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Chapter 1

Introduction

These lectures focus on the theory of General Relativity (GR), which is a field theory of
gravity that also provides a description of the geometry of spacetime. This relationship
represents a profound shift in our understanding of space and time and lies at the core
of GR. The goal of this Chapter is to introduce the fundamental concepts that led to
the development of the theory, offering a physical intuition behind it. The idea is not
to be mathematically precise but to convey the main ideas underpinning the theory,
explaining why GR is necessary and why it is the way it is.

1.1 A field theory

The first question we need to address is why we require a field theory for gravity. The
answer lies in special relativity. Let’s explore why.

Consider the Coulomb force between two stationary charges q1 and q2:

F⃗ =
q1q2
r3

r⃗,

where r⃗ is the vector pointing along the line connecting the two charges. This implies
that the electric interaction acts at a distance, as a force. If we move q2 suddenly, the
charge q1 would feel this change instantaneously. This is incompatible with special
relativity, which asserts that interactions must propagate at a finite speed, no greater
than the speed of light.

The resolution to this issue is recognizing that Coulomb’s law is only valid in the
static limit, where the charges are not in motion relative to each other. In more general
scenarios, we must use Maxwell’s theory, which is a field theory, providing field equa-
tions governing the electromagnetic interaction. In this framework, there is no action
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at a distance (there is no force), and the electromagnetic interaction becomes a local
interaction that propagates at a finite speed (the speed of light) via the electromagnetic
field.

To properly describe the electromagnetic interaction, we require three components:
i) The Maxwell potential Aa(x) (the field); ii) The Lorentz force, which governs the
motion of particles with mass m and charge e interacting with the field:

ẍa =
e

m
Fa

bẋ
b,

with Fab = ∂aAb − ∂bAa being Maxwell’s tensor; iii) Maxwell’s equation

∇aF
ab = 4πJb,

with ∇a representing the covariant derivative, and Ja being the four-current.
A similar situation arises with gravity. Newton describes the gravitational force

between two masses m1 and m2 as:

F⃗ =
m1m2

r3
r⃗,

where r⃗ is the vector pointing along the line connecting the two masses. This also
reveals the same issue, indicating that there must be a field theory that accounts for the
degrees of freedom of the physical system carrying the gravitational interaction. This
field should reduce to Newton’s law in the static, non-relativistic limit. This field is the
gravitational field.

Drawing a parallel with electrodynamics, General Relativity is also characterized
by three components: i) The gravitational field gab; ii) The geodesic equation:

ẍa = −Γa
bcẋ

bẋc,

which governs the motion of particles under the influence of the gravitational field; iii)
Einstein’s field equation:

Rab −
1

2
Rgab + λgab = 8πGTab.

The specific definitions of these quantities will be provided in later chapters. In this
sense, General Relativity is the field theory of the gravitational field.

Now we need to understand one of the most profound facts of GR, that this field
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theory also describes the geometry of the spacetime.
Before Isaac Newton introduced the concepts of absolute space and absolute time,

philosophers typically thought of them as being intrinsically linked to the things of the
world. Space was understood as a relational concept between various objects, such as
rocks, people, animals, trees, and so on. In this sense, space did not exist independently
but was defined by the relationships between things. Similarly, time was understood
as fundamentally related to the changes we observe in the world, such as the cycle of
day and night or the phases of the moon. Just as it would be meaningless to talk about
space without referring to objects, it was also impossible to talk about time without
changes taking place. Space and time, therefore, were not considered as independent
entities but were intrinsically tied to the material world.

Newton transformed this view by positing that there is a three-dimensional Eu-
clidean structure underlying the relational connections between objects. In this space,
we can assign coordinates to label the points of the space. For time, he considered the
real line R as its structure. In this way, both space and time gained a metric meaning
that did not depend on any objects. They were now understood to have physical ex-
istence independent of the things in the world. This represented a profound shift in
conceptual thinking. The metric structure could now be used to define the measure-
ments of roads and clocks. This also changed the interpretation of Euclidean geometry,
which was previously seen as concerned with the properties of objects but now was
understood as the geometry of space itself.

