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Data compression — An example

Alicewants to communicatewith Bob. Its information source, characterized by
the random variableX , chooses among the symbolsX = {a, b, c, d} according
with the probabilities pX(x) = {1/2, 1/8, 1/4, 1/8}.

The channel only takes bits as inputs. Therefore, we need a code that trans-
lates the information emitted by the source into something that can actually
be transmitted over the channel. One possible choice is

a → 00, b → 01, c → 10, d → 11

With this codewe can translate themessage into codewords that are accepted
by the channel!
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Data compression — An example

How can the efficiency of this code be characterized? The expected length of
the codeword is a good measure

l =
∑
x

pX(x)lx

Such a quantity, for our code, is just l = 2. This means that, on average, Alice
has to send two bits over the channel (two uses of the channel).

Is this the best we can do?
No! We did not take into account the non-uniformity of the probability distribu-
tion. We can certainly do better!
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Data compression — An example

Given the probability density pX(x) = {1/2, 1/8, 1/4, 1/8}, let us then choose a
code according to the following scheme
• Smallest codewords for the highest probability
• The code must be reliable

We can then define

a → 0, b → 110, c → 10, d → 111

which results in l = 7/4 < 2.

InterestingH(X) = 7/4. But this is not a coincidence. Shannon’s theorem says
that such a code is optimal.
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Data compression — Statement of the theorem

Theorem 1 (First Shannon coding theorem)
The entropy of an information source, H(X), specified by a discrete random
variable X , is the maximum achievable rate for data compression.

In other words, Shannon’s first theorem states that there is an optimal code for
which the rate of data compression is Shannon’s entropy! This also provides
an operational interpretation for H(X).
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Data compression — Shannon’s insight

Shannon’s idea was to let the source emit a large sequence of symbols

xn = x1x2...xn with n very large

xi is the i-th emitted symbol as a realization of the random variable Xi. Xn is
the random variable associated with the sequence xn.

The next step is to code the sequence as a large block. But why this works?
Shannon discovered that the space of all sequences can be split into two sets,
the one containing the typical sequences, that contains all the probability, and
the rest. Also, the cardinality of the typical set is exponentially smaller than
that of the total set, in general.
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Data compression — The problem
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Data compression — The typical set

Let us assume that the information source is i.i.d (independently and identi-
cally distributed). This means that each symbol is independent of the previous
ones and that pXi(x) = pX(x) ∀i. Therefore

pXn(xn) = pX1,X2,...,Xn(x1, x2, ..., xn)
ind
= pX1(x1)pX2(x2)...pXn(xn)

id
= pX(x)pX(x2)...pX(xn) =

n∏
i=1

pX(xi).

Let us now label the symbols in the alphabet X as ai, with i = 1, ..., |X |. Let
N(ai|xn) be the number of occurrences of the letter ai in the sequence xn.
Then

pXn(xn) =

n∏
i=1

pX(xi) =

|X |∏
i=1

pX(ai)
N(ai|xn).
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Data compression — The typical set

This is much easier to compute since |X | ≪ n. Note that we used again the
i.i.d. hypothesis, because we are interested only in the probabilities, which are
invariant under permutation.

Now we have to investigate the probability of the random variable Xn. Let
us consider the sample average of the information content of the random se-
quence Xn

H(Xn) = − 1

n
log (pXn(Xn))

This is called sample entropy of the random sequence.
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Data compression — The typical set

LetN(ai|Xn) be the number of appearances of ai in the random sequenceXn.
Then

− 1

n
log (pXn(Xn))

i.i.d.
= − 1

n
log

 |X |∏
i=1

pX(ai)
N(ai|Xn)


= − 1

n

|X |∑
i=1

log
(
pX(ai)

N(ai|Xn)
)

= −
|X |∑
i=1

N(ai|Xn)

n
log (pX(ai))
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Data compression — The typical set

Now we take the asymptotic limit

lim
n→∞

N(ai|Xn)

n
= pX(ai)

which implies that

lim
n→∞

[
− 1

n
log (pXn(Xn))

]
= −

|X |∑
i=1

pX(ai) log (pX(ai)) = H(X).

It is highly likely that the random sequence Xn satisfies

lim
n→∞

Prob
[∣∣∣∣− 1

n
log (pXn(Xn))−H(X)

∣∣∣∣ ≤ δ

]
= 1 ∀ δ > 0.

10/22



Data compression — The typical set

It is highly likely that the information source emits a sequence whose sample
entropy is close to the true entropy!

Typical sequence
A sequence xn is called a typical sequence if its sample entropy is close to the
true entropy H(X).

Typical set
The set of all typical sequences is called the typical set.
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Data compression — The typical set

In summary, we have shown that it is highly likely that a sequence in the typical
set

TXn

δ = {xn ∈ Xn |
∣∣H(Xn)−H(X)

∣∣ < δ}

will be emitted by the source in the asymptotic limit.

