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Chapter 2

A Bit of Differential Geometry

As discussed in the previous chapter, space-time is a four-dimensional continuous set
of events. Each event then needs four numbers to be characterized. Special Relativity
assumes that this fact is true globally, meaning that there is a one-to-one map between
the events and points in the R4 space. This is no longer true in general spacetimes de-
scribed by General Relativity. If we think about the surface of a sphere, we will readily
realize that it is impossible to build such a map. Therefore, we need a more precise
definition of a manifold, which is a mathematical space that locally looks like the Eu-
clidean space, just like a sphere. The main goal of this chapter is to formally introduce
this concept, along with some others that are necessary in order to properly describe
the spacetime within General Relativity. Some additional definitions are presented, for
completeness, in Appendix A.

2.1 Manifolds

A manifold is just a continuous set of points that can exhibit complex global properties
like curvature or torsion, but that locally looks like the Euclidean space. This means that
in a small enough1 neighborhood of any point on the manifold, Euclidean geometry
applies. For instance, the surface of a sphere is a manifold and if we are on top of a very
big sphere, like our planet for instance, our neighborhood will certainly look like the
usual flat two-dimensional plane. This is the main mathematical structure behind the
theory of relativity since the space-time is postulated to be a differentiable manifold2.

1Small enough means that we cannot, by any means, detect any violation of Euclidean geometry
within the precision of the measurements available to us.

2To be precise, it is a differentiable manifold that is also Hausdorff, paracompact and connected. See
Appendix A for more details.
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Figure 2.1: Differentiable Manifold.
Homeomosphisms ϕi and ϕj mapping
open subsetsOi andOi on the manifoldM
into open subsets Ui and Uj on Euclidean
spaces. Such maps specify two different
coordinate systems. For points in the over-
lapping region Oi ∩ Oj , the smooth map
ψij is called a coordinate transformation.
This basic structure allows us to do calcu-
lus on manifolds as we normally do inRn.

Let us start with the formal definition of this object. A manifold can be viewed as a gen-
eralization of our concepts of curves and surfaces to objects with arbitrary dimensions.
In the same way a curve and a two-dimensional surface are locally homeomorphic toR
and R2, respectively, a manifold is a topological space which is locally homeomorphic
toRm. This is a very important requirement, especially in the context of relativity since
this local homeomorphism enables us to define local coordinate systems. If the mani-
fold is not globally homeomorphic to Rm, it will be impossible to cover it entirely with
a single coordinate system. However, we can define several overlapping coordinate
systems in order to cover M. By imposing that the transformation between different
coordinate systems is continuous, we can develop the usual calculus on manifolds. A
precise definition, which is illustrated in Fig. 2.1, can be stated as follows.

Definition 1 (Differentiable Manifold) M is an m-dimensional differentiable manifold if

we have a set of pairs {(Oi, ϕi)}i of open subsets (local neighborhoods) Oi ⊂ M and local

homeomorphisms ϕi fromOi to open subsetsUi ⊂ Rm, such that the following conditions hold.

1. M is a topological space3

2. The set of Oi coversM: ∪iOi =M.

3. Given two neighbourhoods Oi and Oj such that Oi ∩ Oj ̸= ∅ for i ̸= j, the map ψij =

ϕi ◦ ϕ−1
j : ϕj (Oi ∩Oj) 7→ ϕi (Oi ∩Oj) is infinitely differentiable.

The pair (Oi, ϕi) is called a coordinate chart while the whole set {(Oi, ϕi)}i consti-
tutes an atlas. If the atlas is complete, i.e. it is not contained in each other atlas, it is
called a differentiable structure. Two atlases are said to be compatible if their union
is also an atlas. In this sense, a differentiable structure on M is an equivalence class of

3See Appendix A for definitions.
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compatible atlases. A topological space equipped with a differential structure is called
a differentiable manifold.

The subset Oi is called the coordinate neighborhood and ϕi the coordinate func-
tion. Given a point p ∈ M, the homeomorphism ϕi is represented by the set of coor-
dinates {xµ(p)} = {x0(p), ..., xm−1(p)}. This is what we mean by the statement that the
manifold locally looks like Euclidean space. In each coordinate neighbourhood Oi, M
looks like an open set of Rm.

