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Appendix A

Basic definitions

The main goal of this appendix is to provide some basic mathematical definitions sup-
porting the main text. We present the definitions of vector, affine, and topological
spaces, discussing some of their properties that are relevant for the understanding of
the classical structure of spacetime. The idea of algebras, which are vector spaces with
an additional structure, is also presented for completeness.

1.1 Vector Spaces

In order to introduce the concept of vector spaces, we need to define what is called a
field, which is a non-empty set F together with two binary operations called addition
(+ : F× F 7→ F) and multiplication (∗ : F× F 7→ F) that satisfy the following axioms
for all a, b ∈ F

• Associativity of addition and multiplication: a+(b+c) = (a+b)+c and a∗(b∗c) =
(a ∗ b) ∗ c

• Commutativity of addition and multiplication: a+ b = b+ a and a ∗ b = b ∗ a

• Additive and multiplicative identity: There exist two different elements 0 and 1

in F such that a+ 0 = a and 1 ∗ a = a.

• Additive inverse: For every a ∈ F, there exists the element −a, called the additive
inverse of a, such that a+ (−a) = 0

• Multiplicative inverse: For every a ̸= 0 in F, there exists an element, denoted by
a−1, called the multiplicative inverse of a, such that a ∗ a−1 = 1

• Distributivity of multiplication over addition: a ∗ (b+ c) = (a ∗ b) + (a ∗ c)
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The set R under the usual addition and multiplication of real numbers is an ex-
ample of a field. The set of complex numbers C is R2, that is, the set of all vectors
with two coordinates (x, y) with x, y ∈ R. By defining addition and multiplication as
(x, y) + (u, v) = (x + u, y + v) and (x, y) ∗ (u, v) = (xu − yv, xv + yu), C is also a field.
The set Z of integers is not a field since not all elements have a multiplicative inverse
that belongs to the set.

Now, a vector space over a field F is the set X together with two operations: (i)
Addition (+ : X × X → X) and (ii) scalar multiplication (∗ : F × X → X). Such
operations satisfy the following axioms for all u, v, w ∈ X and all a, b ∈ F.

• Associativity: x+ (y + z) = (x+ y) + z

• Commutativity: x+ y = y + x

• Identity element for addition: There exists an element 0 ∈ X such that x + 0 = x

for all x ∈ X.

• Inverse element for addition: For every x ∈ X there exists an element −v ∈ X

such that x+ (−x) = 0

• Compatibility: a ∗ (b ∗ x) = (ab) ∗ x

• Identity element for scalar multiplication: 1 ∗ x = x.

• Distributivity of scalar multiplication with respect to vector addition: a∗(x+y) =
a ∗ x+ a ∗ y

• Distributivity of scalar multiplication with respect to field addition: (a+ b) ∗ x =

a ∗ x+ b ∗ x.

In general, the elements of X are called vectors, while the ones belonging to F are
called scalars. The simplest example of a vector space over a field F is the field itself.
By performing addition and scalar multiplication pointwise, functions from any fixed
set to F also form a vector space.

If F is a field, the Cartesian product Fn = {(f1, f2, ..., fn), fj ∈ F} is a vector space
over the field F with the addition operation defined as (f1, ..., fn) + (g1, ..., gn) = (f1 +

g1, ..., fn+gn) (gj ∈ F) and the product as α∗ (f1, ..., fn) = (α∗f1, ..., α∗fn) for all α ∈ F.
The null vector is denoted by (0, ..., 0).

The set Z is not a vector space since it is not closed under scalar multiplication.
Also, the set of all polynomials of degree n is not a vector space since it is not closed
under addition.

When considering geometry, we are often interested in properties that are invari-
ant under the action of some symmetry group and then we can model a set of points
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(the space-time, for instance) as a vector space. However, this procedure has some dis-
advantages and we have a more appropriate construction, called affine space. First,
in a vector space, the point 0, called the origin, plays a very important role, which
is not a good thing when we are considering physical theories since we do not want
preferred points. Moreover, vector spaces and affine spaces have very different geo-
metrical properties. In the first case, bijective1 linear maps keep the geometry invari-
ant, while affine maps2 (which form a much bigger set) are allowed in the last case.
Moreover, affine spaces present a very interesting property for physics, since they al-
low us to handle geometry in an intrinsic manner that is independent of the coordinate
system.

Let us define the affine space as the triple
(
X,

−→
X,+

)
, with X being a set of points,

−→
X a vector space and (+ : X ×

−→
X 7→ X) a bilinear operation satisfying the following

properties:

• a+ 0 = a for all a ∈ X

• (a+ x) + y = a+ (x+ y) for all a ∈ X and all x, y ∈
−→
X

• for any two points a, b ∈ X, there is a unique x ∈
−→
X such that a+ x = b.

In this definition,
−→
X is called the set of free vectors, or free translations.

Given an m × n matrix A and a vector b ∈ R, the set of solutions to the equation
Ax = b, for x ∈ Rm, is an affine space. Newtonian space-time is a four-dimensional
affine space on which two additional structures are defined. A linear functional t called
time and a Euclidean metric on each affine subspace defined by the vectors to which t
assigns 0 (the simultaneity hypersurfaces).

