panels in this figure show the dynamical behaviour of the first and second derivatives

of the work with respect to the quench parameter g0. While the second derivative diverges near

the critical point, the first derivative exhibits oscillations, which are a consequence of the changes

in the degeneracies as we change g0. It is clear from these figures that the invariant work is deeply

linked to the quantum phase transition.

Another interesting result that follows form the theory is associated to the invariant heat,

which is shown in Fig. 5.10. We can see that the heat suffers and abrupt change near the critical

point of the model, while the divergence of its derivative with respect to the quench clearly signs

this point.

Nowwe discuss the thermodynamic entropy SGT
for the case at hand, which is not equivalent

to the diagonal entropy as in the Landau-Zener model, since we have degeneracies. As mentioned
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Figure 5.9: Thermodynamics of the LMG model. Panel (a) shows the invariant work, normalized

by the quench, considering distinct values of j. Next, we see in Panel (b) the first derivative of the

invariant work with respect g0, normalized by quench amplitude. Panel (c) revels the divergence of

second derivative of the invariant work in vicinity of the quantum critical point.

earlier, the ferromagnetic phase (g < gc) is doubly degenerate, while the paramagnetic phase

(g > gc) is completely non-degenerate. Therefore, we expect very distinct behaviours of SGT
in

both phases. This is shown in Fig. 5.11.

We first observe the similarity between the GT-entropy in Fig. 5.11 and the heat displayed

in Fig. 5.10(a). This fact is not a coincidence but a consequence of the theory that makes both

quantities directly associatedwith the production of quantum coherence in the energy eigenbasis,

as well as with the presence of degeneracies in the ferromagnetic phase. In particular, this result

confirms and extends the understanding of heat proposed in Ref. [3].

Moreover, Fig. 5.11 clearly shows a tendency for an abrupt change in SGT
in the vicinity of the

critical point. Such change occurs precisely at the point where the degeneracies of the system are
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Figure 5.10: Invariant heat in Panel (a) and its derivative in Panel (b), for the LMG model considering

different values of j per quench.

Figure 5.11: Thermodynamic GT−entropy for the ground state of the LMG model as function of g0
considering distinct values of j. The inset plot shows a zoom in the vicinity of the critical point,

highlighting the abrupt change in the SGT
at criticality.

completely extinguished due to the competition between the contributions of the spin coupling

and the external magnetic field. The extinction of degeneracies before the critical point occurs

because we are dealing with a finite-dimensional system.

However, as shown in the Fig. 5.11, this point tends to shift to the critical point of the model

for larger dimensions, where we approach the thermodynamic limit. Additionally, we observe

that the abrupt change in SGT
is more pronounced in chains with fewer spins, which is associated

with the contributions of degeneracies being more significant in systems further away from the

thermodynamic limit.
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Accordingly, we analyze SGT
in comparison with the diagonal entropy Sd, highlighting the

contributions of degeneracies as quantified by the Holevo asymmetry measure SΓ and also the

effect of the size of the chain. First, we observe from Fig. 5.12 that oscillatory behavior of the

Holevo asymmetry measure in the vicinity of the critical point arises from the breaking of energy

level degeneracies, which results in modifications to the structure of the thermodynamic group

GT. As the value of j increases, the oscillations in the Holevo asymmetry SΓ decrease near the

critical point and eventually vanish at the quantum phase transition.

Then, from the point of view of the Holevo asymmetry measure, degeneracies produce asym-

metry and consequently increase the randomness and entropy of the state. However, it is the

relationship between the total volume of the subspacesHk and the changes in degeneracies that

leads to abrupt modifications in the thermodynamic entropy. Consequently, we expect a greater

impact of degeneracies in lower-dimensional systems, since the Haar averages contained in SΓ

are significant with respect to the contributions of populations coming from the diagonal entropy.

However, this scenario is modified as we consider systems with larger dimensions, as already

indicated in Fig. 5.12 (c). In this regard, in Fig. 5.13 we study how the entropies behave in the

vicinity of the critical point when we consider higher dimensional models. Thus, for large values

of j, near the critical point of the phase transition, the diagonal entropy approachesSGT
, while the

Holevo asymmetry fluctuates around values close to zero. Indeed, this behaviour emerges because

the contributions of the remaining degeneracies are not as significant as in smaller dimensions,

as shown by the SΓ curve in Figs. 5.12 and 5.13. Therefore, from Eq. (4.53) it follows that near the

critical point |SGT
− Sd| = SΓ and, since SΓ becomes increasingly less significant, we conclude

that the GT-entropy and the diagonal entropy approach each other. Thus, the Holevo asymmetry

acts as a parameter that determines the continuity of the thermodynamic gauge entropy.

On the other hand, for quenches occurring after the critical point of the phase transition, we

observe that SGT
asymptotically tends to zero. Indeed, after the critical point, the thermodynamic

group is always given by GT =
∏d

k=1 U(1), and consequently, the diagonal part of the states

ρ in the energy basis becomes increasingly symmetric with respect to the group GT, thereby

asymptotically reducing the entropy.
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Figure 5.12: Comparative of thermodynamic gauge entropy SGT
, diagonal entropy Sd and Holevo

asymmetry measure SΓ for j = 100, 300, 500, 1000 in Panels (a), (b), (c) and (d) respectively. The

insets in all panels correspond to a zoom in the vicinity of the critical point.
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Figure 5.13: Comparative of Thermodynamic gauge entropy SGT
, diagonal entropy Sd and Holevo

assymetry measure SΓ in the vinicity of the quantum critical point in the LMG model for j =
1500, 2000, 2500 in Panels (a), (b) and (c) respectively.
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Chapter 6

Discussion and Future perspective

In this study, we develop a theory of Quantum Thermodynamics structured as a gauge theory

for the thermodynamic group, following the approach outlined in [3]. This methodology lever-

ages the principle of gauge invariance, where thermodynamic quantities arise as Haar averages.

As a result, invariant formulations for heat, work, and entropy are established for general quan-

tum systems, providing a comprehensive theory of Quantum Thermodynamics rooted in gauge

invariance. To demonstrate some of the framework’s physical implications, the theory is applied

to quantum critical systems.

A significant outcome of this theory is the clear separation of a system’s energy into heat

and work, addressing a contentious issue in Quantum Thermodynamics. Specifically, work is

inherently linked to populations, whereas heat emerges from the creation of quantum coherences

within the energy eigenbasis. This interpretation allows for heat to be viewed as a form of internal

friction [23], a concept frequently used in literature to explain irreversibility in closed quantum

systems. Furthermore, both heat and work are directly influenced by the degeneracy structure of

the energy spectrum, thus naturally incorporating distinct quantum features into the definition

of thermodynamic quantities.

Another important result is the definition of thermodynamic entropy. By interpreting Von

Neumann entropy as a measure of information in QuantumMechanics, a unified thermodynamic

entropy is derived, which remains invariant under the thermodynamic group. This entropy is

decomposed into two components: the well-known diagonal entropy [22] and a purely quantum

contribution that arises from the system’s degeneracies. The gauge invariant entropy derived

within this framework meets the key properties required for thermodynamic entropy. Notably,

in the classical limit, the quantum contribution disappears, reducing the gauge invariant entropy

to the diagonal entropy, thereby naturally emerging for non-degenerate or classical Hamiltonians

within our formalism.

Moreover, thermodynamic entropy is fundamentally linked to the development of quantum

coherences in the energy eigenbasis, which naturally corresponds with invariant heat. It is im-

portant to note that these results were not anticipated but emerged organically from the theory,

highlighting the physical consistency of the framework, as thermodynamics has traditionally

associated heat with entropy production.
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The relationship between heat and quantum coherences is neither new nor unexpected [28].

From a thermodynamic perspective, our ability to manipulate a system is inherently constrained.

For example, in many experiments, measurements are typically limited to a few observables,

often energy. Therefore, the generation of quantum coherences leads to increased uncertainties

in these observables, resulting in entropy production. Within the gauge framework presented

here and in Ref. [3], this link arises naturally.