As we can see from Fig. 2.1, two coordinate systems can be assigned to the same
point p if two of its neighborhoods Oi and Oj overlap. The axioms defining the man-
ifold assure that the transition from one coordinate system to the other is smooth. In
other words, the transition map, which is called a coordinate transformation, is of
class C∞. The map ψi,j is explicitly given by the coordinate functions xµ = xµ(yν),
where xµ and yν are the coordinates assigned to p by ϕi and ϕj , respectively. Therefore,
differentiability can be defined in the same way we do in usual calculus, thus justifying
the name differential structure4. The coordinate transformation is differentiable if each
function xµ(y) is differentiable with respect to each yν .

In order to make these definitions more clear, let us consider some examples. The
simplest case is the space Rm itself, which is a manifold that can be covered by a single
coordinate system with the homeomorphism ϕ being the identity.

Moving to less trivial cases, we start with the usual two-dimensional surface of a
sphere of unit radius, S2, which is a submanifold5 of R3. We can simply choose the
polar coordinates (θ, ϕ) in order to parametrize the surface of S2. Such coordinates are
usually defined by the relations

θ = tan−1

√
x2 + y2

z
and ϕ = tan−1 y

x
, (2.1)

with θ ∈ [0, π] and ϕ ∈ [0, 2π], while (x, y, z) represent the usual Cartesian coordinates.
However, we are also free to choose any other coordinate system, like the stereographic
one (u, v), which is defined by the projection from the North pole to the equatorial
plane by the equations

u =
x

1− z
and v =

y

1− z
. (2.2)

4Actually, if the union of two atlases is again an atlas, they are said to be compatible. The differential
structure is defined by the compatibility equivalence class

5N ⊂M is a smooth submanifold ofM if every point ofN lies in some chart (Oi, ϕi) with ϕi(N∩Oi) =
ϕi(Oi) ∩Rk, with 0 < k ≤ m.
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Figure 2.2: Sphere. Illustration of the
polar (θ, φ) and stereographic (u, v) co-
ordinates for the point p ∈ S2 over the
S2 manifold. Such space frequently ap-
pears in many physical problems. For
instance, the configuration space of a
spherical pendulum is S2.

It is straightforward to see that both coordinate systems are related by the equations

u = cot
θ

2
cosϕ and v = cot

θ

2
sinϕ. (2.3)

Figure 2.2 illustrates both coordinate systems.
Of course, there are many other coordinate systems that we can choose, and all of

them are equally good. However, an important point here is that no coordinate system
can be employed everywhere at once. In other words, there is no single coordinate
system that is able to uniquely assign a set of coordinates to every point on S2. This can
be illustrated from the stereographic coordinates at the pole or the polar coordinates at
the equator (θ = π/2). We cannot label the points on the sphere with a single coordinate
system such that nearby points always have nearby coordinates. However, we can do
this on parts of S2. We can construct two or more overlapping coordinate systems, such
that each one of them covers some part of the manifold by uniquely labeling every
one of its points and that nearby points have nearby coordinates (in at least one of
them). Specifically, we can consider two stereographic coordinates, one defined by the
projections from the North pole and the other one by projections from the South pole.
By imposing that the transition from one coordinate system to the other is determined
by functions of class C∞, we have a differentiable manifold.

Another example is the unit circle, which is the submanifold of R2 defined by S1 =
{(x, y)|x2 + y2 = 1; x, y ∈ R}. Note that there is no way to globally parametrize the
circle with a single coordinate function.

Now that we have a space with a differential structure defined on it, it is time to
move forward and see how to do calculus on a manifold.
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Figure 2.3: Maps on manifolds. Il-
lustration of the map f : M 7→ N.
The maps ϕ and ψ are employed in or-
der to provide a coordinate representa-
tions for f in the way discussed in the
text. Note that the dimensions of the
involved manifolds do not need to be
the same.

2.2 Differentiable maps

As it is clear from the last section, the theory of manifolds is based on smoothness, so
we can employ the usual calculus developed in Rn. Let us start by defining a very
important concept, differentiable maps between manifolds, which are transformations
that preserve the structure.