Let V be a vector space over F. A map l : F 7→ F is a linear functional if

l(αx+ βy) = αl(x) + βl(y), (1.1)

for all x, y ∈ V and α, β ∈ F. The set of all linear functionals of V is the dual space of
V, denoted as V∗.

The relation between V and V∗ can be stated as follows. There exists at least one
injective map ϕ : V 7→ V∗ in such a way that V is isomorphic3 to its image under ϕ,

1The map f : X 7→ Y is injective if x ̸= x′ implies f(x) ̸= f(x′) for any x, x′ ∈ X. It is called
surjective if for each y ∈ Y there exists x ∈ X such that f(x) = y. It is called bijective if it is both injective
and surjective.

2A geometric transformation that preserves lines and parallelism, but not necessary angles and dis-
tances.

3Let us supposed that the sets X and Y are endowed with a certain algebraic structure (multiplica-
tion, for instance). If the map f : X 7→ Y preserves such structure, it is called an homomorphism. If f
is bijective, is is called an isomorphism and the spaces are isomorphic to each other,X ∼= Y.
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V ∼= ϕ(V) ⊂ V∗. If dim(V) is finite, then V ∼= V∗. In the case dim(V) is infinite, there
can be elements of V∗ without such identification. In general, we have ϕ(V) ⊂ V∗.

1.2 Topological spaces

Topological spaces are the most general mathematical spaces that allow us to define
notions like limits and continuity. In general, topology is interested in the relations
between points and regions and plays a fundamental role in general relativity.

Let us then define the topological space. LetX be a set andT a collection of subsets
ofX satisfying the following properties.

1. The union of an arbitrary collection of subsets, each of which is in T, is in T. If
Oα ∈ T for all α, then ∪αOα ∈ T.

2. The intersection of a finite number of subsets of T is in T. If {Oi}ni=1 ∈ T, then
∩n

i=1Oi ∈ T.

3. The entire setX and the empty set ∅ are in T.

X is said to be a topological space, and T provides a topology toX.
There is also a definition, due to Felix Hausdorff, in terms of neighborhoods of a

point. Let X be a set. Let N be a function assigning to each a ∈ X a non-empty
collection N(x) of subsets of X. The elements of N(x) are called neighborhoods of x
with respect to N . The function N is called a neighborhood topology if the following
axioms are satisfied:

1. If N is a neighborhood of x (i. e., N ∈ N(x)), then x ∈ N. In other words, each
point of the setX belongs to every one of its neighborhoods with respect to N .

2. IfN is a subset ofX and includes a neighborhood of x, thenN is a neighborhood
of x. Every superset4 of a neighborhood of a point x ∈ X is again a neighborhood
of x.

3. The intersection of two neighborhoods of x is a neighborhood of x.

4. Any neighborhoodN of x includes a neighborhoodM of x such thatN is a neigh-
borhood of each point ofM

Then, (X,N ) is called a topological space.

4A setA is a subset of a set B if all elements ofA are also elements of B; B is then a superset ofA.
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A standard example of such a system of neighborhoods is for the real lineR, where
a subset N of R is defined to be a neighborhood of a real number x if it includes an
open interval containing x.

Let X = {a, b, c} and T = {X, ∅, {a, b}, {b}, {b, c}}. Then, the pair (X,T) is a topo-
logical space. Of course, there are many other topologies that can be chosen here by
simply permuting a, b, and c. If X is any set, the collection of all subsets of X is called
the discrete topology, while the set {X, ∅} is called the trivial topology. The setR along
with all the open intervals (a, b) and their unions is a topological space.

If a metric5 d(x, y), with x, y ∈ X, is defined on the set X, its open sets are given by
the open discs Oϵ = {y ∈ X | d(x, y) < ϵ} and all their possible unions. Such topology
is called a metric topology determined by d and the topological space (X,T) is called
a metric space.

From these notions we can define continuous maps between topological spaces. If
(X,Tx) and (Y,Ty) are topological spaces, a map f : X → Y is said to be continuous
if the inverse f−1[O] = {x ∈ X | f(x) ∈ O} of every open set in O ⊂ Y is an open set in
X.

A very important set of these open maps is the homeomorphism, which is con-
tinuous, one-to-one (distinct elements are mapped into distinct elements) and onto
(every element of the domain is mapped into one of the elements of the codomain).
The inverse map is also continuous. In this case, (X,Tx) and (Y,Ty) are said to be
homeomorphic topological spaces, which means that they have identical topological
properties. Homeomorphism is an equivalence relation.

