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Preliminaries

From the definition of entropy, we can define the joint entropy of two random
variables X and Y as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log (pXY (x, y)) ,

where pXY (x, y) is the joint probability of the realizations x and y. This is the
total uncertainty we have about both variables taken together

Now, we can ask by how much the uncertainty about one random variable
changes when we learn the value of the other one. This is quantified by the
conditional entropy

H(Y |X) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log
(
pY |X(y|x)

)
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Preliminaries

Another important quantity is themeasure of the amount of correlations shared
by the random variables, which is called mutual information

I(X : Y ) =
∑
x∈X

∑
y∈Y

pXY (x, y) log

(
pXY (x, y)

pX(x)pY (y)

)
,

where pY (y) =
∑

x∈X pXY (x, y) and pX(x) =
∑

y∈Y pXY (x, y) are the marginal
probabilities.

The mutual information is related to the individual and joint entropies as

I(X : Y ) = H(X) +H(Y )−H(X,Y )
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Preliminaries

Let us now suppose that we have a random variable whose probability distri-
bution is qX(x) but we think that it is pX(x). How inefficient is this? The answer
is given by the relative entropy (Kullback-Liebler divergence)

D (pX(x)||qX(x)) =
∑
x∈X

pX(x) log

(
pX(x)

qX(x)

)

Observe that, if supp[qX(x)] ̸⊂ supp[pX(x)],D diverges. This is a positive quan-
tity that is zero if and only if qX(x) = pX(x).

Now we can describe Shannon’s second coding theorem.
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The channel capacity — The problem

Let us now assume that the channel connecting Alice and Bob is not ideal. In
other words, the information transmitted through the channel is not reliable.

The discrete channel is characterized by two random variables, X (the input)
andY (the output), and the conditional probability p(x ∈ X |y ∈ Y). The channel
is also memoryless.

Since using the channel is expensive, Alice wants to minimize the uses of the
channel while reliably communicate to Bob. It is natural to understand the ca-
pacity of the channel as

C = max
pX(x)

I(X : Y )
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The channel capacity — Error correction

Let us consider that the channel flips the input bit with probability p and leaves
it unchanged with probability 1−p. This is known as the bit-flip channel, that is
assumed to be i.i.d.. Communication over such a channel works only if p → 0.
One solution for the noisy case is error correction. Let us consider redundant
encoding of information

0 → 000, 1 → 111

Alice transmits the bit 0 using the codeword 000 that demands three uses of the
channel. By majority vote, an error occurs when two or three flips are caused
by the channel. For the code to work the error probability should satisfy

pe = p3 + 3p2(1− p) = 3p2 − 2p3 < p ⇒ 0 < p < 1/2
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The channel capacity — Error correction

We still have a significant probability of error. We can apply the majority vote
again, using another code as an inner code, like 0 → 000 (similar for bit 1)

0 → 000 000 000 1 → 111 111 111

Such code reduces the error probability to O(p4). Alice and Bob can continue
this game until they reach a good probability of error. The problem is that the
rate of the first coding is 1/3, dropping to 1/9 for the second and so one. There-
fore, to achieve an arbitrarily small probability of error, the rate of communica-
tion vanishes.

Is there a way to code information into a noisy channel while keeping a good
rate of communication?
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The channel capacity — The problem

Now, Alice wants to achieve asymptotic reliability in communication. She se-
lects messages from the set [M ] = {1, ...,M} with uniform probability. This
implies that we do not care about the content of the message. The only thing
that matters is her ability to send any information, reliably. The channel is mod-
elled as a conditional probability

N : pY |X(y|x)

Now, let Xn = X1X2 · · ·Xn and Y n = Y1Y2 · · ·Yn be the random variables
associated with the sequences xn = x1x2 · · ·xn and yn = y1y2 · · · yn, respec-
tively. Under i.i.d. assumption, we can write

pY n|Xn(yn|xn) =
n∏

i=1

pY |X(yi|xi)
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The channel capacity — The problem

If Alice selects a message m, the code scheme translates it to the codeword
xn(m) (n uses of the channel). Bob gets the corrupted codeword yn(m̂).

The rate of a given code scheme is

R =
# number of message bits

# of channel uses
=

log(M)

n
.

Given a code C, the average error probability is

pe(C) =
1

M

M∑
m=1

pe(m, C)
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The channel capacity — The problem

It is possible to prove that

pe(C) ≤ ϵ ⇒ pe(m, C) ≤ 2ϵ

for at leas half of the messages in [M ].