Shannon’s idea
Alice just needs to code the sequences in TXn

δ . If the source emits a non-
typical sequence, an error is declared. Shannon showed that such error van-
ishes asymptotically.

This schemeworks because of a very important set of properties of the typical
set that we now discuss.
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Data compression — Properties of TXn

δ

The three properties of the typical set that justify Shannon’s idea can be stated
as follows

Asymptotic Equipartition Property (AEP)
• The typical set contains almost all the probability.

• The typical set is exponentially smaller than the set of all sequences.

• Each typical sequence has almost uniform probability.
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Data compression — AEP

In order to prove the first property, we need to show that

∀ ϵ > 0 Prob{xn ∈ TXn

δ } =
∑

xn∈TXn
δ

pXn(xn) ≥ 1− ϵ

for sufficiently large n.

We start by remembering that the weak law of large numbers states that the
sample mean converges in probability to the expectation. So, let us consider
the set {Xi}ni=1 of random variables. Its sample average is

X =
1

n

n∑
i=1

Xi
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Data compression — Proof of AEP

Denoting by µ the expectation of each random variable, the formal statement
of the law of large numbers is

∀ ϵ, δ > 0 ∋ n0 : ∀n > n0 Prob{
∣∣X − µ

∣∣ < δ} > 1− ϵ

To continue, consider the sequence of random variables {− log (pX(Xi))}ni=1

− 1

n

n∑
i=1

log (pX(Xi)) = − 1

n
log (pXn(Xn)) = H(Xn)

since pXn(Xn)
i.i.d.
=

∏n
i=1 pX(Xi).
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Data compression — Proof of AEP

Weknow that the expectation of the randomvariable− log (pX(Xi)) is Shannon
entropy of Xi, which we denoted by µ in the last slide. Therefore, applying the
law of large numbers to these random variables, we obtain

∀ ϵ, δ > 0 ∋ n0 : ∀n > n0 Prob{
∣∣H(Xn)−H(X)

∣∣ < δ} > 1− ϵ,

which is exactly the condition for the random sequenceXn to be in the typical
set, and the probability of this event goes to one as n becomes very large.

The typical set contains all the probability in the asymptotic limit!

16/22



Data compression — Proof of AEP

Let us now prove the third property, the equipartition. We have shown that the
sample entropy is δ-close to the entropy of the source, H(X). Based on the
definition of the sample entropy we can write

H(X)− δ ≤ − 1

n
log (pXn(xn)) ≤ H(X) + δ,

which implies that

2−n(H(X)+δ) ≤ pXn(xn) ≤ 2−n(H(X)−δ).

Since δ is arbitrary, we see that the probability distribution associated with the
sequences in Xn is uniform, being equal to 2−nH(X). This justify the name
equipartition!
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Data compression — Proof of AEP

Lastly, we need to show that
∣∣TXn

δ

∣∣ is exponentially smaller than |X n|, which is
the second property of the typical set. This can be done by considering that

1 =
∑

xn∈Xn

pXn(xn) ≥
∑

xn∈TXn
δ

pXn(xn) ≥
∑

xn∈TXn
δ

2−n(H(X)+δ)

= 2−n(H(X)+δ)
∣∣TXn

δ

∣∣
where we have used the equipartition property. Therefore, the cardinality of the
typical set is bound from above as∣∣TXn

δ

∣∣ ≤ 2n(H(X)+δ)

which should be compared with |X n| = 2n log(|X |).
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Data compression — Optimal rate

We have introduced the typical set and the set of properties known as the
Asymptotic Equipartition Property. We are now ready to show that the ultimate
rate of data compression is Shannon entropy.

First, let us consider the code (n,R, ϵ) and let the encoding and the decoding
maps be defined as

E : X n 7→ {0, 1}nR D : {0, 1}nR 7→ X n

The error probability can then be computed as

pe = Prob {(D ◦ E) (Xn) ̸= Xn} ≤ ϵ

The rate is defined as

R =
# number of channels uses

length of the sequence
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Data compression — Optimal rate

Based on the AEP, Shannon proposed to code only the sequence in TXn

δ and
throw away the rest. The code will always work for large enough n since the
probability of the source to emit a non-typical sequence vanishes asymptoti-
cally.

Due to AEP (exponentially small cardinality) we have that nR = n(H(X) + δ)
(the number of bits in the sequence), while the length of the typical sequence
is n. Therefore

R =
n(H(X) + δ)

n
≈ H(X)

for sufficiently large n.
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Data compression — Optimal rate

Therefore, we choose ϵ, δ > 0 and and encoding function f : xn 7→ {0, 1}nR
with some error symbol e0, that is, f : xn 7→ e0 if xn /∈ TXn

δ . Assuming AEP,
R = H(X) + δ. The decoding is the inverse function f−1 on TXn

δ , such that
f−1 : e0 7→ xn0 signals the error. Then, due to the AEP, the probability of error
in this code is less than ϵ and the code is achievable.

Note that it is not possible to compress a random variable whose probability
distribution is uniform since H(X) = log |X |.
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