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Motivation

Definition of heat and work are problematic in quantum mechanics. Informa-
tion theory can be unambiguously extended to quantum mechanics. The idea
of defining thermodynamic quantities in terms of efficiency of information pro-
cessing could pave a new way for a deeper understanding not only of thermo-
dynamics, but also on the limitations for processing information. And, possibly,
to a relativistic formulation of thermodynamics.

Goal
To describe a dynamical system as a communication problem and, based on
this description, to establish a lower bound on dissipation.
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Some aspects of information and physics3

Jayne’s principle
Equilibrium probability distribution maximizes information transfer in the mea-
surement process. Statistical physics can be derived from information theory1.

Landauer’s principle
Algorithmic complexity and energy cost of computation (physical implemen-
tation of a process) are deeply related. Logical irreversibility implies physical
irreversibility2.

1E. T. Jaynes, Phys. Rev. 106, 620 (1957)
2R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
3J. Goold, M. Huber, A. Riera, L. del Rio and P. Skrzypczyk, J. Phys. A 49, 143001 (2016). 2/15



Some aspects of information and physics

Phase space
Driven classical Hamiltonian systems4.

⟨Wdiss⟩ ≡ ⟨W ⟩ −∆F = β−1D (ρt||ρ̃t)

Predictive power
Driven and dissipative systems. Unwarranted retention of past information is
fundamentally equivalent to energetic inefficiency5.

⟨Wdiss (xt → xt+1)⟩ = β−1 [Imem(t)− Ipre(t)]

.

4R. Kawai, J. M. R. Parrondo and C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007).
5S. Still, D. A. Sivak, A. J. Bell and G. E. Crooks, Phys. Rev. Lett. 109, 120604 (2012). 3/15



Our problem6

Is there any connection between randomness and dissipation? Yes! Based on
a description of a dynamical system in terms of communication theory.

6M. Capela, M. Sanz, E. Solano and L. C. Céleri, Phys. Rev. E 98, 052109 (2018) 4/15



Class of systems under consideration

Elements of the theory
• H (st;λ): System’s Hamiltonian.

• λ: Set of external controlled parameters.

• st = (q(t), θ(t)): Set of generalized coordinates and canonical conjugate
momenta.

• Γ: The finite-dimensional phase-space.

• The system is initially in the state

ρ0(s0, λ0) =
e−βH(s0;λ0)

Z(λ0)
Z(λ) =

∫
Γ
ds exp{−βH(s;λ)}
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Class of systems under consideration
Dynamics in phase-space

Is deterministic and governed by Hamilton equations

q̇i =
∂H(s;λ)

∂θi
θ̇i = −∂H(s;λ)

∂qi

• Dynamical system: (Γ, p, ϕt). (Γ, p) is a probability space.
• p : Σ → [0, 1] is the initial probability measure over the sigma-algebra Σ.
• Hamiltonian flow: st = ϕt(s0). ϕ : Γ → Γ.
• The Shannon differential entropy (on the support of the probability

density ρt) is defined as

S[ρt] = −
∫
Γ

dsρt(s) ln ρt(s)
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Communication and dynamical systems
The source emits some discrete symbols (from some alphabet) to a receiver
accordingly with a given probability distribution. The KSE quantifies how ran-
dom such a process is. The goal here is to define this quantity for dynamical
systems.

Partitioning the phase-space
Partition: A collection A of subsets of the phase-space Γ such that:

• ∀ α, α′ ∈ A, α ∩ α′ = ∅ if α ̸= α′

• ⋃
α∈A α = Γ
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Refinements of partitions

Refinement
For partitions A and B we define the refinement A ∨ B =
{α ∩ β |α ∈ A , β ∈ B}. 8/15



The symbols of a dynamical systems

Discrete time
• Let us consider that time is a discrete variable t ∈ Z.

• Time evolution is generated by iterations of the map ϕ ≡ ϕt=1.

• The phase-space alphabet is constructed as
◦ Initial phase-space partition: A → ϕ(A) = {ϕ(α) |α ∈ A}
◦ The alphabet is provided by the trajectories: A, ϕ(A), ϕ2(A), . . .

Kolmogorov-Sinai entropy is then defined for this alphabet.
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The Kolmogorov-Sinai entropy

Entropy of a partition
p(α): probability of (q, θ) ∈ α, with α ∈ A

S [A] = −
∑
α

p(α) ln p(α)

Randomness of the Dynamical System

h(ϕ) := sup
A∈P

lim
t→∞

S
[∨t−1

n=0 ϕ
−n(A)

]
t

,

t−1∨
n=0

ϕ−n(A) = A∨ϕ−1(A)∨· · ·∨ϕ−t+1(A)

P is the set of all possible finite partitions of Γ.
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Main result

Bird’s eye view of the proof
• Every initial condition generates a trajectory (α0, α1, . . . , αt).

• From this we define the probability for every trajectory and then the
conditional coarse-grained probability density

ρcg(st|α0, . . . , αt−1) =
∑
αt∈A

p(αt|α0, . . . , αt−1)

v(αt)
1αt(s)

1α(s) = 1 if s ∈ α and 1α(s) = 0 otherwise and v(α) =
∫
α ds.

• Compute a lower bound on the phase-space average ES[ρcgt ].

• Rate in time of ES[ρcgt ]→ KSE and the rate of D (ρt||ρ̃t)→ rate of ⟨Wdiss⟩.
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Main result

Lower bound on dissipation rate

β⟨Wd⟩ ≥ β(⟨H⟩ − F (λt))− It(A) It(A) = h(ϕ)− ct(A)− dt(A)

ct(A) = 1−
∑

α0,...,αt∈A
p(αt|α0, . . . , αt−1)× ṽ(αt−1, αt−2, . . . , α0|αt)

dt(A) := −
∑
αt∈A

p[ϕ−t(αt)] ln v[αt]

F (λt) := β−1 lnZ(λt) is the reference free energy at time t and the tilde repre-
sents backwards quantities. 12/15



Main result: Significance

β⟨Wd⟩ ≥ β(⟨H⟩ − F (λt))− It(A) It(A) = h(ϕ)− ct(A)− dt(A)

• Hidden information: Difference between the Shannon entropies before
and after imposing the coarse-graining.

• d0(A) is the minimum hidden information: S[p(α)]− S[ρ0] ≥ d0(A)⇒
S[p(α)]− d0(A) is maximum information that is not hidden.

• Ep(α0,...,αt−1)S[p(αt|α0, . . . , αt−1)]− S[ρt] ≡ Iht is the average hidden
information.

• ct(A) + dt(A) is the minimum average hidden information:
Iht ≥ ct(A) + dt(A).

• It(A) is the maximum average information that is not hidden (A is the
generating partition): Information generated by the dynamics. 13/15



Take home messages

• New tools for studying the thermodynamics of out-of-equilibrium
systems based on the understanding of dynamical systems in terms of
communication theory.

• In summary, we build a connection between a dynamical quantity, KSE,
and a macroscopic physical one, the dissipated work.

• Extension of our results to open systems? Non-Markovianity?7

• How about the quantum case? Extension of KSE for quantum stochastic
processes8 and its connections with quantum communication theory
should be possible.

7M. Campisi, P. Hänggi and P. Talkner, Rev. Mod. Phys. 83, 771 (2011).
8G. Lindblad, Commun. Math. Phys. 65, 281 (1979);
Pollock, Rodríguez-Rosario, Frauenheim, Paternostro and Modi, PRA 97, 012127 (2018). 14/15
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