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Introduction
Quantum typicality underpins the asymptotic theory of quantum information.

Most of the ideas from classical typicality can be applied here, but there are
important differences, starting from the definition of a quantum information
source.

Moreover, in order to determine if a classical sequence is typical we need to
look at the sequence. In the quantum case, looking at the systemwill in general
change the system. So, care must be taken here.

The main idea is to gentle ask the system if its state is typical or not, without
returning any other information. So, if the state is typical, we expect to not
disturb the system too much.
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The quantum information source

It is a device that randomly outputs quantum states (not necessarily distin-
guishable) according to some probability distribution.

Suppose that the source emits the state |ψy⟩ according to some probability dis-
tribution pY (y). The density operator ρA of the source is the expected emitted
state

ρA = EY {|ψy⟩⟨ψy|} =
∑
y

pY (y) |ψy⟩⟨ψy|

It is important to observe that the quantum states |ψy⟩ are not orthogonal.
However, we know that the same quantum state can be written as

ρA =
∑
x

pX(x) |x⟩⟨x|

with |x⟩ and pX(x) are the eigenstates and the eigenvalues of ρA 2/22



The quantum information source
Since the density operator is an equivalence class of indistinguishable ensem-
bles, both descriptions are equivalent

{pY (y), |ψy⟩} and {pX(x), |x⟩}

However, the states |x⟩ are distinguishable. This implies that

S(A)ρA = H(X)

Now, suppose that the source emits a large number n of random states

ρAn = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAn = (ρA)
⊗n

This implies we are within the i.i.d setting in the quantum domain
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The typical subspace
Due to orthonormality of |x⟩, we can write

ρAn =
∑

xn∈Xn

pXn(xn) |xn⟩⟨xn|An

with pXn(xn) = pX(x1) · · · pX(xn) and |xn⟩An = |x1⟩A1
⊗ · · · ⊗ |xn⟩A1

Typical subspace
The δ-typical subspace T δ

An is a subspace of the full Hilbert space

HAn = HA1 ⊗ · · · ⊗ HAn ,

associated with many copies of a density operator. It is spanned by states
|xn⟩An whose corresponding classical sequences xn are δ-typical

T δ
An =

{
|xn⟩An : xn ∈ TXn

δ

}
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The typical projector
The definition of the typical subspace allows us to split the full Hilbert space
into two parts, the typical and the atypical subspaces.

Typical projector
The typical projector for the typical subspace of the density operator ρA is de-
fined as

ΠAn

δ =
∑

xn∈TXn
δ

|xn⟩⟨xn|An

This, alongwith the complementary projector, defines the gentlemeasurement
mentioned before, that is able to answer the question if the state is typical or
not.
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Typical subspace measurement
The following map is a quantum instrument that realizes the typical subspace
measurement on σ ∈ HAn

Measurement

σ 7→
(
1−ΠAn

δ

)
σ
(
1−ΠAn

δ

)
⊗ |0⟩⟨0|+ΠAn

δ σΠAn

δ ⊗ |1⟩⟨1|

It associates a classical register with the outcome of the measurement: the
value of the classical register is |0⟩ for the support of the state that is not in the
typical subspace, and it is equal to |1⟩ for the support of the state that is in the
typical subspace.
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Quantum Shannon theory is theoretical

The implementation of a typical subspace measurement is currently far from
the reality of what is experimentally accessible if we would like to have the
measure concentration effects necessary for proving many of the results in
quantum Shannon theory.

Wewould need amillions of qubits emitted fromaquantum information source,
and furthermore, we would require the ability to perform noiseless coherent
operations over about these qubits in order to implement the typical subspace
measurement.
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Properties of the typical subspace

Unit Probability. The probability that the quantum state ρAn is in the typical
subspace T δ

An approaches one as n becomes large

Tr
{
ΠAn

δ ρAn

}
≥ 1− ϵ ∀ ϵ ∈ (0, 1) and δ > 0

Exponentially small cardinality. The dimension of the δ-typical subspace is
exponentially smaller than the dimension of the entire space of quantumstates

(1− ϵ)2n(S(A)−cδ) ≤ Tr
{
ΠAn

δ

}
≤ 2n(S(A)+cδ)

with c being a constant that depends on weather we choose the notions of
weak or strong typicality.
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Properties of the typical subspace
Equipartition. The operator ρ̃An = ΠAn

δ ρAnΠAn

δ /Tr{ΠAn

δ ρAnΠAn

δ } corresponds
to a "slicing" of the density operator ρAn where we slice out and keep only the
part with support in the typical subspace. Therefore

2−n(S(A)+cδ)ΠAn

δ ≤ ΠAn

δ ρAnΠAn

δ ≤ 2−n(S(A)−cδ)ΠAn

δ

which is a statement about the eigenvalues of ρ̃An and ΠAn

δ . This is therefore,
equivalent to the classical inequality

2−n(H(X)+cδ) ≤ pXn(xn) ≤ 2−n(H(X)−cδ)

for xn ∈ TXn

δ , since pXn(xn) are the eigenvalues of ρ̃An . Moreover

||ρAn − ρ̃An ||1 ≤ 2
√
ϵ
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Multipartite typicality
Tow classical sequences xn and yn are jointly typical if
• H(xn, yn) → H(X,Y )

• H(xn) → H(X) andH(yn) → H(Y )

The way that we determine whether a quantum state is typical is by performing
a typical subspace measurement. If we perform a typical subspace measure-
ment of the whole system followed by such a measurement on the marginals,
the resulting state is not necessarily the same as if we performed the marginal
measurements followed by the jointmeasurements. For this reason, the notion
of weak joint typicality as given in in the classical case does not really exist in
general for the quantum case.
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Bipartite case
Let us consider the state