These concepts become evident when the theory is applied to well-known quantum critical

systems, such as the Landau-Zener and LMG models. The Landau-Zener model describes a non-

degenerate two-level system, while the LMG Hamiltonian represents fully connected spin chains

exhibiting a doubly degenerate phase. In each case, the invariant thermodynamic quantities de-

scribed in this work show notable sensitivity to the quantum phase transitions present in these

models, clearly revealing the quantum nature of thermodynamics.

6.1 Future perspective

Certainly, we have managed to develop and extend several results initially obtained by Céleri

and Rudnicki in [3]. However, we recognize that the framework presented here is still a modest

development compared to the various perspectives that can be pursued. Moreover, we can cat-

egorize these paths into two types: the first is associated with potential generalizations of the

formalism, and the second is aimed at expanding the scope of applications to physical problems

beyond critical systems. In this context, in the following two subsections, we will comment on

each of these paths and discuss how each possibility we outline could be developed.

6.1.1 Potential for Generalizations of the Theory

Firstly, we will highlight some aspects related to generalizing the theory. Certainly, the reader

might imagine that an initial approach for this generalization would be simply to relax the initial

assumptions made in Section 3.2. However, assumptions (i) and (ii) do not have much potential

for generalization since the conditions they impose are sufficiently reasonable.

However, assumptions (iii) and (iv) can indeed be relaxed and then extended to a more gen-

eral framework, such that in a certain limit, the formalism developed in this work is recovered.

Additionally, there are other extensions we consider regarding the geometric nature of the the-

ory, due to our development being based on a non-abelian Lie group. Below, we discuss these

potential generalizations of the theory in some detail.

I) (Generalized invariance principle). As an initial perspective, we bring up the discussion

at the end of Chapter 3. Specifically, the development of the gauge invariance principle

constructed around a different observable. In effect, the Definition 3.53 of generalized in-

variance alters the Haar measure, and consequently, the expressions obtained for heat and
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work in Chapters 4 and 5 will need modification. Regarding entropy, this generalization

only affects the type of coarse-graining applied; in this sense, Gibbs states may no longer

remain invariant, and therefore, the G-entropy becomes inconsistent with Gibbs entropy

for thermal states.

II) (Generalized invariant quantities). Another potential generalization is extending the Def-

inition 3 of invariant quantities. This possibility arises from the work of Marvian and

Spekkens [83], where the Haar average is defined in a non-uniform manner by introducing

a weight function ϕ(G) associated with the thermodynamic gauge group. Consequently,

these expressions would become:

Finv[ρ(t)] → F p
inv[ρ(t)] =

∫
dGT ϕ(G)Fu[Vtρ(t)V †

t ] (6.1)

ρdd → ρϕdd =

∫
dGT ϕ(G)Vtρ(t)V †

t . (6.2)

However, modifying Definition 3 by introducing the weight ( ϕ(G)) is not a trivial mat-

ter, particularly concerning the physical interpretation of this function. It alters the Haar

average in such a way that certain elements of the Haar group are "privileged" in this

process. Questions like: Why should this average select certain elements? must be con-

sidered. Thus, the feasibility of this generalization requires a discussion on suitable classes

of weight functions ϕ(G) that align with the thermodynamic context. A priori, choosing

ϕ(G)=1 , corresponding to the uniformHaar average case, seems to be the most appropriate

choice.

III) (Geometric/topological description of the theory). The thermodynamic gauge group (3.28)

is a Lie group composed of the product of several unitary groups U(nkt ). Consequently, G is

a differentiable manifold, and thus, the gauge group inherently possesses a geometric and

topological nature. In this context, a potential pathway for future developments would be

the formalization of the theory from a geometric and topological perspective, similar to how

conventional gauge theories are constructed. This would involve defining and constructing

elements such as bundles and connections. Naturally, a critical question would be whether

a Lagrangian functional exists within the theory.

6.1.2 Scope for applications of the theory

In addition to the development of the theoretical formalism, we also highlight several poten-

tial applications to physical problems.
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I) Since the numerical results obtained in Chapter 4 and Chapter 5 show a close qualitative

relationship between coherent heat and GT-entropy, the possibility arises of analytically

deriving an expression that directly relates coherent heat and the entropy of the theory. In

particular, a possible Clausius-like relation from classical thermodynamics could be con-

sidered as a starting point for a new generalized relation within our theory.

II) While we have demonstrated the relationship between thermodynamic quantities and crit-

icality effects associated with quantum phase transitions (QPT), it is natural to question

whether critical effects could also emerge in systems exhibiting dynamical criticality [129].

III) Moreover, we observe that the structure of the thermodynamic group, particularly how

the group is modified as certain parameters of the Hamiltonian are altered, could suggest

a framework for identifying excited state quantum phase transitions (ESQPT).

IV) Finally, we have thus far discussed applications in the context of closed systems. However,

considering open systems is another avenue to explore, particularly in evaluating how the

notions of invariant heat and work might alter the determination of thermal machine effi-

ciency.
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Appendix A

Some technical results

A.1 Mathematical results

Definition 8. (σ-algebra [130]) A collection A of subsets of Ω, meaning A ⊂ P (Ω), where P (Ω)
denotes the power set of Ω, is said to be a σ-algebra on Ω if the following requirements are satisfied:

(i) ∅ ∈ A and Ω ∈ A.

(ii) If A ∈ A, then Ac ≡ Ω\A ∈ A.

(iii) If {An, n ∈ N} is an arbitrary countable collection of elements of A, then
⋃
n∈N An is also an

element of A.

Definition 9. (Measure [130]) Let Ω be a non-empty set andA a σ-algebra on Ω (for the definition,
see Chapter 28, page 1483). We will present the formal concept of a measure. A measure on A is a
function µ that assigns to each element of the σ-algebra A a real number ≥ 0 or infinity, that is,
µ : A → R+ ∪ {∞}, such that the following conditions are satisfied:

(i) µ(∅) = 0.

(ii) If Ai, i ∈ N, is a countable and disjoint collection of elements of A, then

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ (An) (A.1)

The second property is sometimes referred to as countable additivity, or σ-additivity.

Definition 10. (Measure Spaces). Let Ω be a non-empty set, A a σ-algebra on P (Ω) (the power set
of Ω), and µ a measure on A then:

I) The pair (Ω, µ) is called a measurable space.

I) The triple (Ω,A, µ) is called a measure space.

II) If in a measure space we have µ(Ω) = 1, then the triple (Ω,A, µ) is called a probability space.
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Theorem 7. Let (Ω,A, µ) and (Ω′,A′, γ) two measure spaces σ-finite and v = µ× γ.

a) (Tonelli Theorem). if f : Ω × Ω′ → R is a function A × A′-mensurable and non-negative,
then the functions:

ω →
∫
Ω′
f(ω, ·)dγ e ω′ →

∫
Ω

f (ρ, ω′) dµ

are A e A′ mensurable respectively and∫
Ω

[∫
Ω′
f(ω, ·)dγ

]
dµ =

∫
Ω′

[∫
Ω

f (·, ω′) dµ

]
dγ =

∫
Ω×Ω′

fdv

b) (Fubini). if f is µ-integrable, then f(ω, ·) é γ-integrable for for almost everything ω[µ], e
f (·, ω′) is µ-integrable for almost everything ω′[γ]∫

Ω

[∫
Ω′
f(ω, ·)dγ

]
dµ =

∫
Ω′

[∫
Ω

f (◦, ω′) dµ

]
dγ =

∫
Ω×Ω′

fdv.

Proof. See Ref. [131] Theorem 5.2.2.

More details onmeasure and integration theory, particularly regarding the Lebesguemeasure,

Hausdorff measure, and other measures, can be found in Refs. [130–132].