Shannon’s theorem states that there is a code that achieves the capacity of a
given noisy channel with vanishingly small error probability.
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The channel capacity — Proof (Bird’s eye view)

To prove that there is a code that achives a vanishingly small error probability
while reaching the capacity of the channel, Shannon considered the following

• Large number of uses of the channel (law of large numbers and
probability theory)

• Typical sequences and the typical set

• The new ingredient was the notion of a random code (beyond the
randomness of Alice’s choice of the message and also the one coming
from the channel)

10/22



The channel capacity — Proof (Bird’s eye view)

The codewords themselves are chosen in a random way, accordingly with a
random variable X. Each letter xi of a given codeword xn is selected accord-
ing to the probability distribution pX(xi). So, the codeword itself becomes a
random variable Xn(m). Given that this choice is i.i.d., we have

Prob [Xn(m) = xn(m)] = pX1X2...Xn(x1(m)x2(m) · · ·xn(m)) =

n∏
i=1

pX(xi(m))

So, the probability distribution does not depend explicitly on m (it is the same
for all messages). The code itself becomes a random variable. The probability
of choosing a particular code C0 is then

pC(C0) =
M∏

m=1

n∏
i=1

pX(xi(m))
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The channel capacity — Proof (Bird’s eye view)

Shannon’s insight was to study the expectation of the average error probability

EC [pe(C)] =
1

M

M∑
m=1

EC [pe(m, C)] = EC [pe(1, C)]

Since the probability is independent of themessage, we could choose any num-
ber instead of m = 1. Shannon proceeded by computing an upper bound on
this probability EC [pe(C)] ≤ ϵ, which implies that there exists some determin-
istic code C0 for which

pe(C0) ≤ ϵ

Thus eliminating the randomness of the code!
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The channel capacity — Proof (Bird’s eye view)

Now, we come back a few slides and simply throw away half of the messages,
the ones with the worst probability of error, thus reducing the number of mes-
sages from 2nR to 2n(R−1/2), causing the rate to change from R to R − 1/n,
which is negligible in the large n limit. After this step, we have

max[pe(C0)] ≤ 2ϵ

The only thing that we need to understand is the size of the code employed in
the communication process given the size of the message set M = 2nR.
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The channel capacity — Proof (Bird’s eye view)

We want to keep the rate constant while taking the asymptotic limit and ask
about the maximum allowed rate, while maintaining a vanishingly small prob-
ability of error. To do this, we need to determine the number of distinguishable
messages Alice can send to Bob.

This is done with the introduction of the conditional typicality, which is based
on the the conditional entropy. The idea is that for a given codewordxn weneed
to identify the set of possible output codewords yn at Bob’s side. Conditional
typicality says that, for each xn there is a corresponding conditional typical set
at the output.
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The channel capacity — Proof (Bird’s eye view)
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The channel capacity — Proof (Bird’s eye view)

The conditional typical set has the following properties

Conditional AEP
• It has almost all the probability

• Its size is approximately 2nH(Y |Y )

• Uniform probability for the conditional sequences yn

Let us now describe how the code works!
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The channel capacity — Proof (Bird’s eye view)

Steps of communication
• Alice generates 2nR messages according to pX(x).

• Bob does not know the message, so the output sequence yn must be
generated according to the probability pY (y).

• Bob verifies if yn belongs to the typical set (whose size is 2nH(Y )).

• If yes, them he employs his knowledge of the code in order to determine
to which conditional typical set yn belongs. The size of these sets is
2nH(Y |X).

• Now, Alice and Bob must structure the code in such a way to prevent the
error in this last step.
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The channel capacity — Proof (Bird’s eye view)

They must have no overlap between the output conditional sets! Then, Bob
should be able to decode the output sequence to a unique input one. Theymust
divide the set of the output typical sequences into M subsets of conditionally
typical outputs, all of size 2nH(Y |X). By setting

M = 2nR =
2nH(Y )

2nH(Y |X)
= 2n(H(Y )−H(Y |X))

the job is done!
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The channel capacity — Proof (Bird’s eye view)
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The channel capacity — Proof (Bird’s eye view)

It turns out that Alice can reliably communicate to Bob with a rate

R ≤ H(Y )−H(Y |X) = I(X : Y )

We finally achieve the channel capacity. Alice chooses her code according to
pX(x). Since the mutual information is concave, there is a single distribution
that maximizes it. We then define the channel capacity as

C(N ) = max
pX(x)

I(X : Y )
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Shannon theory

With this we finish the outlook at Shannon’s theorems. In summary, we saw
that if we compress information at the rate smaller than the entropy of the
source, such information can be reliably decoded. Also, if we transmit infor-
mation at a rate smaller than the channel capacity, this information can be
reliably decoded at the output of the channel.

One thing that is missing is the proof that both of these rates are optimal. This
is done by means of the so called converse theorems, that we will not present
here. They can be found in the books mentioned earlier.
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