Let f : M 7→ N be a map between an m-dimensional manifold M and an n-
dimensional one N. In this way, a point p ∈ M is mapped to the point f(p) ∈ N,
f : p 7→ f(p), as illustrated in Fig. 2.3. Now, in order to build a coordinate representa-
tion of such a map, we define the charts (O, ϕ) and (P, ψ), in such a way that p ∈ O and
f(p) ∈ P. The coordinate representation for f can be written as

ψ ◦ f ◦ ϕ−1 : Rm 7→ Rn. (2.4)

If ϕ(p) = {xµ} and ψ(f(p)) = {yν} we have y = ψ◦f ◦ϕ−1(x) and, when we know which
coordinate systems are being used, we can write y = f(x) or yµ = fµ(xα), considering
a certain abuse of notation. If these functions are of class C∞, then the map f is said to
be differentiable. Such a notion is independent of the coordinate system used.

A very important class of maps between manifolds can be defined as follows.

Definition 2 (Diffeomorphism) Let f :M 7→ N be a homeomorphism6 and ψ and ϕ coordi-

nate functions. If ψ◦f◦ϕ−1(x) is invertible, and both y = ψ◦f◦ϕ−1(x) and x = ϕ◦f−1◦ψ−1(y)

are C∞, the map f is said to be a diffeomorphism and M and N are said to be diffeomorphic,

denoted asM ∼= N.

Clearly, dimM = dimN ifM ∼= N. This notion provides a classification o spaces into
equivalence classes according to whether it is possible to smoothly deform one space
into another. The set of diffeomorphisms f :M 7→M is a group denoted by Diff(M).

6See Appendix A for definitions.
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Figure 2.4: Curves on mani-
folds. Illustration of the curve
c, parametrized by t, which is a map
from an open set (a, b) ⊂ R of the
real line to the manifold. Given a
coordinate function ϕ, we can build
the coordinate representation of the
curve on Rm.

A very special class of maps that will be employed to introduce the fundamental
notion of vector space is called curve. Formally, an open curve on an m-dimensional
manifold M is the map c : (a, b) 7→ M, where (a, b) is an open interval of the real line.
We assume that the curve does not intersect with itself, as illustrated in Fig. 2.4. A
generalization of such a concept is a closed curve, which is the map c : S1 7→ M. By
defining the chart (O, ϕ), the curve c(t) has the coordinate representation x = ϕ ◦ c :

R 7→ Rm.
Another important mapping is the function f on M, which is a smooth map from

M to R. By choosing a chart (O, ϕ), we can build the coordinate representation of f as
f ◦ ϕ−1 : Rm 7→ R, which is a real-valued function of m variables. We denote the set of
smooth functions onM by F(M).

2.3 The tangent space

One of the ways we can define a tangent space to a point in a manifold is embedding
such a manifold in a higher dimensional Euclidean space and selecting a specific linear
subspace as the tangent one. However, it would be much more powerful if we could
define all the necessary quantities in an intrinsic way, making reference to the manifold
structure only. This is the way modern differential geometry deals with such problems.
In this context, a tangent space is understood as an object that is tangent to a curve on
the manifold.

The notion of a vector as an arrow connecting some given point to the origin does
not work, in general, on a manifold. For instance, how to draw a straight arrow con-
necting two points on the surface of a sphere? Therefore, we need a more general
definition of what a vector is. On a manifold, a vector is defined in terms of a tan-
gent vector to a curve, which is the generalization of the tangent line to a curve in the
usual two-dimensional plane. However, in an n-dimensional manifold, there are many
curves that are indeed tangent to a given vector and, therefore, a tangent vector is an
equivalence class of curves. Let us see how this idea works mathematically.
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Figure 2.5: Vector on manifolds. A
curve c along with a function f and
a local coordinate system ϕ define the
tangent vector X to the manifold M in
the direction determined by the curve
c(t).