A.2 Quantum information theory

Quantum information theory is, without a doubt, the foundation for the developments presented

in this work. Indeed, throughout the text, we continuously use methods, definitions, and results

from this theory to construct the thermodynamics of the group GT. With this in mind, in this

appendix, we will present some of these definitions and results, which, in general, we will also

seek to demonstrate, aiming for this appendix to serve not only as a complement to the main

text but also as an educational resource for certain readers. In this sense, we will begin with the

definition of a quantum channel, which is one of the fundamental elements in our work.

Definition 11. (Quantum channel [41]) Let L(Hd1) and L(H̃d2) be two spaces of density operators
associated with the Hilbert spaces Hd1 and H̃d2 , respectively. We define a quantum channel (or
quantum operation) as the map

E : L(Hd1) → L(H̃d2) (A.2)

ρ ∈ L(Hd1) → ρ̃ = E(ρ), (A.3)

which satisfies the following properties:
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A1. First, tr[E(ρ)] is the probability that the process represented by E occurs when ρ is the initial
state. Thus, 0 ≤ tr[E(ρ)] ≤ 1 for any state ρ.

A2. Second, E is a convex-linear map on the set of density matrices, that is, for probabilities {pi},

E

(∑
i

piρi

)
=
∑
i

piE (ρi) .

A3. Third, E is a completely positive map.

This definition above reflects the choice to treat a quantum channel in an axiomatic manner.

Indeed, this definition does not, a priori, assign a possible physical meaning to this map. How-

ever, the choice of the properties above can be understood as being motivated by an objective

physical meaning. In fact, property A1 arises from the intrinsic probabilistic nature of quantum

mechanics; in particular, if the inequality above is saturated, i.e., tr[E(ρ)] = 1, then we say that

the quantum channel is a trace-preserving operation. Moreover, property A2 arises from the re-

quirement that the quantum channel be linear, and thus convexity is achieved. Finally, property

A3 ensures that the description of the evolution of a quantum state by the map is completely

positive, consequently guaranteeing a valid physical reality.

Indeed, one of the basic applications of quantum channels is associated with the description

of the evolution of a state ρ to a final state ρ̃. In closed systems, this evolution is governed

by the Schrödinger equation, which is then described by a unitary operator U . However, for

open quantum systems, there is no closed description in a single equation. Nevertheless, by

considering the system of interest plus the environment interacting with it, we can treat the

complete system (system + environment) as a closed system whose evolution is guided by a

unitary operator. Below, in Figure A.1, we schematically illustrate these two evolutions based on

quantum operations.

ρ
U UρU † ρs

ρenv

U

E(ρs)

Figure A.1: Models of closed (left) and open (right) quantum systems. An open quantum system

consists of two parts, the principal system and an environment.

Note that the map defined by E(ρ) = UρU †
satisfies the properties of Definition 11, and thus

the unitary evolution operation in closed systems is a quantum channel. On the other hand, in
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open systems, the general state is the coupling between the system and the environment, i.e.,

ρ = ρs ⊗ ρenv, where ρ ∈ L(Hs) ⊗ L(Henv). However, our interest is restricted to how the

state of the principal system evolves. In this sense, we can obtain this evolved state by taking the

partial trace, with respect to the environment, over the state ρ evolved under the unitary U that

acts on both the system and the environment. Indeed, this defines the quantum channel E as:

E : L(Hs)⊗ L(Henv) → L(Hs) (A.4)

ρ = ρs ⊗ ρenv → E(ρ) = Trenv
{
UρU †} = Trenv

{
U(ρs ⊗ ρenv)U

†}
(A.5)

The expression above in Eq. (A.5) defines, in general, the evolution of a quantum state. In partic-

ular, if there is no environment in the description of the complete system, then the general state

is ρ = ρs, and the unitary can be identified as Us, which acts only on the Hilbert space of the

principal system. Thus, the partial trace over the environment is trivial, and we are left with:

E(ρ) = Trenv
{
UρU †} = Trenv

{
UsρsU

†
s

}
= UsρsU

†
s ,

which is the limiting case of a closed system.

On the other hand, in the case of an open system, we can develop Expression (A.5). To do so,

suppose that the environment state is given by ρenv = |ψenv⟩ ⟨ψenv|, and let {ek} be an orthonor-

mal basis of the environment’s Hilbert space. Moreover, any unitary U defined on the space

Hs⊗Henv
can be written as U =

∑
µ U

s
µ⊗U env

µ . With this, we have the following development:

E(ρ) = Trenv
{
U(ρs ⊗ ρenv)U

†}
=

∑
k

(1s ⊗ ⟨ek|)

[(∑
µ

U s
µ ⊗ U env

µ

)
(ρs ⊗ |ψenv⟩ ⟨ψenv|)

(∑
ν

U s †
ν ⊗ U env †

ν

)]
(1s ⊗ |ek⟩)

=
∑
k

(
∑
µ,ν

⟨ek|U env
µ |ψenv⟩ (U s

µρsU
s †
ν ) ⟨ψenv|U env †

ν |ek⟩

=
∑
k

(∑
µ

⟨ek|U env
µ |ψenv⟩U s

µ

)
ρs

(∑
ν

U s †
ν ⟨ψenv|U env †

ν |ek⟩

)

Then, the operator Ek : Henv → Hs
is defined, where for each |ek⟩, the operator Ek is associated

by:

Ek ≡
∑
µ

⟨ek|U env
µ |ψenv⟩U s

µ = ⟨ek|U |ψenv⟩ (A.6)

which acts on the principal system. Note that the inner product appearing in the second equality

of Eq. (A.6) is the partial inner product, which acts only on the part of the unitary U that operates

on the Hilbert space Henv
. Indeed, the operators Ek are called sum operators, (super)operators

of Kraus, or simply Kraus operators. Thus, the most general evolution in a quantum system is
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described as:

E(ρ) =
∑
k

EkρsE
†
k. (A.7)

In particular, the set of Kraus operators {Ek} forms a complete set only if the quantum channel

E is trace-preserving. Indeed, observe that by taking the trace of E(ρ), we have:

1 = Tr{E(ρ)} = Tr

{∑
k

EkρsE
†
k

}
= Tr

{(∑
k

EkE
†
k

)
ρs

}
=⇒

∑
k

EkE
†
k = 1s (A.8)

since the above equality must hold for every state ρ, this implies that the operator

∑
k EkE

†
k must

necessarily be the identity operator. In the general scenario, where E is not trace-preserving, we

have:

Tr{E(ρ)} ≤ 1 =⇒ Tr

{(∑
k

EkE
†
k

)
ρs

}
≤ 1 =⇒

∑
k

EkE
†
k ≤ 1s (A.9)

where the result follows from the same argument as before. The previous inequality is defined in

the matrix sense, where for given matrices A and B of the same order, we say that A ≤ B ⇐⇒
uT (B − A)u ≥ 0 for all vectors u correctly defined with respect to the order of A and B, i.e.,

(B − A) is a non-negative operator.

In particular, the representation of the quantum channel E obtained in Eq. (A.7) is called the

Operator-Sum Representation. Moreover, note that starting from the sum representation and

assuming that the set of Kraus operators is such that Eq. (A.9) holds, it is possible to show that

E satisfies all the axioms A1, A2, and A3. Indeed, E is linear, and thus the convexity imposed by

A2 is immediately satisfied. On the other hand, since Eq. (A.9) holds, it follows that the positivity

of the map E is achieved, because:

∑
k

EkE
†
k ≤ 1s =⇒ Tr{E(ρ)} = Tr

{∑
k

EkE
†
kρ

}
≤ Tr {ρ} = 1 (A.10)

which shows that Tr{E(ρ)} ≤ 1. On the other hand,

Tr{E(ρ)} = Tr

{∑
k

EkE
†
kρ

}
=
∑
k

Tr
{
E†
kρEk

}
≥ 0, (A.11)

since every density operator ρ is positive. With this, axiom A3 is verified, and together with the

previous inequality, we have that axiomA1 is also verified. Thus, the sum representation satisfies

all the axioms A1, A2, and A3.