ρAB =
∑
z∈Z

pZ(z) |ψz⟩⟨ψz|AB

The extension of this state is (using the same compact notation as before)

(ρAB)
⊗n =

∑
zn∈Zn

pZn(zn) |ψzn⟩⟨ψzn |AnBn ≡ ρAnBn

Typical subspace of a bipartite system
The δ-typical subspace T δ

AnBn of ρAB is the space spanned by states |ψzn⟩AnBn

whose corresponding classical sequence zn is in the typical set TZn

δ

T δ
AnBn = span

{
|ψzn⟩AnBn : zn ∈ TZn

δ

}
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Bipartite case

Typical projector

Πδ
AnBn =

∑
zn∈TZn

δ

|ψzn⟩⟨ψzn |AnBn

There is no difference between the typical subspace for a bipartite state and
the typical subspace for a single-party state because the spectral decomposi-
tion gives a way for determining the typical subspace and the typical projector
in both cases.

However, the commutation problem still exists and we cannot define this no-
tion in general.
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Classical states
Let us consider the following class of states

ρAB =
∑
x∈X

∑
y∈Y

pX,Y (x, y) |x⟩⟨x|A ⊗ |y⟩⟨y|B

with |x⟩A and |y⟩B orthonormal basis for A and B, respectively. This is a state
that only has classical correlations. Its extension can be written

ρAnBn =
∑

xn∈Xn

∑
yn∈Yn

pXn,Y n(xn, yn) |xn⟩⟨xn|An ⊗ |yn⟩⟨yn|Bn

which leads us directly to the definition of jointly typicality.
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Classical states

Jointly typical subspace

T δ
AnBn = span

{
|xn⟩An |yn⟩Bn : xnyn ∈ TXnY n

δ

}

Jointly typical projector

Πδ
AnBn =

∑
xn∈TXn

δ

∑
yn∈TY n

δ

|xn⟩⟨xn|An ⊗ |yn⟩⟨yn|Bn
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Conditional typicality
We start by defining the notion of the conditional quantum information source.

Let us consider the random variableX = {pX(x),X} and the quantum system
with an orthonormal set |x⟩x∈X to represent the realizations ofX.

• We generate the realization x of the random variableX
• We follow by generating a random quantum state according to some

conditional distribution

This procedure gives us a set of |X | quantum information sources, whose ex-
pected density operators are ρxB
These are the conditional quantum information sources.
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Conditional typicality
By correlating the classical state |x⟩X with the quantum state ρxB we obtain the
classical–quantum ensemble

{pX(x), |x⟩⟨x|X ⊗ ρxB}x∈X

From which we can build the expected density operator of the ensemble

ρXB =
∑
x∈X

pX(x) |x⟩⟨x|X ⊗ ρxB

whose conditional entropy is

S(B|X) =
∑
x∈X

pX(x)S(ρxB)
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Conditional typicality
By defining {|yx⟩B}y∈Y and {pY |X(y|x)}y∈Y as the sets of eigenvectors and
eigenvalues of ρxB , respectively, the conditional entropy takes the form

S(B|X) =
∑
x∈X

∑
y∈Y

pX(x)pY |X(y|x) log 1

pY |X(y|x)

Now we need to go to the asymptotic limit

ρXnBn =
∑

xn∈Xn

pXn(xn) |xn⟩⟨xn|Xn ⊗ ρx
n

Bn

with ρxn

Bn = ρx1
B1

⊗ · · · ⊗ ρxn
Bn

, whose spectral decomposition is

ρx
n

Bn =
∑

yn∈Yn

pY n|Xn(yn|xn) |ynxn⟩⟨ynxn |B
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Conditional typicality

Weak Conditionally Typical Subspace
The conditionally typical subspace T δ

Bn|xn corresponds to a particular se-
quence xn and an ensemble {pX(x), ρxB}

T δ
Bn|xn = span

{
|ynxn⟩ :

∣∣H(yn|xn)− S(X|B)
∣∣ ≤ δ

}

Weak Conditionally Typical Projector
The projector onto the conditional typical subspace T δ

Bn|xn is

Πδ
Bn|xn =

∑
ynxn∈T

Y n|xn
δ

|ynxn⟩⟨ynxn |Bn
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Properties of the Weak Conditionally Typical
Subspace
We cannot say many things considering a particular sequence xn, but we can
state several properties regarding the average over the random variableXn.

Unity probability. The expectation of the probability that we measure a ran-
dom quantum state ρXn

Bn to be in a conditionally typical subspace T δ
Bn|Xn ap-

proaches one as n becomes large

EXn

{
Tr

{
Πδ

Bn|XnρX
n

Bn

}}
≥ 1− ϵ

for all ϵ ∈ (0, 1) and δ > 0.
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Properties of the Weak Conditionally Typical
Subspace
Exponentially Smaller Dimension.The dimension of the δ-conditionally typical
subspace is exponentially smaller than the dimension of the entire space of
quantum states for most classical–quantum sources

Tr
{
Πδ

Bn|xn

}
≤ 2n(H(B|X)+δ)

We also have

EXn

{
Tr

{
Πδ

Bn|Xn

}}
≥ (1− ϵ)2n(H(B|X)−δ)

for all ϵ ∈ (0, 1) and δ > 0.
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Properties of the Weak Conditionally Typical
Subspace
Finally, we can prove the equipartition property.

Equipartition. The density operator ρxBn looks approximately maximally mixed
when projected to the conditionally typical subspace

2−n(H(B|X)+δ)Πδ
Bn|xn ≤ Πδ

Bn|xnρxBnΠδ
Bn|xn ≤ Πδ

Bn|xn2−n(H(B|X)−δ)
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