













































































































































 

Information Theory

Foundations and Applications

Note 1

INTRO Dution to

Information theory
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Introduction

Information theory
an wers two fundamentalquestions

what is the ultimate dots compression
Answer Shannon entrepy

what is the ultimate transmission rateofcommunication
Answer The channel capacity

These problems were solved bywhat Is known

teda as Shannon coding theorems that are

the basis of Information theory

Statisticalphysics thermodynamics

Computer science Kolmogorov complexity

statistical inference Occam's razor

probability theory hepotesis testing

Are some developments that follows from
Information theory
















































































































































Before proving the theorems we need to Introduce
some fundamental concepts starting with the very
notion of information

It reformatted he b meet
one of the fundamental contributions of Shannon
Is the notion of a bit as a measure of Information

PHg bit sheon bit

two statesof measure of the
A physical system surprise upon learning

magnetic spin the outcome of a random
binary experiment

If we toss a from coin and look at the outcome

we emcee set of information

The outcome of a coin flip Is the physical bit

but it Is the Information associated with the

Random nature of the physical bit that we

want to measure
















































































































































Now that we have a unit to measure information we need
to define the measure

Let us assume that every physical system can be

described as a random variable

X pxbc x e f

alphabet

x realization of the random variable

D x probability
distribution associatedto a

Shannon's notion of Informationcontained an te
occurrence of An event

i I must be a function only on the probability

in I must be a
continuous function

iii I must be additive for independent events

There is only one function that respect these

postulates
















































































































































Let us consider s andependent occurrences of the
event se Then I must be a function of the

total probability Excel

I Pxe
ˢ I ipxc.ec Pxe

Ed I pay I px1a

dt I exec
2

px x I press

I tpx x 2 I pxlc

SI Px x1

As a consequence for any dateger t we have

I tp.la
ᵗ I epxia I Pxia

I Px x1
















































































































































therefore for any Rohenil number

r

we must have

I Expo rI Pxix

New any probability can be written as

Px x 2105Px
x

And any real number can be arbitrarily well

approximated by a notional number Then

I pxe I 2 59 1
log Pocal I 2

So we choose I 2 I to get

f TTTT.ttI gp
ee

This is the amount of Information contained

In the event x It Is how much we learn

from knowing the value of X
















































































































































I Is the measure of the Information contained in
a single occurrence of the random variable We

are interested in the Information contained in

the physical system which is the Information

source Therefore we define the average

Informston

ff igIIIIfffi f lt f
e

The Is Shannon entropy which measures

the uncontaint we have about X on how

much information we go.vn when
we learn

the value of X

For a fair coin we have

Pxed HX lost lost

x H T I bit
















































































































































Seme prepedes of sheen entropy

a Entropy is non negative

HCA 0

This Follows because It Is the average of a positive
quantity

b The entropy is invariant with respect to the

permutations of the Denhartions of X

This is because It depends only on the

probabilities net on the values of the
realm tons

c H x 0 for a deterministic variable

let us consider a deterministic distribution

Pxbc Sapao

H x 0

If H X 0 then we have
















































































































































Pyle log p
0 for all x E X which

Implies Px lol 0 on Px c 1 Since

Polid Must be a probability distribution

we must have px 6 1 and Pxcool 0 for
all others Values of x

This is intuitively expected from the

meaning of entropy

d ACX as upper
bounded

H x log x1

with 101 being the cardinality of X

First Let us consider a uniform random variable

Px64 x

For this case we have

H x logtel
















































































































































Let us now move to the inequality
we consider a Lagrangian optimization with
the Lagrangian being defined as