However, it is also possible to show that any quantum channel that satisfies all the axioms
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A1,A2, andA3must necessarily be expressed as a sum representation. The proof is simple; to do

so, let us define the general state |α⟩ =
∑

i |is⟩ ⊗ |ienv⟩. Furthermore, let us define the operator

σ in the spaceHs ⊗Henv
as:

σ ≡ (1env × E)(|α⟩ ⟨α|) (A.12)

where E is a quantum channel. We will show that E admits an operator-sum representation.

To do so, let us take the state |ψ⟩ =
∑

j ψj |js⟩ in the principal system and the corresponding

|ψ̃⟩ ≡
∑

j ψ
∗
j |jenv⟩ in the environment. Then, observe that:

⟨ψ̃|σ|ψ̃⟩ = ⟨ψ̃|

(∑
ij

|ienv⟩ ⟨jenv| ⊗ E (|is⟩ ⟨js|)

)
|ψ̃⟩ =

∑
ij

ψiψ
∗
jE (|is⟩ ⟨js|) = E(|ψ⟩⟨ψ|)

which follows from the convexity of E . Now, let σ =
∑

i |si⟩ ⟨si| be some decomposition of σ,

where the vectors |si⟩ need not be normalized. Let us define the map Ei(|ψ⟩) ≡ ⟨ψ̃|si⟩, which
gives us the following development:∑

i

Ei |ψ⟩ ⟨ψ|E†
i =

∑
i

⟨ψ̃|si⟩ ⟨si|ψ̃⟩ = ⟨ψ̃|σ |ψ̃⟩ = E(|ψ⟩ ⟨ψ|). (A.13)

Therefore, we obtain::

E(|ψ⟩ ⟨ψ|) =
∑
i

Ei |ψ⟩ ⟨ψ|E†
i (A.14)

for all pure states, |ψ⟩, ofH∫
. By convex-linearity it follows that

E(ρ) =
∑
i

EiρE
†
i (A.15)

In general, the condition

∑
iE

†
iEi ≤ I follows immediately from Axiom A1, which identifies

the trace of E(ρ) with a probability. This demonstrates that the axiomatic representation im-

plies the sum representation. Furthermore, combined with the previous result, we establish the

equivalence between the axiomatic and operator-sum representations.

Thus, any set of quantum operations must be characterized by a set of Kraus operators {Ek}.
However, a natural question that arises in this context concerns the uniqueness of the Kraus

operators, i.e., can a quantum operation E be described by only one unique set of Kraus operators

{Ek}? Indeed, the answer to this question is no. In fact, the Kraus operators are defined in

such a way that there is an inherent redundancy in their definition, which allows for their non-

uniqueness. Given the importance of this result, let us state it as a theorem below.

Theorem 8. (Unitary freedom in the operator-sum representation [41]) Suppose {E1, . . . , Em} and
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{F1, . . . , Fn} are operation elements giving rise to quantum operations E and F , respectively. By
appending zero operators to the shorter list of operation elements we may ensure thatm = n. Then
E = F if and only if there exist complex numbers uij such that Ei =

∑
j uijFj , and uij is anm by

m unitary matrix.

Proof. To begin, consider two quantum states |ψi⟩ and |ψj⟩. It is well known that these states

generate the same density operator if and only if they are related by:

|ψi⟩ =
∑
j

uij |φj⟩ ,

where uij is a unitary matrix of complex numbers. If the states have different dimensions, we

use a trivial embedding between the Hilbert spaces such that they are completed with zeros until

both have the same dimension.

Now, suppose that {Ei} and {Fj} are two sets of operation elements for the same quantum

operation, satisfying

∑
iEiρE

†
i =

∑
j FjρF

†
j for all ρ. We define the following states:

|ei⟩ ≡
∑

k |kR⟩ (Ei |kQ⟩) , |fj⟩ ≡
∑
k

|kR⟩ (Fj |kQ⟩) . (A.16)

Now, using the definition of the operator σ introduced in Eq. (A.12), it follows that σ =∑
i |ei⟩ ⟨ei| =

∑
j |fj⟩ ⟨fj|, and thus there exists a unitary matrix uij such that

|ei⟩ =
∑
j

uij |fj⟩ . (A.17)

For an arbitrary state |ψ⟩, we have

Ei |ψ⟩ = ⟨ψ̃|ei⟩ =
∑
j

uij ⟨ψ̃|fj⟩ =
∑
j

uijFj |ψ⟩ =⇒ Ei =
∑
j

uijFj. (A.18)

Conversely, assuming thatEi and Fj are related by a unitary transformation of the formEi =∑
ij uijFj , we can show that the Kraus operators {Ei} generate the same quantum operation as

the operators {Fj}. Indeed, consider a given Ei:

EiρE
†
i =

(∑
ij

uijFj

)
ρ

(∑
ik

u†ikF
†
k

)
=
∑
jk

(∑
i

uiju
†
ik

)
FjρF

†
k =

∑
jk

δjkFjρF
†
k = FjρF

†
j .

This implies that, for each specific index i, the operation EiρE
†
i is equivalent to an operation at

a specific index j. Summing over all indices i, we obtain:

E(ρ) =
∑
i

EiρE
†
i =

∑
j

FjρF
†
j .
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Thus, the equivalence between the quantum operations is established.

The formalism of quantum channels is fundamentally rich. Indeed, the previous develop-

ments lay the foundation for several other particularly interesting results associated with quan-

tum channels. To illustrate one such application, we will present the measurement model. In

essence, the measurement model consists of constructing a measurement scheme based on a set

of trace-preserving Kraus operators {Em}.
In this context, for each m, let Emk be a set of operation elements for Em. Introduce an

environmental system E, with an orthonormal basis |m, k⟩ in one-to-one correspondence with

the set of indices for the operation elements. Analogously to the earlier construction, define an

operator U such that

U |ψ⟩ |e0⟩ =
∑
mk

Emk|ψ⟩|m, k⟩.

Then, given Pm =
∑

k |m, k⟩ ⟨m, k| as a projector onto the environment, the measurement with

Pm yields:

Tr
{
PmU [ρ⊗ |e0⟩ ⟨e0|]U †} = Tr

{
Pm
∑
α

pαU (|ψα⟩ ⟨ψα| ⊗ |e0⟩ ⟨e0|)U †

}

= Tr

{
Pm
∑
α

pαU |ψα⟩ |e0⟩ (U |ψα⟩ |e0⟩)†
}

= Tr


∑
α,m,k,
k′,r,t′

pαEmk′E
†
rt |ψα⟩ ⟨ψα| δk,k′δm,rδk,tδmm′


= Tr

{∑
α,k

pαEmkE
†
mk |ψα⟩ ⟨ψα|

}

= Tr

{∑
k

Emk

(∑
α

pα |ψα⟩ ⟨ψα|

)
E†
mk

}
= Tr {Em(ρ)}

With E(ρ) ≡
∑

k EmkρE
†
mk, this determines that the probability associated with the labelm in a

measurement is given by Tr {Em(ρ)}. Given this result, we see that, according to the measure-

ment postulate, the post-measurement state ρ̃ can be written as:

ρ̃ =
Pm
[
U (ρ⊗ |e0⟩ ⟨e0|)U †]Pm

Tr {PmU [ρ⊗ |e0⟩ ⟨e0]
=

Em(ρ)
Tr {Em(ρ)}

. (A.19)

which establishes the result of how the measurement postulate in quantum mechanics is ex-

pressed in terms of a quantum operation.

Furthermore, there are other common models of quantum channels, which we state and

briefly highlight their applications below.
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• Partial trace. The partial trace is a quantum channel that acts on a composite system

ρAB , tracing out one of the subsystems (for example, B) and resulting in a reduced state on

subsystem A:

EtrB(ρAB) = trB(ρAB).

The Kraus operators for the partial trace over B are:

Ei = 1A ⊗ ⟨bi| ,

where {|bi⟩} is an orthonormal basis for subsystem B.

• Bit-flip Channel. The bit-flip channel performs a bit flip on the state |0⟩ of the computa-

tional basis to the state |1⟩, also in the computational basis. Indeed, this quantum channel

is characterized by the following Kraus operators:

E0 =
√
p1 =

√
p

[
1 0

0 1

]
, E1 =

√
1− pσx =

√
1− p

[
0 1

1 0

]
.

