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The qubit
The simplest quantum system is the qubit, which is a two level quantum sys-
tem, like the polarization of light, for instance. Qubits are the basic units in
quantum information.

In the computational basis the two states of the qubit are represented by the
kets

{|0⟩ , |1⟩}

A fundamental difference between the classical and the quantum bit is that the
last one can be in a superposition. Therefore, we cannot use Boolean algebra
to describe the qubit. We need linear algebra.

|ψ⟩ = α |0⟩+ β |1⟩ |α|2 + |β|2 = 1
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The Bloch sphere
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Schmidt decomposition
One of themost important resources in quantum information is entanglement.
And one of the main tools to study pure state quantum entanglement is the
Schmidt decomposition.

Let us consider a bipartite system AB. A pure state is said to be entangled if
it cannot be written in the separable form

|ψ⟩AB = |χ⟩A ⊗ |η⟩B

Schmidt decomposition states that it is always possible to write

|ψ⟩AB =

d∑
i=1

λi |i⟩A ⊗ |i⟩B
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Schmidt decomposition

|ψ⟩AB =

d∑
i=1

λi |i⟩A ⊗ |i⟩B

{|i⟩A} ({|i⟩B}) is an orthonormal basis inHA (HB), the Hilbert space of system
A (B). The set of positive λi, with

∑
i λ

2
i = 1, are called Schmidt coefficients,

whose number respect

d ≤ min {dimHA,dimHB}

Entanglement
|ψ⟩AB is not entangled if and only if its Schmidt rank (the number of Schmidt
coefficients) is 1
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Distances measures
Every physical process is noisy. This means that the output state is different
from expected. How can we know how well a given protocol is running? A set
of measures called distances measures provides several tools for achieving
this goal. Here we describe a few of them.

Trace norm
Or Schatten-1 norm of the operator O

||O||1 = Tr [|O|] |O| =
√
O†O
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Trace norm
It can be proved that the trace norm of an operator is equal to the sum of its
singular values

Tr [|O|] =
∑
i

σi

Also, it satisfies the following properties
• Non-negativity: Tr [|O|] ≥ 0, with equality only for O = 0

• Homogeneity: ||cO||1 = |c|||O||1
• Triangle inequality

||O1 +O2||1 ≤ ||O1||1 + ||O2||1

These properties shows that the trace norm is indeed a distance.
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Trace norm
Some other important properties of this norm are

• Isometric invariance:
||O||1 = ||UOV †||1

• Convexity

||λO1 + (1− λ)O2||1 ≤ λ||O1||1 + (1− λ)||O2||1

• Variational characterization

||O||1 = max
U

Tr [OU ]
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The trace distance
From the trace norm we can define a distance between two density operators

Trace distance

||ρ− σ||1 which satisfies 0 ≤ ||ρ− σ||1 ≤ 2

It it ismaximum, there is ameasurement that can distinguish ρ fromσ perfectly.
It if is zero, them no measurement can distinguish the states.

There is a very interesting interpretation of the trace distance in the context of
Hypothesis-testing.
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Hypothesis-Testing

• Alice has to distinguish between two quantum states ρ0 and ρb that are
prepared with equal probabilities pX(0) = pX(1) = 1/2.

• Alice can perform a binary POVM Λ = {Λ0,Λ1}.

• Alice guesses ρ0 (ρ1) if the outcome of the outcome of the measurement
is 0 (1). This outcome is denoted by the random variable Y .

The success probability is them defined as

psucc(Λ) = pY |X(0|0)pX(0) + pY |X(1|1)pX(1) =
1

2
Tr [Λ0ρ0] +

1

2
Tr [Λ1ρ1]

=
1

2
[1 + Tr (Λ0(ρ0 − ρ1))]

The last equality follows from the fact that Λ1 = 1− Λ0.
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Hypothesis-Testing
The success probability depends explicitly on the quantum measurement. Al-
ice wants to maximize it. Therefore, we have

psucc = max
Λ

[psucc(Λ)] =
1

2

[
1 +

1

2
||ρ0 − ρ1||1

]