H x N E Pxcx 1

82 Elog pain 1 7 1 Spex 0

logPx 1 0 Px e 27
t

since is constant the probability
distribution that maximazes H X Is the

uniform one

Therefore we conclude
that

n.tt eittti
















































































































































other measures of information

Cent entropy

If two random variables are correlated by measuring

one of them we obtain Information about the other

let us define the conditional Information content

i say log Px y xly

The conditional entropy is defined as the

expected contitent information content

H X 4 Ex y i Xly EPyly H x Y g

Ey Pxykiy logPxpyf.ly

where we used Px y Pyly Pxly x y

H X1 is the amountof uncertainty about

when we know Y
















































































































































Int Entropy

It Is the entropy of the Joint random

variable X Y

H x Y Ex hi x y EgPay 99 logPxebay

H X Y EyPmi xis logPx x logPrix19

Ey Px x y legPxed Pyy ay logPyxly

H x H Y X

Entropy as sub additive

H Y H Y X

H x y H X H Y X H X H Y

H X YI HIXIHET
















































































































































The mL information

It is a measure of the come tokens between

two random variables

I x x H X H X Y

E Paras los

since H x H XY I xYT7

The equality as
achievIandonby

If the random variables are Independent

Px yes g PxedPyly I x y 0
















































































































































Retire entrepy

The relative entropy as a measure of how

from one probability distribution Px x as

from another one q c

It Is defined as

P1 9 PxGlog

If supp P supp q

The mutual information
can be written

in terms of the relative entropy as

I x X D px.ykisillpxbaxP.ly

This tells us how far we are from
Independence
















































































































































We can use this result to prove that

entropy Is an concore function

H X Px a logPx e Pxlog PII

E Pyles E Px legUx

Taking Ux uniform Distribution

H x D pl Ux log ly

log 41 H x D Px Ux

Now we have that D px179x Is convex

D apitlexlpalldfitledlf.cl
ftp.tt dlpullg tf f

Efp.la a 11Pa lost

XD P 1191 i d DCP 1192
















































































































































the second step Follows from the fact
that for real positive numbers a and bi

E a as Fails

Therefore for our special case

Apa 9 7 Pallavi i 1102 XD Polly i 7 D pallor

D Ap 1 d Pull u dDLP 110 i d D pallu

which implies

los 1 A xp 1 1 Pe a log x A Po

e d eg x H Pc

log1 1 7H p N 2 HIP

H XP 11 d Pc H p 1 d H P2

1HIXIIscnf
















































































































































Data processing inequality

Let p and g
be two probability distributa

and let A be a classical channel Then

1041977 1

Pef
If supp p supp f then D p1 g 00

and the inequality is trivial

If supplp supp g we have

supp sp supp Af

Let us start by rewritting the the quantifies

appearing in the enegrality

D sp11 a aptly leg
















































































































































1 APNA style Plac lesftp.t

Epic Acyla log fy
Pic l.gexplzscypoe.gs f

Alybe is the conditional probability distribute

defining the classical channel

Y

This saphes that

D p119 D Apl Ag D plr

r goal exp scale log
















































































































































Now note that

Eric Get say a log Iff
914 distal expleas ff
9145114 y
E.SK ACYKD f
Aply 1

Er x I

D phr 0

which proves data processing inequality
















































































































































Fano's inequality

y

Noisy communication channel

Y Is processed and
the best estimator

x ̅ of X Is produced The probability

ennon Is

Pe Pr x ̅

If the channel Is noiseless we have

Pyl ylos Sype A Xly 0

If the noise Increases H X Y Increases

H X 4 quantifies the amount of information
lost in the channel
















































































































































Fane's inequality provides a quantitative relation

between Pe And H X Y

let us assume

y x ̅
Then

H x Y H X x ̅ helpe Pelos 1 1 1

with hip plogp i P lg e p

Note that

Hpe Peles 1 1 1 0

H X Y 0

As It should
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Let denote an error Indicator

e 49
x ̅
x ̅

Consider the entropy

H Ex x ̅ A xIx ̅ HE x ̅

If we know both X and x ̅ there Is no

uncertainty About E There fore

H E x ̅ 0

And

H Ex x ̅ H XII

Now let us consinen the following chain

y x ̅
















































































































































then we have

I x x x x ̅ H x X H Xly

path processing inequality

New we have
H ex x ̅ HK x ̅ H X x ̅

Conditioning
reduces entropy H E H X EX

helpe pett x x ̅ E 1

i pe H X x ̅ E 0

helpe Pc log 1 1 1

when there is no error E 0 there Is

no uncertainty about Also the uncertainty

about X when x ̅ Is available and we have an

error E 1 Is less than the uncertainty

of a un form Distribution 1 1 1 1


