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Introduction
Typicality is a fundamental concept in the proofs of Shannon coding theorems.
The first one, data compression, relies on the notion of typical set, while the
channel capacity theorem is rooted into the conditional typicality.

The central object here is the asymptotic equipartition property, which is the
application of the law of large numbers to a sequence drawn independently
and identically from a distribution pX(x) for some random variable X.

This property shows that we can split the set of all possible sequences into
two subsets: the typical set containing the sequences that are overwhelmingly
likely to occur and the atypical set that contains all other sequences.

We here describe the definition and the properties of the classical typical set.
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Example of typicality
Let us consider a randombinary variable that outputs 1 with probability 3/4 and
0 with probability 1/4. We let such an information source to emit a sequence
of n bits. The sample entropy of such a sequence is

H(X) = − 1

n
log

(
pN(1|n)(1− p)n−N(1|n)

)
whereN is the number of times the bit 1 appeared in the sequence of length n.

The true entropy of the source is

H(X) = −1

4
log

1

4
− 3

4
log

3

4
≈ 0.81
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Example of typicality
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Weak typicality
Let X be a random variable X = {pX(x),X} and let {ai}|X |

i=1 labels the letters
of the alphabet. This random variable describes the information source.

Now, assuming that the symbols are drawn i.i.d, let the source emitsn symbols.

• Xn = X1X2 · · ·Xn is the random variable associated with the sequences
• xn = x1x2 · · ·xn is a particular realization of Xn

The probability of a particular string xn is

pXn(xn) = pX1,X2,··· ,Xn(x1, x2, · · · , xn) = pX1(x1)pX2(x2) · · · pXn(xn)

= pX(x1)pX(x2) · · · pX(xn) =

n∏
i=1

pX(xi)
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Weak typicality
Intuitively, at large n we expect that

pXn(xn) = pX(x1) · · · pX(xn) ≈ pX(a1)
npX(a1) · · · pX(a|X |)

npX(a|X|)

The information of a particular string is then

− 1

n
log (pXn(xn)) ≈ −

|X |∑
i=1

pX(ai) log pX(ai) = H(X)

Based on this, we define the sample entropy as

H(xn) = − 1

n
log (pXn(xn))
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Weak typicality
From this, we can define the following.

Typical sequences
A sequence xn is δ-typical if its sample entropyH(xn) is δ-close to the entropy
of the random variable X describing the information source, H(X)

Typical set
It is the set of all typical sequences

TXn

δ =
{
xn :

∣∣H(xn)−H(X)
∣∣ ≤ δ

}
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Properties of the typical set

• Unity probability: The typical set asymptotically has probability one

Pr
[
xn ∈ TXn

δ

]
≥ 1− ϵ ∀ ϵ ∈ (0, 1) and δ > 0

• Exponentially smaller cardinality: The total number of sequences
∣∣TXn

δ

∣∣
in the typical set is exponentially smaller than the total number of
sequences, |X |n, except when pX is uniform

(1− ϵ)2n(H(X)−δ) ≤
∣∣TXn

δ

∣∣ ≤ 2n(H(X)+δ) ∀ ϵ ∈ (0, 1) and δ > 0

• Equipartition: The probability of a particular δ-typical sequence xn is
approximately uniform

2−n(H(X)+δ) ≤ pXn(xn) ≤ 2−n(H(X)−δ)
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Typical set
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Data compression

Shannon compression
The entropy of an information source specified by a discrete random variable
X is the smallest achievable rate for compression

inf{R : R is achievable for X} = H(X)
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Proof
The proof consists of two parts

1. Direct coding: the proof exhibits a coding scheme with an achievable rate
and demonstrates that its rate converges to the entropy in the asymptotic
limit

2. Converse theorem: It is a statement of optimality. It establishes that any
coding scheme with rate below the entropy is not achievable.