From the physical point of view, we need to impose another condition on topolog-
ical spaces in order for them to be able to describe space-times. The intuition behind
this idea is that we need unique vector flows and, thus, unique limits (curves do not
split into multiple curves). Hausdorff spaces present such property. A topological
space is said to be Hausdorff if for each pair of distinct points x, y ∈ X, x ̸= y, one can
find open sets Ox ,Oy ∈ T such that x ∈ Ox, y ∈ Oy and Ox ∩ Oy = ∅. We can mention
some important consequences of this definition. First, every finite set in a Hausdorff
space is closed. Secondly, a sequence of points in a Hausdorff space converges to at
most one point in the space. Moreover, the product of two Hausdorff spaces is also
Hausdorff, and every subspace of a Hausdorff space is Hausdorff.

Another important property is compactness, which is the generalization of the Eu-
clidean closed systems to topological spaces. LetA be a subset ofX and {Oα} a collec-
tion of open sets. If the union of these sets containsA, {Oα} is said to be an open cover
of A. A subcollection of the sets {Oα} which also covers A is referred to as a subcover.

5d : X ×X 7→ R under the conditions i) d(x, y) = d(y, x), ii) d(x, y) ≥ 0, with the equality holding
only for x = y and iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
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If each of its covers has a finite subcover, the topological space is said to be compact.
According to the Heine-Borel theorem for Euclidean spaces, compactness is equivalent
to the set being closed and bounded.

Now, in order to study general relativity, we need a Lorentzian metric, which re-
quires a Riemannian metric and the metric space must be paracompact. Let (X,Tx) be
a topological space and {Oα} be an open cover ofX. An open cover {Vβ} is said to be a
refinement of {Oα} if for eachVβ there exists anOα such thatVβ ⊂ Oα. The cover {Vβ}
is said to be locally finite if each x ∈ X has an open neighborhood W such that only
finitely many Vβ satisfy W ∩Vβ ̸= ∅. A topological space is said to be paracompact if
every open cover {Oα} of X has a locally finite refinement {Vβ}. This last condition is
necessary in order for the topological space to be homeomorphic to a metric space.

The space-time in general relativity is postulated as a differentiable manifold that is
Hausdorff and paracompact. Moreover, it must be connected, which is a property that
says that the topological space cannot be covered by the union of two or more disjoint
non-empty open subsets.

1.3 Algebras

An algebra is a vector space V (over a field F) along with a binary operation ·, the
product of the algebra, such that the following properties are satisfied for all a, b, c ∈ V
and α ∈ F.

• Distributivity with respect to the vectorial addition: a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c.

• Commutativity with respect to the scalar product.

Now we present some important examples of algebras that are commonly found
while studying physics.

Lie algebra L — The product of L is denoted as [a, b], with a, b ∈ L, and it must
satisfy the following properties: i) [a, a] = 0, which implies [a, b] = −[b, a] and ii) the
Jacobi identity [a, [b, c]]+[c, [a, b]]+[b, [c, a]] = 0. The setR3 with the usual cross product
is an example of a Lie algebra, as well as the set of all n × n matrices over the field F,
Mat(F, n), under the product [A,B] = AB −BA, with A,B ∈ Mat(F, n).

Poisson algebra P — Is the vector space P (over the field F) along with two prod-
ucts, ∗ and {,} such that: i) P is associative with respect to ∗, ii) P is a Lie algebra
with respect to {,} and iii) for all a, b, c ∈ P, the Leibniz identity holds {a, b ∗ c} =

{a, b} ∗ c + b ∗ {a, c}. Given two C∞ functions f(x, p) : R2 7→ R and g(x, p) : R2 7→ R,
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the Poisson brackets
{f, g} =

∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p
(1.2)

makes the set of all C∞ a Lie algebra.
Jordan algebra J — The product of the algebra satisfies, for all a, b ∈ J, the follow-

ing properties: i) commutativity, a · b = b · a, and ii) the Jordan identity (a · a) · (a · b) =
a · ((a · a) · b). The set of all self-adjoint matrices of Mat(C, n) with the Jordan product

a · b = 1

2
(a · b+ b · a) (1.3)

is a Jordan algebra.
Grassmann algebra Γ(V) — LetV be a vector space over the field F. A Grassmann

algebra over V is an associative and unital6 algebra over F, with the product ∧ satisfy-
ing the following properties: i) V is a subspace of Γ(V) and ii) for all v ∈ V, we have
v ∧ v = 0.

Clifford algebra Cl(V, ω) — Let V be a vector space over the field F. Let ω be a
symmetric bilinear form7 over V. A Clifford algebra over V and ω is an associative
algebra with the unity e, such that the following properties hold: i) V is a subspace of
Cl(V, ω) and ii) for all v ∈ V, v2 = ω(v, v)e. The set of Pauli matrices σx, σy and σz,
with V = R3 and ω(u, v) =

∑
a,b uavbδa,b, where u = (u1, u2, u3) and v = (v1, v2, v3) in R3

is a Clifford algebra. If V is the Minkowski spacetime and ω =
∑

µν uµvνη
µν , the set of

Dirac matrices γµ is a Clifford algebra. uµ represents the components of the four-vector
u (the same applying for v) while ηµν is the usual Minkowski metric.

6The algebra is called unital if there is the neutral element 1 such that 1 · a = a · 1 = a for all a in the
algebra.

7See Chapter 2 for details on bilinear forms.
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