When Einstein discovered Special Relativity, he recognized that it would be more
appropriate to describe space and time as a four-dimensional entity, which he called
spacetime. However, the structure of space and time did not change significantly com-
pared to the Newtonian concepts. While there are differences, they do not concern the
basic structure. Space and time are still considered physical, but they lack dynamics
in Special Relativity. Space remains Euclidean, and time retains the metric structure of
the real line.

General relativity revolutionized this view by proposing that space and time are
not just physical entities but rather a dynamic physical field. This field is known as
the gravitational field. In this framework, the readings of rulers and clocks are under-
stood as manifestations of this dynamic field, rather than as the effect of gravity on
these devices. Consequently, General Relativity replaces the static Minkowski metric
of Special Relativity with a field that depends on the spacetime point. This means that
the geometry of spacetime is no longer Minkowskian, and the geometry of space is not
Euclidean.

In the context of Newtonian space and time and special relativistic spacetime, ac-
celeration is considered absolute —acceleration with respect to the fixed geometry of
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spacetime! In this context, acceleration is a consequence of inertial forces. Let us think
about Newton’s bucket experiment1, which demonstrates absolute space by showing
that rotational motion is not merely relative. When the bucket first starts moving, the
water remains still and its surface is flat, even though the bucket is rotating relative to
the water. As the water speeds up, it takes on a concave shape, despite being at rest
relative to the bucket at that point. The shape of the water’s surface depends not on its
motion relative to the bucket but on its rotation relative to absolute space. Crucially,
the concavity persists even when the water and bucket rotate together, proving that
rotation is not relative to the bucket but to an external frame: the absolute space. In
other words, there must be a privileged frame of reference, the absolute space, against
which rotation is measured. If only relative motion mattered, then the shape of the
water’s surface should depend only on its motion relative to the bucket, which it does
not.

From the above discussion we realize the fundamental role of the geometric struc-
ture of the spacetime in order to define acceleration and, equivalently, to define what
is an inertial frame. Recognizing that acceleration does not depend on the mass of the
bodies involved, Einstein realized that during free fall, all objects should behave as
though they are in an inertial reference frame. This insight led Einstein to conclude
that the role of gravity is essentially to redefine inertial reference frames, the same role
played by the spacetime in Special Relativity. Therefore, these two entities must be
the same. Causes assigned to effects of the same type must be, as much as possible, the same!
From this, Einstein inferred that Newtonian space and time, as well as the spacetime
of special relativity, are specific configurations of the gravitational field. In general,
spacetime must be curved. This is the essence of General Relativity, and it is going to
be the main focus of these lectures.

For completeness, we review the main ideas behind the Newtonian concepts of
space and time and the special relativity spacetime. A geometric approach to New-
tonian mechanics is reviewed in Appendix C, while SR is briefly introduced in Ap-
pendix D.

1The experiment goes as follows: A bucket filled with water is suspended by a rope. The bucket is
twisted and then released, causing it to spin. Initially, the water remains still while the bucket rotates.
Over time, the water starts spinning along with the bucket due to friction, eventually matching its rota-
tional speed. As this happens, the surface of the water forms a concave shape (a parabolic curve) due
to centrifugal force. If the bucket is suddenly stopped, the water continues spinning, maintaining the
concave shape temporarily.
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1.2 The Newtonian space and time

Let us start by postulating the basic laws of Newtonian mechanics, known as Newton’s
laws.

• The first law: There exists inertial reference frames with respect to which every
isolated particle remains at rest or in uniform motion in a straight line.

• The second law: In any inertial frame, the motion of a particle is governed by the
following set of differential equations

dp⃗

dt
= F⃗ , (1.1)

with p⃗ being the linear momentum of the particle while F⃗ stands for the total
force acting on the particle.