• Phase-flip Channel. The phase-flip channel introduces quantum phase errors through

the action of the Pauli matrix σz with probability 1 − p. Furthermore, the phase flip does

not modify the populations of the quantum state. The Kraus operators characterizing the

phase-flip channel are:

E0 =
√
p1 =

√
p

[
1 0

0 1

]
, E1 =

√
1− pσz =

√
1− p

[
1 0

0 −1

]
.

• Depolarizing Channel. The depolarizing channel is a quantum channel that models the

addition of quantum noise, where the state ρ is mixed with the maximally mixed state

1
d
, assigning a probabilistic weight p ∈ [0, 1]. Specifically, the depolarizing channel is

represented by:

E(ρ) = p1
2

+ (1− p)ρ.

• Amplitude Damping. The amplitude damping channel is a model of quantum noise that

describes the loss of energy from a quantum system to the environment, as occurs, for ex-

ample, in spontaneous decay or relaxation processes. This channel is particularly relevant

for physical systems such as atoms, ions, or quantum circuits, where energy dissipation

is common. The amplitude damping channel can be represented by the following Kraus
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operators:

E0 =

[
1 0

0
√
1− γ

]
, E1 =

[
0

√
γ

0 0

]
,

where γ denotes the probability of decay from an excited state |1⟩ to the ground state |0⟩.

• Phase Damping. The phase damping channel is a model of quantum noise that affects the

relative phases between states in a superposition without altering the populations of the

states. It is described by the Kraus operators:

E0 =

(
1 0

0
√
1− λ

)
, E1 =

(
0 0

0
√
λ

)
,

where λ is the probability of coherence loss.

Indeed, the quantum channels presented above constitute the main quantum channels em-

ployed in the context of quantum information theory. However, there are some particular results

that are obtained especially for certain channels possessing specific properties. In particular, for

the regime of Markovian dynamics, it is possible to show that the formalism of quantum channels

leads to the Lindblad equation for open systems [41].

In the specific context of our work, the quantum channel described by quantum twirling is

a unital quantum channel, that is, E(1) = 1, and furthermore, it is a conditional expectation

quantum channel, which we define below.

Definition 12. (Conditional expectation of quantum channel [133]). The map Λ : L(Hd1) →
L(H̃d2) whereHd1 and H̃d2 are a d1,d2-dimensional Hilbert space which satisfies:

(i) Λ is a positive map,

(ii) Λ(B) = B for all B ∈ L(H̃d2),

(iii) Λ(AB) = Λ(A)B for all A ∈ L(Hd1) and all B ∈ L(H̃d2),

(iv) Λ is trace preserving.

is called a conditional expectation.

Certainly, it is easy to verify that the operator ΛGT
is a particular case of a conditional ex-

pectation because, as we defined in Chapter 3, L(H̃d) corresponds to the subspace of density

operators that are invariant under the action of the thermodynamic group.

In our work, a particular result of interest is the guarantee that the splitting of gauge entropy

into diagonal entropy plus Holevo asymmetry is valid, and that the Holevo asymmetry is zero

if and only if the Hamiltonian has no degeneracies (provided that the state ρ is non-invariant).

Indeed, this result is achieved by employing the Data Processing Inequality on the well-known

Kullback-Leibler divergence, which we define below.
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Definition 13. (Kullback-Leibler divergence [50]). Let p be a probability distribution defined on the
alphabet X , and let q : X → [0,∞). The relative entropy D(p∥q) is defined as follows:

D(p∥q) ≡


∑

x p(x) log

[
p(x)

q(x)

]
if supp(p) ⊆ supp(q),

+∞ else,

where supp(·) denotes the support of the argument.

In particular, it is worth noting that the Kullback-Leibler divergence is not a metric in the

usual (mathematical) sense. Specifically, it can be shown that the triangle inequality does not

hold for this map. However, it can still be used as a measure of information and similarity be-

tween two probability distributions p and q, with its application relating to how similar these two

distributions are in terms of their entropic content, given by the Shannon entropy (classical case)

and von Neumann entropy (quantum case).

Finally, we state the Data Processing Inequality, which constitutes a fundamental result in

quantum information theory.

Theorem 9. (Data processing inequality). Given Λ : A → N a conditional expectation and two
positive states ρ, σ ∈ A, the following inequality holds

D(ρ∥σ) ≥ D(Λ(ρ)∥Λ(σ)) (A.20)

and the equality holds if, and only if,

ρ = σ1/2σ
−1/2
N ρNσ

−1/2
N σ1/2. (A.21)

Proof. For inequality in (A.20) see Ref. [134]. The result associated with the necessary and suffi-

cient conditions for equality in (A.20) to be achieved can be found in Ref [133].
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Appendix B

Group theory and Haar average

Some definitions from group theory and Lie groups are presented. In addition, the general

result for Haar averages over the unitary group is obtained.

B.1 Group theory and Lie groups

Definition 14. (Group) A group is a tuple (G, ·) where G is a non-empty set and · is a operation,
which we call the product, defined by:

· : G×G → G (B.1)

(a, b) → c = a · b,

where a, b and c are elements on G. And the product operation satisfies the following properties:

• a · (b · c) = (a · b) · c) for all a, b, c ∈ G. I.e. the product operation is associativity,

• There exists an element k ∈ G such that: a ·k = a for all a ∈ G. In special, k is called identity
element on G,

• For very element a ∈ G exists an element b ̸= a such that a · b = b · a = k. The element b is
called inverse of a and is usually denoted by b = a−1.

For simplicity, we will refer to the group simply asG, omitting the notation (G, ·), but making

it clear that the group structure is formed by the tuple of a non-empty set and an operation called

product as per Definition 14.

Definition 15. (Abelian group) If G is a group equipped with the product operation, and this
operation is commutative, i.e., the following equality holds:

a · b = b · a (B.2)

for all a, b ∈ G, then G is called abelian group. However, if this property not holds, we call G as
non-abelian group.
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Definition 16. (Finite group) The group G is called finite when the set G is finite. Therefore, G is
infinite when G not is finite.

In our work, we are interested in a specific type of groups, which are called Lie groups. In fact,

Lie groups differ from groups defined only according to Definition 14. In summary, Lie groups

possess an intrinsically geometric and topological character due to being defined under a specific

type of mathematical structure known as manifolds. Thus, we will briefly introduce the notion of

differentiable manifolds, and shortly thereafter, we will connect it with the structure of groups.

Definition 17. (Diferential manifold [135]) Let us consider a non-empty setG with a distinguished
family of open subsets with the following properties:

I) the empty set and the set G are both open,

II) the intersection of any finite collection of open sets is again open,

III) the union of any collection (enumerable) of open sets is again open.

Furthermore,

IV) G is provided with a family of pairs {(Ui, φi)};

V) Ui is a family of open sets which covers G, that is,
⋃
i Ui = G where φi is a homeomorphism

from Ui onto an open subset U ′
i of Rm.

VI) given Ui and Uj such that Ui ∩ Uj ̸= ∅, the map ψij = φi ◦ φ−1
j from φj (Ui ∩ Uj) to

φi (Ui ∩ Uj) is infinitely differentiable.

If G satisfies properties I, II, and III, then G is said to be a topological space. If G is a topo-

logical space that satisfies properties IV, V, and VI, then G is said to be a differentiable manifold.

In summary, properties I, II, and III of Definition 17 introduce a topological structure to the set

G; consequently, notions of distance and measure can be constructed on this set based on that.

Moreover, properties IV, V, and VI introduce generality regarding the topology of the setG. How-

ever, the introduction of the homeomorphism constructed from the open sets Ui of G with the

open sets U ′
i of Rm allows a manifold to be locally mapped into a subset of Rm. Finally, item VI

introduces the map ψ that connects two topological descriptions made from different open sets

of the manifold, allowing for coordinate changes.