Let us consider a curve c : (a, b) 7→ M and a function f : M 7→ R, where (a, b) is an
open interval in R containing the point t = 0 (t is an arbitrary parametrization of the
curve). By choosing a local coordinate function ϕ, the rate of change of the function f

at t = 0 along the curve c is given by

df(c(t))

dt

∣∣∣∣
t=0

=
∂f

∂xµ
dxµ(c(t))

dt

∣∣∣∣
t=0

, (2.5)

with
∂f

∂xµ
≡ ∂

∂xµ
[
f ◦ ϕ−1(x)

]
. (2.6)

This means that the rate (df/dt)|t=0 is obtained by the application of the differential
operator

X = Xµ

(
∂

∂xµ

)
with Xµ =

dxµ(c(t))

dt

∣∣∣∣
t=0

(2.7)

to the map f , denoted as X[f ]. Therefore, we define X as the tangent vector to M at
the point p = c(0) along the direction given by the curve c(t). Figure 2.5 illustrates this
concept.

Since
∂xµ

∂xν
= δµν , (2.8)

with δµν being the Kronecker delta function, it follows directly

X[xµ] =
dxµ(t)

dt

∣∣∣∣
t=0

. (2.9)
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If t is understood as time, this is simply the µ-th component of the velocity vector.
Based on the above definition, let us now define the equivalence class of curves on

M. Given two curves c1 and c2 such that c1(0) = c2(0) = p and

dxµ(c1(t))

dt

∣∣∣∣
t=0

=
dxµ(c2(t))

dt

∣∣∣∣
t=0

, (2.10)

then both curves define the same vector X at p, in which case we have c1 ∼ c2. We
therefore identify the tangent vector X with the equivalence class of curves

[c(t)] =

{
c̃(t) | c̃(0) = c(0) and

dxµ(c1(t))

dt

∣∣∣∣
t=0

=
dxµ(c2(t))

dt

∣∣∣∣
t=0

}
, (2.11)

rather than a curve itself. All the equivalence classes of curves at p ∈ M, i. e. all the
tangent vectors at p, form a vector space called the tangent space ofM at p, denoted by
TpM. From Eq. (2.7) it is clear that eµ ≡ ∂/∂xµ is a basis vector. Evidently, dimTpM =

dimM. The basis {eµ} is called the coordinate basis. Note that a vector is not a line
segment going from one point to the other on the manifold. Instead, it is defined at a
single point. We have a tangent space associated with each point to the manifold. The
collection of all these tangent spaces for all points on the manifold is called the tangent
bundle, which is a manifold in its own right.

Although we have employed a coordinate system, it is clear from the above discus-
sion that a vector X exists without this definition. We use coordinates only because it
is convenient. The fact that the vector is coordinate independent allows us to find the
transformation law of the components of the vector. Let p ∈ Oi ∩ Oj and {xµ} = ϕi(p)

and {yν} = ϕj(p) be the two coordinate functions. We then have two expressions for
the vector X ∈ TpM

X = Xµ ∂

∂xµ
= X̃µ ∂

∂yµ
. (2.12)

The second equality must hold since the vector is the same. This implies that the com-
ponents of the vector in the two coordinate bases must be related by

X̃µ = Xν ∂y
µ

∂xν
. (2.13)

This last relation follows from the application of the vector X to the coordinate func-
tions yν . It is important to observe here that this transformation law is such that the
vector itself is left invariant. So, the components of the vector change, not the vector.

If a vector is smoothly defined at each point of the manifold, we have a vector field.
Therefore,X is a vector field ifX[f ] ∈ F(M) for any f ∈ F(M). The vector field defines,
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in this way, a map between smooth functions over the manifold.
Now, since we have defined the vector space TpM, we can associate with it the dual

vector space T∗
pM (also called the cotangent space), whose elements are linear functions

from TpM to R, i.e. ω : TpM 7→ R for ω ∈ T∗
pM. ω is called the cotangent vector, the

dual vector, or the one-form, with the simplest example being the differential df of a
function f ∈ F(M).

The action of df ∈ T∗
pM on V ∈ TpM is defined as

⟨df, V ⟩ = V [f ] = V µ ∂f

∂xµ
∈ R. (2.14)

We can clearly see that this expression is bilinear. Now, since df = (∂f/∂xµ)dxµ, it is
natural to take dxµ as the elements of the basis in T∗

pM, which is the dual basis since

〈
dxν ,

∂

∂xµ

〉
=
∂xν

∂xµ
= δνµ. (2.15)

In this way, an arbitrary one form can be written as ω = ωµdx
µ.