• The third law: To every action there corresponds an equal and opposite reaction

F⃗i,j = −F⃗j,i, (1.2)

where F⃗i,j is the force on particle j due to particle i. The forces are directed along
the line joining both particles.

It is important to note that Newton’s third law is not valid in general. It is violated,
for instance, for moving charged particles due to the fact that the speed of propagation
of the electromagnetic interaction is finite.

Such postulates are based on our experimental observations of the natural world.
For instance, we know that space is three-dimensional and Euclidean, while time is
one-dimensional. Moreover, we understand that there are special reference frames,
called inertial frames, on which Newton’s second law takes the same form, and that
all other frames that are at rest or in rectilinear uniform motion with respect to one
of these frames are also inertial frames. This is usually known as Galileo’s principle
of relativity. Finally, if we specify the position and velocity of a particle at a given
instant of time, we should be able to tell the motion of the particle at any other time,
thus justifying the second-order derivative appearing in Newton’s equation of motion.
This last fact is known as the principle of determinacy.

The Newtonian universe is a four-dimensional affine space2 A4. R4 acts as the
group of parallel displacements a → a + v⃗ where a, (a + v⃗) ∈ A4 and v⃗ ∈ R4. From

2See Appendix A for further details

7



this, we see that the difference of two points of A4 is a vector in R4, while the sum is
not defined. Each element of A is called event.

Time is defined as a linear map t : A4 7→ A1. The kernel of this map —the set of
vectors for which t(a − b) = 0— defines the simultaneous hypersurfaces, which are
3-dimensional subspaces of A4. On each of these spatial hypersurfaces, we can define
a distance function d : A3 × A3 7→ R such that, for all a, b, c ∈ A3, it is positive
semidefinite d(a, b) ≥ 0, with the equality holding if and only if a = b, symmetric,
d(a, b) = d(b, a), and fulfills the triangle inequality, d(a, c) ≥ d(a, b) + d(b, c). Observe
here the strong connection between the notion of simultaneity —the kernel of the map
t— and spatial distances.

A positive bilinear symmetric form ⟨x, y⟩, called a scalar product on R4, defines the
Euclidean structure and allows us to define the distance function as

d(a, b) ≡ ||a− b|| =
√

⟨a− b, a− b⟩ (1.3)

between points a and b of the corresponding simultaneity hyperspace. Since the differ-
ence of two events inA4 is a vector in R4, it is clear that distances on the spatial hyper-
surfaces are defined by the kernel of t. We call a Galilean spacetime (or Euclidean) the
set (A4, t, d).

The set of affine transformations that preserve time intervals and distances between
simultaneous events forms the Galilean group3, which is the symmetry group of New-
tonian mechanics.

Since we defined the mathematical structure of space and time, we are now in a
position to properly assign meaning to the laws of Newton that were stated earlier. We
know that the laws of physics are expressed in terms of differential equations, which
means that, in order to do physics, we should be able to employ calculus. We do this
by introducing reference frames, which are ways to unambiguously label the points of
A. Reference frames are maps from the setA4 to the setR4, where we understand how
calculus works. It is important to observe here that, in the case of Newtonian space and
time, a single map is able to cover the entire setA4. However, this is not possible when
gravity comes into play, but the definition of a reference frame is exactly the same,
and we just need more than one of them to cover the entire spacetime. Moreover, we
physicists usually deal with well-behaved functions, and we then demand that such
maps are of class C∞. Strictly speaking, it does not need to be C∞, but it must be
sufficiently smooth.