Typical sequences and their properties are employed for proving a direct cod-
ing theorem, while the converse part resorts to entropy inequalities.
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Weak jointly typicality
Let X and Y be random variables with xn = x1x2 · · ·xn and yn = y1y2 · · · yn
being two independent realizations of them. The sample joint entropy, under
i.i.d assumption, is defined as

H(xn, yn) = − 1

n
log (pXn,Y n(xn, yn))

Jointly typical sequences
Two sequences xn and xn are δ-jointly typical if its sample joint entropy
H(xn, yn) is δ-close to the joint entropy H(X,Y )

Jointly typical set
It is the set of all jointly typical sequences

TXn,Y n

δ =
{
(xn, yn) :

∣∣H(xn, yn)−H(X,Y )
∣∣ ≤ δ, xn ∈ TXn

δ , yn ∈ T Y n

δ

}
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Properties of the joint typical set

• Unity probability: The typical set asymptotically has probability one

Pr
[
(xn, yn) ∈ TXn,Y n

δ

]
≥ 1− ϵ ∀ ϵ ∈ (0, 1) and δ > 0

• Exponentially smaller cardinality: The total number of sequences∣∣∣TXn,Y n

δ

∣∣∣ in the typical set is exponentially smaller than the total number
of sequences, (|X ||Y|)n, except when the joint probability is uniform.

(1− ϵ)2n(H(X,Y )−δ) ≤
∣∣∣TXn,Y n

δ

∣∣∣ ≤ 2n(H(X,Y )+δ) ∀ ϵ ∈ (0, 1) and δ > 0

• Equipartition: The probability of a particular δ-typical joint sequence
(xn, yn) is approximately uniform

2−n(H(X,Y )+δ) ≤ pXn,Y n(xn, yn) ≤ 2−n(H(X,Y )−δ)
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Joint typical set
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Weak conditional typicality
Let us start by defining the conditional sample entropy of two sequences xn

and yn with respect to pX,Y (x, y) = pX(x)pY |Y (y|x) as

H(yn|xn) = − 1

n
log

(
pY n|Xn(yn|xn)

)
with

pY n|Xn(yn|xn) = pY |X(y1|x1) · · · pY |X(yn|xn)

Conditionally typical set
It is the set of all conditionally typical sequences

T Y n,xn

δ =
{
yn :

∣∣H(yn|xn)−H(Y |Y )
∣∣ ≤ δ

}
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Properties of the conditionally typical set
Unity probability: On average with respect to a random sequence Xn, the set
T Y n,xn

δ has asymptotically unity probability. Therefore, it is highly likely that
random sequences Y n and Xn are such that Y n is a conditionally typical se-
quence

EXn

{
PrY n|Xn

{
Y n ∈ T

Y n|Xn

δ

}}
≥ 1− ϵ

Exponentially small cardinality: The number
∣∣∣T Y n,xn

δ

∣∣∣ f conditional typical se-
quences is exponentially smaller than the total number |Y|n∣∣∣T Y n,xn

δ

∣∣∣ ≤ 2n(H(Y |X)+δ) and EXn

{∣∣∣T Y n,Xn

δ

∣∣∣} ≥ (1− ϵ)2n(H(Y |X)−δ)
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Properties of the conditionally typical set

Equipartition: The probability of a given δ-conditionally typical sequence yn

(corresponding to the sequence xn) is approximately uniform

2−n(H(Y |X)+δ) ≤ pY n|Xn(yn|xn) ≤ 2−n(H(Y |X)−δ)

The proofs of these properties follow from the application of the law of large
numbers.
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Conditional typical set
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Strong typicality
Instead of considering that the sample entropy approaches the entropy of the
source, strong typicality assumes that the empirical frequencies converges to
the true probability of the source.

∣∣∣∣ 1nN(x|xn)− pX(x)

∣∣∣∣ ≤ δ

Strong typicality implies weak typicality. And all of them has the same proper-
ties.
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Channel capacity theorem
The maximum mutual information I(N ) is equal to the capacity C(N ) of a
channel N = pY |X(y|x)

C(N ) = max
pX(x)

I(X,Y )

The proof also contains two parts. The first one, the direct coding, employs the
joint and conditional notions of typicality in order to prove that there is a code
for which the rate C(N ) is achievable. The converse theorem shows that such
a rate is optimal.
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