Requiring the differentiability of the manifold G enables us to bring usual calculus concepts

into this set. With this framework in place, we can finally obtain the elegant notion of a Lie group.

Definition 18. (Lie group) A Lie group is a smooth manifold G equipped with an operation called
multiplication, such that the elements of G satisfy it as in the Definition 14.
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With this, we already have an interesting mathematical structure; however, we still need to

introduce an important concept to Lie groups that will allow us to have a vector space structure

from our manifold (G).

Definition 19. (Lie algebra) A Lie algebra g associated with a group G is a vector space formed by
the left-invariant vector fieldsX onG endowed with a product, called the Lie bracket or commutator
[·, ·] : g× g → g, which satisfies the following properties:

I) Bilinearity, i.e., linear in each argument.

II) Anti-symmetry, that is, [X, Y ] = −[Y,X] for all X, Y ∈ g.

III) The Jacobi identity, that is, for all X, Y, Z ∈ g, we have

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0. (B.3)

A particularly interesting Lie bracket is the commutator, usually defined by [A,B] = AB −
BA for any A,B ∈ g. An interesting aspect is the relationship between a Lie group G and its

algebra g. In fact, this connection can be made through the so-called exponential map [72, 75],

which is formally defined by:

exp : g → G (B.4)

X ∈ g → g ≡ exp(X) ∈ G (B.5)

Note that the exponential map is not necessarily equivalent to the exponential function;

however, for matrix Lie groups, the notions become equivalent, and thus the elements of a group

can be written as g = eX . Furthermore, the elements X ∈ g are called generators of the algebra.

B.2 Group Representation Theory

The mathematical structure provided by a Lie group—and consequently its manifold—is still

not sufficient for constructing various important physical concepts, especially for defining vector

spaces. However, from a Lie group, we can obtain a vector space.

Definition 20. (Representations) A representation of a Lie group G is a pair (V, π), where V is a
vector space, and π : G→ GL(V ) is a linear G-action on V .

To illustrate the concept of representation in a Lie group G, let us consider the group G =

SU(2), the special unitary group of dimension 2. In fact, the Lie algebra of the group is su(2),

whose generators are the Pauli matrices defined by:

σx =
1

2

(
0 1

1 0

)
, σy =

1

2

(
0 −i
i 0

)
, σz =

1

2

(
1 0

0 −1

)
, (B.6)
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which satisfy the following commutation relation that characterizes the algebra su(2):

[σα, σβ] =
ϵα,β,γ
2

σγ. (B.7)

where ϵα,β,γ is the Levi-Civita tensor. Now, let us consider the following matrices:

Jx =

0 0 0

0 0 −1

0 1 0

 , Jy =

0 0 −1

0 0 0

1 0 0

 , Jz =

0 −i 0

i 0 0

0 0 0

 . (B.8)

In fact, it is not difficult to verify that the matrices defined in (B.8) have zero trace and

satisfy the same type of commutation relation presented in Eq. (B.7). In summary, this simple

example effectively illustrates the notion of a group’s representation; indeed, the matrices Jα

represent the Lie algebra su(2) in the space of 3× 3matrices. However, both sets in Eq. (B.6) and

Eq. (B.8) represent the same algebra and are associated with the same group of transformations,

SU(2), regardless of the dimension of the vector space for which the group is represented.

This small example leads us to important notions within representation theory. In this sense,

we will introduce these concepts next, first defining the notion of G-morphisms or intertwiners.

Definition 21. (morphism) Let πV : G → V and πW : G → W be two representations of G in
the spaces V andW . A G-morphism (G−Homomorphism or intertwiners map) between them is a
linear map φ : V → W such that

φ(πV (g) · v) = πW (g) · φ(v) (B.9)

for all g ∈ G and v ∈ V .

With this, we can define the following types of representations.

Definition 22. (Types of representations) Let π : G→ GL(V ) be a representation of a group G in
the space of linear operators on a vector space V . Then, we say:

(I) The representation π is trivial if for all g ∈ G, we have π(g) = 1V ,

(II) Consider a second representation ofG in a spaceW , i.e., πW : G→ GL(W ). Then, π and πW
are called equivalent representations if there exists a linear operator A : V → W such that:

Aπ(g) = πW (g)A (B.10)

for all g ∈ G.

Now, let us define invariant subspaces.
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Definition 23. (Invariant subspace) Consider the representation πV of the group G in the vector
space V . A subspaceW of V is called an invariant subspace under the representation πV if π(g)w ∈
W for all g ∈ G, that is, π(G)W ⊂ W .

Note that from the definition of invariant subspaces, it is immediate that any representation

always has at least two invariant subspaces, which are:

• The first invariant space is formed by the zero vectorW = {0},

• The other invariant space is the entire space, i.e., V = W .

These two subspaces are referred to as trivial invariant subspaces or simply trivial subspaces.

The notion of invariant subspaces is substantially important within representation theory

since it allows us to establish the notion of irreducible representations, which are formally defined

as follows.

Definition 24. (Irreducible representations) A representation πV of a groupG in a vector space V is
said to be irreducible if its only invariant subspaces are trivial. If a representation is not irreducible,
it is said to be reducible.

In particular, both irreducible and reducible representations are interesting and relevant to

the context of this work. Specifically, there is an interesting case concerning reducible repre-

sentations that occurs when a space V can be decomposed into a direct sum of spaces Vk, i.e.,

V =
⊕p

k=1 Vk, where each subspace Vk is invariant. Under these circumstances, we can write

the representation πV as:

πV (g) =


πV1(g)

.
.
.

πVp(g)

 (B.11)

for all g ∈ G, where each representation πVk acts on a subspace Vk. When all the representations

πVk are irreducible, we say that the representation πV (g) is a maximally/completely reducible

representation.

In the context of operators, given an irreducible representation of some subspace πVk , it fol-

lows that the set of operators A : Vk → Vk in this subspace such that:

πVk(g)A = AπVk(g) (B.12)

for all g ∈ G are of the form A = λ1Vk for some λ ∈ C. This result is demonstrated in Schur’s

Lemma in the following section.
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B.3 Haar measure

In this section, we finally enter the context of Haar integration. In fact, the conception of a

measure associated with groups—in our particular objective of compact Lie groups—is a gener-

alization of the Lebesgue measure that we presented in Definition 9.

Theorem 10. (Haar [136]) Let G be a compact group. Then, there exists a unique positive and
normalized measure dµ which is left and right invariant under the action of the groupG. Therefore,
for any integrable function, we have:∫

G

dµ(g)f(g) =

∫
G

dµ(g)f(hg) =

∫
G

dµ(g)f(gh) =

∫
G

dµ(g)f(g−1) (B.13)

for all h ∈ G.

Proof. See Chapter 3 of [72] for a detailed discussion

The positivity of the Haar measure implies, form some g ∈ G∫
G

dµ(g)f(g) ≥ 0 =⇒
∫
G

dµ(g)f(g) = 0 =⇒ f(g) = 0 (B.14)

since f ≥ 0. The normalization of Haar measure is:∫
G

dµ(g) = 1. (B.15)

Certainly, our interest is to ensure that the formalism introduced in Chapter 3 is fully valid.

In this sense, the notion of Haar measure and integral must be extended to a multidimensional

context. Indeed, this can be done formally by the Fubini Theorem, which we state in Theorem 7.

With this, we finally obtain the result that ensures the existence of the Haar measure, as we

initially mentioned in Chapter 3. Furthermore, this result then establishes the foundation for

the existence of the induced Haar measure of the gauge group in Eq. (3.28), which is given by

Eq. (3.31), since for each instant t, the gauge group is always the Cartesian product of unitary

groups (which are compact Lie groups) and, consequently, is a compact Lie group.

Next, we will develop the necessary methods to rigorously obtain the Haar average result

given by Eq. (3.37). To do this, the first result we need to obtain is the so-called Schur’s Lemma.

Lemma 1. (Schur’s Lemma) Let πV and πW be irreducible representations of a Lie group G in the
spaces V andW . Consider theG−morphism φ : V → W , then we have the following implications:

(a) The G-morphism is either identically null or an isomorphism.