In order to introduce a reference frame, note that all Galilean spaces are isomor-

3See Appendix B for further details.
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Figure 1.1: Inertial reference frames.
ϕi and ϕj are two Galilean coordinate
systems, defined by the isomorphisms
ϕi : A 7→ R3×R and ϕj : A 7→ R3×R, re-
spectively. A Galilean transformation, or
coordinate transformation, is defined by
the map ψij ≡ ϕj ◦ϕ−1

i : R3×R 7→ R3×R.
Therefore, ψij takes us from the set of co-
ordinates defined by ϕi to the set of coor-
dinates defined by ϕj .

phic4 to each other and are also isomorphic to R3 × R. Therefore, we can use such
isomorphism to define a coordinate system as the map

ϕ : A4 7→ R3 ×R, (1.4)

which is called a Galilean coordinate system. In this way, we just labeled each one of
the events inA4 with four real numbers, which are called the coordinates of the events.
Now, a Galilean transformation takes us from one inertial coordinate system to some
other. Mathematically, if a coordinate system ϕj moves with zero acceleration with
respect to the coordinate system ϕi, the map ψi,j ≡ ϕi ◦ ϕ−1

j : R3 × R 7→ R3 × R is a
Galilean transformation. We also demand that ϕi ◦ ϕ−1

j to be C∞. Both ϕi and ϕj give
A4 the same Galilean structure. This idea is illustrated in Fig. 1.2.

It is important here to make a clear distinction between distances and time intervals
—as measured by rulers and clocks— and the set of coordinates. The main goal of the
map ϕi is to attribute a set of four numbers to each point of the set A4. In order to
define a distance, we need to define the metric on Rn. In principle, coordinates have
no physical meaning. Moreover, note that the coordinates are not in the set A4, but
in R4. Since A4 is isomorphic to R4, these observations make no important difference
here. However, this will be fundamental in GR.

1.2.1 Dynamics

We start by defining the motion in R3, which is the image of the differentiable map
x⃗ : I 7→ R3, with I ⊂ R being an open interval of the real line. Therefore, the motion is
a curve inR3. It is also called a trajectory. The motion x⃗ defines a curve inR3×R called
world-line γ. Figure 1.2 illustrates the concept of a motion along with the spacetime
on which classical mechanics is built. R3 is called the configuration space. Each one of

4See Appendix A for further details.
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Figure 1.2: World-line in Newtonian
spacetime. The trajectory x⃗ : I 7→ R3 de-
fines the motion of the system in the three
dimensional space R3 (which is isomor-
phic to A3). The graph of this motion is
a curve inR3×R, called world-line γ, that
intercepts each one of the simultaneity hy-
persurfaces A3 precisely once. The space
is them an equivalent class of simultane-
ous hypersurfaces defined by the kernel of
the time map t. The properties of x⃗ tell us
that each one of these hypersurfaces is a
Cauchy hypersurface.

these subspaces is a Cauchy hypersurface5. The velocity and the acceleration vectors
are defined as the first and second time derivatives of the motion, respectively.

Now, according to Newton’s principle of determinism, the initial position x⃗0 ∈ R3

and velocity ˙⃗x0 ∈ R3, at time t0, uniquely determine the motion of the system at all
times. In particular, they determine the acceleration, which implies that there is a func-
tion F⃗

(
x⃗, ˙⃗x, t

)
: R3 ×R3 ×R 7→ R3 such that

¨⃗x = F⃗
(
x⃗, ˙⃗x, t

)
, (1.5)

According to the Galilean invariance principle, this last equation must be invariant
under a Galilean transformation, that takes us from one reference frame to another. In
particular, since this set of transformations includes time and space translations, we
see that F⃗ must be independent of time and also must depend only on the relative
coordinates and velocities of the particles composing the system. Such symmetry is a
consequence of the homogeneity of space and time. Mathematically

¨⃗xi = F⃗i

({
x⃗j − x⃗k, ˙⃗xj − ˙⃗xk

})
for i, j, k = 1, 2, 3. (1.6)

We interpret F⃗ , the force, as the definition of the system under consideration.
The fact that Newtonian mechanics is invariant under a Galilean transformation

thus implies that it is impossible to label the events with a preferred spatial position.
That is why we need an affine space! Positions and velocities can only be defined
relative to something else. In other words, given two events happening at different

5Intuitively, we can interpret a Cauchy hypersurface as the one defining an instant of time. This
concept will be made clear after we introduce the Lorentzian manifold.
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times, it has no meaning to say that they happened at the same position, unless we
specify a reference object. The only thing that is absolute is the acceleration that, as
mentioned earlier, is defined with respect to the static geometry of the space and time.
This is the physical meaning of the Galilean transformation.

