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Outline of the course
Part I — Foundations
• Classical Information Theory

1. Introductory concepts
2. First Shannon coding theorem — Data compression
3. Second Shannon coding theorem — Channel capacity

• Quantum Information Theory
1. Introductory concepts
2. Quantum cryptography
3. Quantum algorithms
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Outline of the course
Part II — Applications
• Classical thermodynamics
• Complexity in critical systems
• Quantum thermodynamics as a gauge theory
• Simulating fermionic systems
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Part I
Foundations
Introduction



Some bibliography

Here are some interesting books on the subject of this class

1. T. M. Cover and J. A. Thomas, Elements of information theory (J. Wiley &
Sons, Inc., New Jersey, 2006).

2. M. M. Wilde, Quantum information theory (Cambridge University Press,
New York, 2013).

3. M. M. Wilde, From classical to quantum Shannon theory,
https://arxiv.org/abs/1106.1445 (2019).
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Shannon theory

Two big questions1

• What is the ultimate data compression rate?
• What is the ultimate transmission rate of communication?

The answers changed everything
Fundamental contributions in statistical physics, computer science, statisti-
cal inference, economics, and to probability and statistics. Quantum gravity
maybe?

But, before answering such questions, we need to introduce some concepts
that will be of fundamental importance, starting with the notion of information.

1C. E. Shannon. Bell System Technical Journal 27, 379 (1948) 6/1



The information unit

One of the central contributions of Shannon is the notion of a bit as a measure
of information.

Physical bit
"0" or "1": light switch is off or on, a transistor allows current to flow or not, large
number of magnetic spins point in one direction or another and so on.

Shannon’s bit
Is a measure of the surprise upon learning the outcome of a random binary
experiment. The outcome of a coin flip resides in a physical bit, but it is the in-
formation associated with the random nature of the physical bit that we would
like to measure. It is this notion of a bit that is important in information theory.
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The measure of information

How can information be quantified?

The first thing we should observe is that every physical system can be de-
scribed by means of a random variable

X = {pX(x), x ∈ X}

To start, let us consider thatX is a finite set, called the alphabet. The cardinality
of this set is denoted by |X |.

Observe that every experiment can be put in the form of a yes or no questions.
In this sense, we use the bit as a natural information unity.
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The measure of information

Shannon’s notion of information is based on three postulates:

• The information I contained in one event must depend only on the
probability of that event to occur.

• I must be a continuous function.

• I must be additive for independent events.

There is only onemathematical function that respect this three postulates: the
logarithm!
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The measure of information

In order to prove this statement, let us consider s independent occurrences of
the event x. The information measure should satisfy

I (pX(x)s) = I
(
pX(x)s−1, pX(x)

) Add
= I

(
pX(x)s−1

)
+ I (pX(x))

= I
(
pX(x)s−2, pX(x)

)
+ I (pX(x))

Add
= I

(
pX(x)s−2

)
+ 2I (pX(x))

= sI (pX(x))

As a consequence

I
(
pX(x)1/t

)
=

1

t
× t× I

(
pX(x)1/t

)
=

1

t
I (pX(x))

Therefore, for any rational number r = s/twemust have I (pX(x)r) = rI (pX(x)).
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The measure of information

Any probability pX(x) can be written as pX(x) = 2log pX(x). Also, any real num-
ber can be arbitrarily well approximated by a rational number and, since I must
be continuous, we have

I (pX(x)) = I
(
2log pX(x)

)
= log (pX(x)) I (2)

We can choose I(2) as we please. A convenient choice is I(2) = −1!

The amount of information contained in the occurrence of the event x, whose
probability is pX(x), is

I (pX(x)) = − log (pX(x))
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Shannon entropy

I (pX(x)) captures the information associated with a single occurrence of the
random variable X. However, we are often interested in the information con-
tent of the physical system, which is our information source. The entropy is
then defined as the expected information content of this random variable.

Shannon entropy

H (X) = −
|X |∑
x∈X

pX(x) log (pX(x))
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The meaning of Shannon entropy

H(X) can be viewed in two distinct ways:

• It is a measure of the uncertainty we have about X.

• It is a measure of the information gain when we learn X.

Such views are completely equivalent!
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Some properties of Shannon entropy

H(X) ≥ 0. It is the expectation value of a non-negative quantity.

H(X) is invariant under permutations of realizations. This follows be-
cause it depends only on the probabilities and not on the actual values
of the realizations.

H(X) = 0 for a deterministic variable, pX(x) = δx,x0 .

H(X) ≤ log |X |. Equality is achieved for the uniform distribution, pX(x) =
1/|X | ∀x. The inequality an be proved by Lagrange optimization.
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The conditional entropy

The conditional entropy of a random variable given another is the expected
value of the entropies of the conditional distributions, averaged over the con-
ditioning random variable

H(X|Y ) =

|Y|∑
y=1

pY (y)H(X|Y = y) = −
|X |∑
x=1

|Y|∑
y=1

pX,Y (x, y) log pX|Y (x|y)

This leads to the chain rule H(X,Y ) = H(Y ) +H(X|Y ) since

pX,Y (x, y) = pY (y)pX|Y (x|y)

Note that, in general H(X|Y ) ̸= H(Y |X). Also

0 ≤ H(X|Y ) ≤ H(X)
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The joint entropy

Let us consider the joint random variable (X,Y ). How much uncertain we are
regarding the actual occurrence of both x and y? The answer is the joint en-
tropy

H(X,Y ) = −
|X |∑
x=1

|Y|∑
y=1

pX,Y (x, y) log pX,Y (x, y)

It should be clear that, for independent variables

H(X,Y ) = H(X) +H(Y )

since, in this case, pX,Y = pXpY . This subadditivity: H(X,Y ) ≤ H(X) +H(Y )
since H(X) ≥ H(X|Y ). Also

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )
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The mutual information

How much correlation is shared between two random variables?