(b) If V = W , then φ = λ1 for some λ ∈ C.
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Proof. First, we will demonstrate item (a). We can show that the sets Ker(φ) and Im(φ) are

G-invariant subspaces of πV and πW . Indeed, note that given x ∈ Ker(φ), we have:

φ(πV · x) = πW (g) · φ(x) = πW (g) · 0 = 0 (B.16)

for all g ∈ G. Then, πV (g)x ∈ Ker(φ) for all g ∈ G, therefore Ker(φ) is invariant under πV . On

the other hands, for some y ∈ Im(φ) exist x such that

φ(πV · x) = πW (g) · φ(x) = πW (g) · y (B.17)

for all g ∈ G. Then, πW (g)y ∈ Im(φ), therefore Im(φ) is invariant under πW .

Since πV and πW are irreducible representations, then your only invariant subspaces are the

trivial subspaces, therefore, it follows that there are four possibilities to consider:

Ker(φ) = V e Im(φ) = W. (B.18)

Ker(φ) = {0} e Im(φ) = W. (B.19)

Ker(φ) = V e Im(φ) = {0}. (B.20)

Ker(φ) = {0} e Im(φ) = {0}. (B.21)

Note that the cases presented by Eq. (B.18) and Eq. (B.21) are impossible; indeed, both cases

violate the Rank-Nullity Theorem. The cases (B.19) and (B.20) may occur, and if (B.19) occurs,

then it follows that φ is an isomorphism from V toW . On the other hand, if (B.20) occurs, then

the application φ is identically zero.

Now, we will prove item (b). Indeed, if V = W , then from item (a) of the Lemma, it fol-

lows that φ is either the zero map; in this case, we only need to take λ = 0, and the result is

demonstrated, or the application is an isomorphism. Let us consider φ as an isomorphism; thus,

it follows that for some λ ∈ C, we have p(λ) ≡ φ − λ1 = 0, since λ is the eigenvalue of φ.

Therefore, let us take Ker(p(λ)), which is non-empty since the characteristic polynomial p(λ)

has some root in C. Since Ker(φ − λ1) is non-empty, it follows that φ − λ1 is not an isomor-

phism, according to item (a) of the Lemma; that is, the application p(λ) is identically zero, hence

it follows that:

p(λ) = 0 =⇒ φ− λ1 = 0 =⇒ φ = λ1 (B.22)

as desired.
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B.3.1 Haar average over the unitary group

The Schur Lemma plays a unique role in determining Haar averages. In the context where G

is a unitary group or a product of unitary groups, it is interesting to rewrite the Schur Lemma

for this particular case [137]. In this sense, let us consider two finite-dimensional complex vector

spaces Hn1
t
and Hn2

t
as Cn1

t and Cn2
t , respectively, and let G = U(d).

Here, I introduced the notation with the label t. This index plays an important role in this

work because we are in a context where, for each fixed instant of time t, we obtain a different

group; furthermore, the label t can also be associated with a simple parameter that, in some way,

modifies the studied group, as discussed in Chapter 5. Consequently, this notation is relevant

for this work; however, if the reader is not in a similar context, it can and should be avoided to

ensure simplicity and clarity in the notation.

Now, let us define theG−morphism between these two spaces, in this context thisG−morphism

are linear operators A : Cn1
t → Cn2

t . Furthermore, the representations v1t : U(d) → Hn1
t
and

v2t : U(d) → Hn2
t
are irreducible representations of the unitary group on Cn1

t and Cn2
t .

From this, we see that G-morphism A is characterized by:

v1tA = Av2t ⇐⇒ v1tA
(
v2t
)−1

= A⇐⇒ v1tA
(
v2t
)†

= A. (B.23)

With this in hand, we can now state Schur’s Lemma for unitary groups, which we formalize

below.

Lemma 2. (Schur’s Lemma for unitary group [137]) If v1t and v
2
t are irreducible representations of

U(d) on Hn1
t
and Hn2

t
then:

• If n1
t ̸= n2

t we have:

v1tA(v
2
t )

† = A =⇒ A = 0⃗. (B.24)

• If n1
t = n2

t and for equivalent v
1
t and v

2
t we have the following implication:

v1tA(v
2
t )

† = A =⇒ A = λ1 (B.25)

where λ is a constant.

As mentioned, our goal is to formally derive the mathematical results that ensure the validity

of the Haar average over a matrixX , as employed in this work. Specifically, we are interested in

averages of the form:

Xdd =

∫
dµVXV†, V =

p⊕
k=1

vkt (B.26)
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where each vkt ∈ U(nkt ), V ∈ U(d) and the Haar measure is

dµ =

p∏
k=1

dµk, dµk = dµ[U(nkt )]. (B.27)

We now employ Schur’s Lemma to derive an orthogonality relation associated with the irre-

ducible representations vkt associated with each Hilbert subspace Hk of the Hilber space Hk. To

this end, we have the following Lemma.

Lemma 3. (Orthogonality) Let
{
vkt
}
be a family of non-equivalent irreducible representations of the

unitary group on some complex vector spaces Hk and let Hd =

p⊕
k=1

Hk. Let X ∈ Hd be arbitrary

linear operator on Hd. Defining the trivial immersion of operators on Hk into operators on Hd,
Ik : Hk → Hd, by:

Ik(vkt ) =



v1t ⊕

(
p−1⊕
m=1

0nm

)
, for : k = 1(

k−1⊕
m=1

0nm

)
⊕ vkt ⊕

(
p⊕

m=k+1

0nm

)
, for : 1 < k < p(

p−1⊕
m=1

0nm

)
⊕ vpt for : k = p

(B.28)

for each vkt ∈ Hk, where 0nm are the nm × nm zero matrix.
Therefore, the averaging of X over all representations

{
vkt
}
is diagonal in relation of the index

k, i.e.

Xdd =
∑
k,m

∫
dµ Ik(vkt )XIm(vm†

t ) =
∑
k

∫
dµk Ik(vkt )XIk(vk†t ). (B.29)

Proof. Let consider the unitary representations ṽkt and ṽmt which are associated to the Hilbert

subspaceHk andHm. Therefore, using the trivial immersion and considering the element k, q of

the matrix Xdd, i.e.(Xdd)k,m, we have:

Ik(ṽkt ) (Xdd)km Im(ṽm†
t ) = Ik(ṽkt )

[∫
dµ Ik

(
vkt
)
XIm(vm†

t )

]
Im(ṽm†

t )

=

∫
dµ Ik(ṽkt )Ik(vkt )XIm(vm†

t )Im(ṽm†
t )

=

∫
dµ Ik(ṽkt vkt )XIm(vm†

t ṽm†
t ) (B.30)

=

∫
dµ Ik(vkt )XIm(vm†

t )
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where the equality in Eq (B.30) follows from the left and right invariance of the Haar measure.

Therefore, using the definition of (Xdd)q,m we obtain the following equality:

Ik(ṽkt ) (Xdd)km Im(ṽm†
t ) = (Xdd)km. (B.31)

From Eq.(B.31), we obtain k = m. Indeed, we can identify the G-morphism as the matrix

(Xdd)km. Thus, the G-equivariance property, together with Schur’s Lemma, guarantees that

Ik(ṽkt ) and Im(ṽm†
t ) are associated with isomorphic spaces, i.e., Hk

∼= Hnmt
. In particular, this

implies k = m. Consequently, we find that the Haar average is diagonal in the index k, leading

to the orthogonality relation for Haar averages, and Eq.(B.29) is obtained.

We can now apply this orthogonality relation to evaluate the Haar average within each sub-

space. The following lemma summarizes this result.

Lemma 4. (Haar average in subspace Hk) Let vkt be an irreducible representation of the unitary
group on some complex vector spaceHk with dimension dim {Hk} = nkt . LetX

k
t ∈ Hk be arbitrary

linear operator onHk. Then the Haar average of Xk
t over the unitary group U(nkt ) are:

[Xk
t ]dd =

∫
dµk v

k
tX

k
t v

k†
t =

Tr{Xk
t }

dim {Hk}
1nkt (B.32)

where dµk = dµ[U(nkt )] and 1nkt is the identity operator in nkt × nkt dimension.