The isotropy of space implies that the force must fulfill the relation F⃗
(
Gx⃗,G ˙⃗x

)
=

GF⃗
(
x⃗, ˙⃗x

)
for every orthogonal transformation G (a rotation in space). Since every

Galilean transformation can be written as a combination of a translation (in time and
in space), a uniform motion, and a rotation, we have considered all the possible sym-
metries.

Figure 1.2 also defines the causal structure of the Newtonian world. Let p ∈ A4 be
the crossing point of the world-line and some hypersurface A3. This set defines the
present of p, i.e. all the points that are simultaneous to p. This means that no observer
can be at any other event in this set if it is at p. The past (future) of p are all the points
in A4 below (above) p, with respect to the direction defined by time. Events that lie
below this set can influence p, while events above can be influenced by p. Such causal
structure is universal in the sense that it is the same for all observers. Time and space
are absolute!

Let us see how this structure changes in Special Relativity.

1.3 Special Relativity

We saw that the Newtonian concept of spacetime (space and time taken together) is
described by a continuous set of events and we can think about each one of these
events as a point in space at a given instant of time. Moreover, we can unambiguously
label every event of this set with four numbers, called the coordinates of the point.
Additionally, given a specific point in space at a specific moment in time, there is an
absolute meaning of simultaneity, defined by the set of points associated with the same
instant of time. This last property was changed by Einstein in his special theory of
relativity. In Newtonian physics, all the simultaneous events to a given one form a
three-dimensional one, while in SR, it is much more than this. An observer can still
define a three-dimensional hypersurface containing the events that occur at the same
time as a given one. However, such hypersurface depends on the state of motion of
the observer. Simultaneity is not absolute!

Such a structure leads to the fact that two distinct inertial observers will assign
different coordinates to the events of the spacetime. This makes clear that such coor-
dinates have no physical meaning. We must then look for quantities that are observer
independent. In other words, we need to find functions of the coordinates that are
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observer independent. In Newtonian physics, we do have two of these quantities (and
functions of them), the time interval between two events and the space interval be-
tween two simultaneous events. Given the above discussion regarding the nature of
simultaneity, we can anticipate that none of these quantities will be invariant in SR.

Before introducing the corresponding quantities in SR, let us start with the physical
principles behind this theory, which can be stated as follows.

• Principle of relativity: All the laws of physics are the same in all inertial frames.

• Universality of the speed of light: The speed of light in vacuum is the same for
all observers, regardless of their state of motion.

The first principle is quite natural and it was already presented in physics since
Galileo. Einstein realized the second principle due to the electromagnetic field equa-
tions. The solution to Maxwell’s equations in vacuum is a propagating wave whose
velocity is constant no matter the observer. Although simple, it presents profound
consequences. For instance, in Newtonian physics, if a particle is in a certain point in
space at a given instance of time, it can be at any other point in space in the subsequent
instant, since there is no limit for its speed. In this way, simultaneity defines a three-
dimensional hypersurface which is orthogonal to the time line. In SR, due to the finite
speed of light, an observer at a given event cannot be everywhere in a subsequent one.
Therefore, the notions of past, present and future must change.