I(X : Y ) =

|X |∑
x=1

|Y|∑
y=1

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)

It is a measure of how much the actual distribution differs from the product of
its marginals. It is clear that I(X : Y ) ≥ 0 for any distribution.
It is not difficult to show that

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) ≥ 0

The mutual information is the reduction in the uncertainty of X (Y ) due to the
knowledge of Y (X).
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The mutual information

From the above discussion we obtain

I(X : Y ) = H(X) +H(Y )−H(X,Y )

This is fully compatible with our intuition of correlations.

Moreover, we can easily check that

I(X : Y ) = I(Y : X)

and
I(X : X) = H(X)
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The relative entropy

One of the monst important quantities in information theory is the relative en-
tropy, or Kullback-Leibler divergence, defined as

D(pX ||qX) =
∑
x

pX(x) log
pX(x)

qX(x)
= −H(X)−

∑
x

pX(x) log qX(x)

This is a measure of how much you are mistaken in taking qX and the distribu-
tion of the random variable X when the true distribution is pX .

Before stating the properties of D, we note that

I(X : Y ) = D(pX,Y ||pX × pY )
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Properties of relative entropy

Using Jensen’s inequality2 we have

−D(pX ||qX) =
∑

x∈supp(pX)

pX(x) log
qX(x)

pX(x)

JI
≤ log

∑
x∈supp(pX)

pX(x)
qX(x)

pX(x)

= log
∑

x∈supp(pX)

qX(x) ≤ log
∑
x∈X

qX(x) = 0

Thus, we conclude that
D(pX ||qX) ≥ 0

This is called information inequality. It follows that the equality holds if and
only if pX(x) = qX(x) for all x. This also implies that I(X : Y ) ≥ 0.

2For any convex function f it holds that E[f(X)] ≥ f (E[X]) 20/1



Concavity of Shannon entropy

A very important property of H(X) is that it is concave in pX(x), thus implying
that mixing leads to more uncertainty

H(λp1X + (1− λ)p2X) ≥ λH(p1X) + (1− λ)H(p2X)

Sketch of the proof. First, using the log sum inequality(∑
i

ai

)
log

(∑
ai∑
bi

)
≤
∑

ai log

(
ai
bi

)
it is possible to prove that D is convex. Them, by applying this to D(pX ||uX),
with uX being the uniform distribution, the concavity of the entropy can be
proved.
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Data processing inequality

No clever manipulation of the data can improve the inferences that can be
made from the data!

Markov chain
The random variablesX , Y andZ are said to form aMarkov chainX → Y → Z
if

pX,Y,Z(x, y, z) = pX(x)pY |X(y|x)pZ|Y (z|y)

This can be used to demonstrating that no processing of Y , deterministic or
random, can increase the information that Y contains about X. That is data
processing inequality

I(X : Y ) ≥ I(X : Z)
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Data processing inequality — Proof

Let us start by the chain rule, which states that

I(X : Y,Z) = I(X : Z) + I(X : Y |Z) = I(X : Y ) + I(X : Z|Y )

Now, since X and Y are conditionally independent

pX,Z|Y (x, z|y) =
pX,Y,Z(x, y, z)

pY (y)
=

pX,Y (x, y)pZ|Y (z|y)
pY (y)

= pX|Y (x|y)pZ|Y (z|y)

we conclude that I(X : Z|Y ) = 0. This implies that

I(X : Y ) = I(X : Z) + I(X : Y |Z)
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Data processing inequality — Proof

We also have that I(X : Y |Z) ≥ 0, thus leading to the final result

I(X : Y ) ≥ I(X : Z)

In particular, if Z = f(Y ), then X → Y → f(Y ) and

I(X : Y ) ≥ I(X : f(Y ))

Processing of information cannot improve inference power!
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Data processing inequality

There is another way to state this result, in terms of the relative entropy

Monotonicity of relative entropy
Let Λ be a classical channel. Them, it follows that

D(p||q) ≥ D(Λ(p)||Λ(q))

If supp(p) ⊈ supp(q), themD(p||q) = ∞ and the inequality is trivial. supp(p) ⊆
supp(q), the proof rely on the convexity property of the exponential function
and on the positivity of the relative entropy.
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Fano’s inequality

Let us consider the chain X → Y → X̂.
• X is the input of a classical channel
• Y is the output
• X̂ is the best estimation for X given Y .

Let us define the probability of error as

pe = Prob
{
X̂ ̸= X

}
If the channel is noiseless, H(X|Y ) = 0. If noise increases, H(X|Y ) also in-
creases. Them

H(X|Y ) ≤ H(X|X̂) ≤ h2(pe) + pe log (|X | − 1)

with h2(p) = −p log p− (1− p) log(1− p). 26/1



Thank you for your attention
lucas@qpequi.com

www.qpequi.com