We are now in a position to define the inner product ⟨ , ⟩ : T∗
pM× TpM 7→ R as

⟨ω, V ⟩ = ωνV
µ

〈
dxν ,

∂

∂xµ

〉
= ω(V ) = ωµV

µ. (2.16)

It is important to observe here that the inner product is defined in terms of the action
of a dual vector on a vector, and not between two vectors.

Now, let us consider two coordinate systems {xµ} = ϕi(p) and {yν} = ϕj(p) for the
point p ∈ Oi ∩Oj . We thus have

ω = ωµdx
µ = ω̃νdy

ν , (2.17)

From the fact that dyν = (∂yν/∂xµ)dxµ we can write down the transformation law for
the components of the one-form ω

ω̃ν = ωµ
∂xµ

∂yν
. (2.18)

Again, the components of the one-form change in such a way that the one-form itself
is left invariant.
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2.4 Tensors

A tensor of type (q, r) is a multilinear object which maps q elements of T∗
pM and r

elements of TpM to a real number. The set of all tensors of type (q, r) at p ∈ M is
denoted by Tq

r,p(M). We can write the tensor T ∈ Tq
r,p(M) in terms of the bases defined

in the last section as

T = Tµ1...µq
ν1...νr

∂

∂xµ1
...

∂

∂xµ1
dxν1 ...dxνr . (2.19)

Clearly, a tensor of type (q, r) is the multilinear map

T :
[
×q T∗

pM
]
[×r TpM] 7→ R, (2.20)

where the symbol ×q T∗
pMmeans the Cartesian product of the space T∗

pM q times, with
a similar definition for the vector space TpM. The action of a tensor on ωi (1 ≤ i ≤ r)

and Vj (1 ≤ j ≤ q) results in the number7

T(ω1, ..., ωr; V1, ...,Vq) = Tµ1...µq
ν1...νr

ω1,µ1 ...ωq,µqV
ν1
1 ...V

νr
r . (2.21)

Given two coordinate systems x and x′, the components of the tensor T change as

T
µ
′
1...µ

′
q

ν
′
1...ν

′
r

= T µ1...µq
ν1...νr

dxµ
′
1

dxµ1
· · · dx

ν1

dxν
′
1

, (2.22)

which is the general transformation law for tensors.
Similarly, we did in the case of a vector field, we define a tensor field of type (q, r)

by the smooth assignment of an element of Tq
r,p(M) to each point p ∈M. The set of the

tensor fields of type (q, r) on M is denoted by Tq
r(M). For example, T0

1(M) is the set of
the dual vector fields, while T1

0(M) is the tangent bundle.
A fundamental tensor for us is the metric tensor gab, which is a symmetric (0, 2) ten-

sor. By imposing that the determinant of the metric does not vanish, Det[gab] = g ̸= 0,
we can properly define the inverse of the metric as

gµνgαν = δµα. (2.23)

In the same way we used the Minkowski metric ηµν to raise and lower indices in

7Note that the Latin indexes in these expressions are not labelling the components of the vectors, but
they are labeling distinct vectors.
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special relativity, in the general theory, we use the metric gµν to perform such tasks.
One of the many applications of the metric tensor is to provide the notion of the

length of a path in spacetime, the line element

ds2 = gµνdx
µ ⊗ dxν = gµνdx

µdxν . (2.24)

This equation makes sense because dxµ is really a basis dual vector. For instance, the
Euclidean line element in the usual three-dimensional space is ds2 = dx2 + dy2 + dz2,
written in Cartesian coordinates. In this equation, and in most of these lectures, we
employ the shorthand notation dx2 ≡ dx ⊗ dx, except for the line element itself, ds2,
which is just a new notation for the metric, not representing the square of any quantity.

The Newtonian spacetime is called Euclidean and has a positive metric, with sig-
nature8 (+,+,+). This is also true for the case of Riemannian geometry, where all
eigenvalues of the metric are positive. However, the signature of the metric of spe-
cial and general theory of relativity is (+,−,−,−), which means that it is not positive
semi-definite. This kind of metric is called Lorentzian.

An important observation here is that the partial derivative is not a true tensor, as
can be seen by computing its transformation law. Physics needs derivatives, and if we
want the laws of physics to be coordinate independent, we need to define the notion
of the covariant derivative on manifolds.

8the number of positive and negative engenvalues.
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