At each event of spacetime, we can define a light-cone, which determines the lo-
cus of paths that point particles can follow, as illustrated in Fig. 1.3. At each event p,
spacetime is split into three regions. The first one is the locus of the events that can be
influenced by p. This is the future light-cone. The second one contains the events that
can influence p and is called the past light-cone. Both of these regions form a three-
dimensional set. All the events lying outside the light cone do not have any causal
relation with p. The notion of the present of p is not defined.

Such structure is specified by the spacetime metric, which can be written as

ds2 = ηµνdx
µdxν = dt2 − dx2 − dy2 − dz2, (1.7)

in the dual coordinate basis. The minus sign in this metric indicates that the line ele-
ment ds2 can be negative. This Lorentzian metric determines three kinds of intervals
between two points p and q: i) ds2 > 0 indicates that p and q hold no causal relation and
the interval is called space-like; ii) Paths for which ds2 = 0 are not allowed for massive
particles and they are called null-like (or light-like) interval; iii) ds2 < 0, determining a
time-like interval, are the allowed paths for all massive particles. The path γ shown in
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Figure 1.3: Spacetime in special rel-
ativity. At each event p we define
the light-cone which determined the
past, future and the set of events that
holds not causal relation with that
event. This is represented by the blue
lines in the figure. The paths fal-
lowed by material particles are con-
strained to the interior of the cone
while light walks only on the sur-
face of the cone, which are called null
surfaces. Nothing can have a path
whose inclination is bigger than the
surface of the cone.

Fig. 1.3 is an example of a time-like curve. Remember that, when considering time-like
intervals, the proper time6 is defined as dτ 2 = −ds2.

Note the difference between this causal structure and the one in the Newtonian
world. Considering p as the event defining the light-cone shown in Fig. 1.3, events
that can be influenced by p lie in the future light-cone, while the past light-cone defines
those events that can influence p. It is important to observe that no material particle
can travel at the boundaries of this light-cone, since these are null-surfaces, which are
regions only allowed for non-massive particles. The set of events that holds no causal
relation to p defines a four-dimensional set, instead of a three-dimensional one defined
in Newton’s spacetime. It is still possible to define a three-dimensional set that consti-
tutes those events forming the present of p. However, such a set will depend on the state
of motion of the observer defining it. This is a fundamental difference between New-
ton and Einstein. Simultaneity is relative in SP, while it is absolute in the Newtonian
world (see Appendix D for further details).

In Newtonian spacetime the space interval (ds2 = dx2 +dy2 +dz2) is conserved un-
der rotations. This is a consequence of the fact that the notion of a three-dimensional
space at a single instant of time is independent of coordinates. The notion of rotation
in time is not defined. In Special Relativity, where the notion of simultaneity is ob-
server dependent, this is not true anymore and we need to consider rotations of the
entire four-dimensional set, called the Minkowski spacetime. This implies that we
rotate time and space into each other. Under this sort of transformation, the spacetime
interval (1.7) is invariant.

We can consider a curve parameterized by λ, with coordinates xµ(λ) and, from the

6The proper time is the time measured by a clock carried by an observer moving along the path
between the considered events.
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line element 1.7 it is possible to compute the length of the path as

s =

∫ √
ηµν

dxµ

dλ

dxν

dλ
dλ and τ =

∫ √
−ηµν

dxµ

dλ

dxν

dλ
dλ, (1.8)

for space-like and time-like intervals, respectively. The precise notion of derivatives
and coordinates will be discussed in the next chapter.

While the Newtonian spacetime interval is invariant under a Galilean transforma-
tion, the symmetry group of special relativity is the Poincaré group, which is the set of
translations (in space and time) and the Lorentz transformations. Appendix B presents
some details on the structure of this group.

Although Lorentz transformations were known before Einstein, the meaning of the
transformation of time became clear only within SR. The physical content of this trans-
formation is that identical clocks moving with respect to one another measure distinct
times. Therefore, it is meaningless to say that two events happening in different loca-
tions occurred at the same time unless we specify with respect to what time is deter-
mined.