Proof. Let consider the unitary representation ṽkt therefore, using the left and right invariance of
the Haar measure, we have:

ṽkt [X
k
t ]ddṽ

†
t = ṽkt

(∫
dµk v

k
tX

k
t v

k†
t

)
ṽ†t

=

∫
dµk(ṽ

k
t v

k
t )X

k
t (v

k†
t ṽ

†
t )

=

∫
dµk v

k
tX

k
t v

k†
t

= [Xk
t ]dd

then, the equality is obtained:

ṽkt [X
k
t ]ddṽ

†
t = [Xk

t ]dd (B.33)

which holds for any unitary represetation ṽkt . Indeed, it follows from Schur’s Lemma that the

Haar average must be proportional to the identity operator. That is, we must have:

[Xk
t ]dd = Ck

t 1nkt , (B.34)
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where Ck
t is the proportionality constant. We now determine the proportionality constant. Since

the Haar average is proportional to the identity operator, it is diagonal. Therefore, its trace com-

pletely characterizes this operator. Evaluating the trace of the operator [Xk
t ]dd, we find that:

Tr{[Xk
t ]dd} = Tr

{∫
dµk v

k
tX

k
t v

k†
t

}
=

∑
α

⟨α|
(∫

dµk v
k
tX

k
t v

k†
t

)
|α⟩

=
∑
α

∫
dµk ⟨α| vktXk

t v
k†
t |α⟩

=

∫
dµk

∑
α

⟨α| vktXk
t v

k†
t |α⟩ . (B.35)

Note that the equality in Eq. (B.35) corresponds to the interchange of the Haar integral and the

trace, which follows from the fact that both the trace and the Haar integral are linear functionals.

Tr{[Xk
t ]dd} =

∫
dµk Tr

{
vktX

k
t v

k†
t

}
=

∫
dµk Tr

{
Xk
t v

k†
t v

k
t

}
(B.36)

=

∫
dµk Tr

{
Xk
t 1nkt

}
(B.37)

= Tr

{
Xk
t

∫
dµk 1nkt

}
(B.38)

= Tr
{
Xk
t

}
. (B.39)

The equality in Eq.(B.36) follows from the cyclic property of the trace. We then utilize the

unitarity of the operators vkt to obtain the equality in Eq.(B.37). Next, we commute the integral

and the trace, as the Haar integral is evaluated only over the elements of U(nkt ), which do not

appear in Eq. (B.37). This commutation is permissible because the trace of Xk
t is treated as a

constant. Finally, we use the fact that the Haar measure is normalized, i.e.:∫
dµk 1nkt = 1nkt .

On the other hand, we can evaluate the trace of the operator [Xk
t ]dd using the equality Eq.(B.34),

obtaining:

Tr{[Xk
t ]dd} = Tr{Ck

t 1nkt } = Ck
t Tr{1nkt } = Ck

t dim {Hk}. (B.40)
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Thus, from Eq.(B.39) and Eq.(B.40), we can determine the constant Ck
t . Specifically,

Tr{[Xk
t ]dd} = Tr

{
Xk
t

}
= Ck

t dim {Hk} =⇒ Ck
t =

Tr
{
Xk
t

}
dim {Hk}

. (B.41)

Substituting Ck
t from Eq.(B.41) into Eq.(B.34), we obtain:

[Xk
t ]dd =

Tr
{
Xk
t

}
dim {Hk}

1nkt ,

which is the equality in Eq. (B.32). Therefore, the Lemma 4 is proved.

With this result in hand, we can finally obtain the general result used in this work to evaluate

Haar averages over the thermodynamic gauge group defined in Eq. (3.28). Given the significance

of this result for our work, we state it as a Theorem below.

Theorem 11. (Haar average) Let us consider the G group defined by:

G = U(n1
t )× U(n2

t )× . . .× U(npt ) (B.42)

which is a compact Lie group, similar to the structure to the gauge group defined in Eq. (3.28), which

is associated to the Hilbert space Hd =

p⊕
k=1

Hk where p ≤ d and dim {Hk} = nkt . Then, the Haar

measure induced by the group (B.42) is given by:

dG =

p∏
k=1

dµk, dµk = dµ[U(nkt )] (B.43)

which 1 ≤ k ≤ p. Therefore, the Haar average of any d× d matrix X over the G group is given by:

Xdd =

∫
dGVXV† =

p⊕
k=1

Tr{Xnkt
}

dim {Hk}
1nkt , (B.44)

where Xnkt
= XΠnkt

with Πnkt
being the projector of each subspaceHk and dim {Hk} = nkt .
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Proof. Now, we going to obtain the relation (B.44). For this, we consider the

Xdd =

∫
dG VXV†

=

∫
dG

p⊕
k=1

vkt X

p⊕
k=1

vk†t

=

p∑
k=1

∫
dG Ik

(
vkt
)
XIk

(
vk†t

)
=

p∑
k=1

∫
dµk Ik

(
vkt
)(∑

α

|α⟩ ⟨α|

)
X

(∑
β

|β⟩ ⟨β|

)
Ik
(
vk†t

)
=

p∑
k=1

∫
dµk Ik

(
vkt
) (

Πnkt
XΠnkt

)
Ik
(
vk†t

)

where the projectors of all Hilbert space:

∑
γ

|γ⟩ ⟨γ| = 1 with γ = α, β effectively become the

projectors onto the nkt subspace due to the other elements of the matrices Ik
(
vkt
)
and Ik

(
vk†t

)
are zero outside this subspace.

Now, we going to define the following auxiliary matrix Xk
t as:

Ik(Xk
t ) = Πnkt

XΠnkt
, (B.45)

where Xk
t is the restriction of X to the subspace defined by the projectors Πnkt

, resulting in an

nkt × nkt matrix. Utilizing the preceding relation, the following development is obtained:

Xdd =

p∑
k=1

∫
dµk Ik

(
vkt
)
Ik(Xk

t )Ik
(
vk†t

)
=

p∑
k=1

∫
dµk Ik

(
vktX

k
t v

k†
t

)
=

p∑
k=1

Ik
(∫

dµkv
k
tX

k
t v

k†
t

)

=

p⊕
k=1

Tr{Xk
t }

dim {Hk}
1nkt

where the last equality follows from the Lemma (4). Finally, using the relation between Xk
t and

X , we can obtain the following equality:

Tr
{
Xk
t

}
= Tr{XΠnkt

}. (B.46)
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In fact, to obtain Eq. (B.46), we evaluate the trace of Ik(Xk
t ). First, applying the definition of

immersion from Eq. (B.28), we find that for all k:

Tr
{
Ik(Xk

t )
}

=



Tr

{
Xk
t ⊕

(
p−1⊕
m=1

0nm

)}
= Tr

{
Xk
t

}

Tr

{(
k−1⊕
m=1

0nm

)
⊕Xk

t ⊕

(
p⊕

m=k+1

0nm

)}
= Tr

{
Xk
t

}

Tr

{(
p−1⊕
m=1

0nm

)
⊕Xk

t

}
= Tr

{
Xk
t

}
, (B.47)

therefore, the trace is invariant under changes in k. On the other hand, using Eq. (B.45) and the

cyclic property of the trace, we have:

Tr{Ik(Xk
t )} = Tr{Πnkt

XΠnkt
} = Tr{XΠnkt

}. (B.48)

Combining Eq.(B.47) and Eq.(B.48), we arrive at the desired equality (B.46). Consequently, the

Haar average of X can be expressed as:

Xdd =

p⊕
k=1

Tr{Xnkt
}

nkt
1nkt .

Thus, the proof of the Theorem is complete.

Corollary 3. The Haar average of any matrix X is equal to the Haar average of the diagonal part
of X .

Proof. Trivial.
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