1.4 General Relativity

Both Newtonian and special relativistic spacetimes share the same basic structure.
Newtonian spacetime can be considered as the low-velocity approximation of spe-
cial relativistic spacetime. Both exist independently of any other physical entity, but
neither possesses any inherent dynamics.

Einstein recognized that spacetime is a physical entity and, importantly, that it must
have a dynamic nature. He argued that it is a physical field, which we now identify
as the gravitational field. He replaced the static metric ηab with a general one, gab,
that varies depending on the point in spacetime. The metric gab represents a physical
field whose behavior is governed by field equations (Einstein’s equations) and inter-
acts with matter. It defines the geometry of spacetime and is, at the same time, the
gravitational field.

To understand why this is the case, remember that inertial forces arise due to the
acceleration of a reference frame. As Newton pointed out, this acceleration must be
defined with respect to the space itself. In other words, inertial forces result from ac-
celeration with respect to the fixed geometry of spacetime. This holds true in Special
Relativity as well. Essentially, Newtonian spacetime defines what is accelerating and
what is not.

Einstein made a striking observation about gravity. Inside a free-falling labora-
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tory, the laws of physics appear exactly as they would in an inertial reference frame.
This follows from the fact that everything in the laboratory experiences gravity in ex-
actly the same way. This insight is the core of the equivalence principle, a remarkable
realization. Gravity’s role is to redefine what constitutes an inertial reference frame
—specifically, those that are in free fall7.

As noted, the role of Newtonian spacetime is to define inertial reference systems,
and this is true in Special Relativity as well. However, gravity also plays a role in de-
termining inertial systems. Therefore, spacetime and gravity must be the same thing.
Einstein concluded that both Newtonian and special relativistic spacetimes are simply
specific configurations of the gravitational field. In more general cases, the geometry
of spacetime is curved.

Based on the above discussions, we can rewrite the definition of an inertial frame
as follows. The spatial relations as determined by rigid rods that remain at rest in the
system are Euclidean and there is a universal time in terms of which massive particles
remain at rest or in uniform motion on a straight line. The role of gravity is to break
down the Euclidean character of space!

1.5 Prerequisites and literature

Although these lectures contain some basic mathematical definitions in the Appen-
dices, some previous knowledge is assumed from the start. The reader should be fa-
miliar with differential and integral calculus, as well as linear algebra and geometry.
A good knowledge of Classical Mechanics, especially its geometrical formulation, as
well as of Special Relativity, is highly recommended.

Here are some very good books on the subject of these lectures, including the intro-
ductory content.

• V. I. Arnold, Mathematical methods in classical mechanics (Springer, 1997) —- This
book presents classical mechanics from a rigorous mathematical point of view.
In special, it presents the symplectic formulation of this theory, which is the geo-
metric view of mechanics.

• M. Nakahara, Geometry, topology and physics (Taylor & Francis Group, 2003) —
This book contains all the necessary mathematical definitions (and much more)
that will be employed in these lectures. It is a very good reference book.

• W. Tung, Group theory in physics (World Scientific Publishing Company, 1985) —
The book describes the basics of group theory, including the Lorentz and the

7Note that this holds true only locally, a point that will be clarified in later chapters.
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Poincare groups. Although not necessary for understanding these lectures, it is
mentioned here for those readers that want to go deeper into the theory.

• W. Rindler, Introduction to Special Relativity (Oxford University Press, 1991). Ex-
cellent book introducing the basic features of the special theory of relativity.

• J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Cambridge
University Press, 2021); S. M. Carroll, Spacetime and Geometry: An Introduction
to General Relativity (Cambridge University Press, 2019) — Excellent books on the
general theory of relativity. Both present the theory from a physical point of view,
gently introducing the necessary new math. These books are recommended for
the first reading.

• R. M. Wald, General relativity (University of Chicago Press, 1984) — Very good
book on the subject, presenting the theory under a rigorous mathematical nota-
tion.
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