If the trace distance is zero, Alice cannot have any information regarding distin-
guishability and psucc = 1/2. If the trace distance is maximum, them psucc = 1
and Alice can find a measurement that let her to perfectly guess the correct
state.
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Fidelity
Another interesting measure of distinguishability is the quantum fidelity

Fidelity
Let us consider two quantum pure state |ψ⟩ and |ϕ⟩. The quantum fidelity is
defined as

F (ψ, ϕ) = | ⟨ψ|ϕ⟩ |2 0 ≤ F (ψ, ϕ) ≤ 1

Uhlmann Fidelity
Themost general fidelity, which is a dintinguishabilitymeasure between to den-
sity operators, is the Uhlmann fidelity

F (ρ, σ) = ||√ρ
√
σ||21

11/27



Quantum entropies
We now start our journey into the quantum Shannon theory. The first funda-
mental measure we introduce is the von Neumann entropy, which gives mean-
ing to the notion of information qubit, which is a fundamental quantum infor-
mation unit measure. It is defined for any quantum state ρ as

S(ρ) = −Tr [ρ log ρ]

Let us consider the spectral decomposition of the density operator

ρ =
∑
x

pX(x) |x⟩⟨x|

Them
S(ρ) = H(X)
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Properties of von Neumann entropy

• Non-negativity:
S(ρ) ≥ 0

S(ρ) = 0 for pure states
• Upper bound:

S(ρ) ≤ log d

with d = dimH
• Concavity:

S(ρ) ≥
∑
x

pX(x)S(ρx) ρ =
∑
x

pX(x)ρx

• Since isometries do not change eigenvalues, we must have

S(ρ) = S(UρU †)
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Joint entropy
We can extend this definition to more than one system. Let us consider the
bipartite system AB.

S(ρAB) = −Tr [ρAB log ρAB]

Let us consider ρAB = |ϕ⟩⟨ϕ|. We can employ Schmidt decomposition to write

|ϕ⟩ =
∑
i

√
λi |iA⟩ ⊗ |iB⟩

The respective marginals are

ρA =
∑
i

λi |iA⟩⟨iA| and ρA =
∑
i

λi |iB⟩⟨iB|
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Joint entropy
Therefore, both marginals have exactly the same eigenvalues. Thus

S(ρA) = S(ρB)

while ρAB = 0. Remembering that, in the classical case

H(X,Y ) ≥ H(X) +H(Y )

This is the first radical difference between the classical and the quantumcases.
We can know everything about the global system, but completely ignore the
states of the individual systems.

This is what Schödinger called the fundamental characteristic of quantumme-
chanics.
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The conditional quantum entropy
Let us write

S(A|B)ρ = S(ρAB)− S(ρB)

Such definition is natural and it obeys many of the relations that the classical
conditional entropy obeys., like that conditioning does not increase entropy

S(A)ρ ≥ S(A|B)ρ

As an example, let us consider the maximum entangled state of two qubits∣∣Φ+
〉
=

|00⟩AB + |11⟩AB√
2

It is not difficult to show that ρA = ρB = 1/2. Therefore

S(A|B)|Φ+⟩ = −1
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Negative conditional quantum entropy
This property is so important in quantum information that it has its own name

Coherent information
is a measure of the quantum correlations shared by subsystems A and B

I(A;B) = −S(A|B) = S(ρB)− S(ρAB)

Coherent information is positive for entangled states. In such cases, it is not
possible to assign a state vector to the subsystems.
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Total correlations
How much correlations, classical and quantum, are shared by two subsys-
tems? The answer is the quantum mutual information, which is defined analo-
gously to the classical case

I(A : B)ρ = S(A)ρ + S(B)ρ − S(A,B)ρ

It is easy to prove that
I(A : B)ρ ≥ 0 ∀ρ

For the state |Φ+⟩ we have

I(A : B)|Φ+⟩ = 2

We have 1 bit of entanglement (the coherent information) and 1 bit of classical
correlations.
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The quantum relative entropy
One of the most important quantities in quantum Shannon theory is the quan-
tum relative entropy

D(ρ||σ) = Tr [ρ (log ρ− log σ)]

Which respect one of the fundamental inequalities in the theory
Monotonicity
The quantum relative entropy is monotonic under quantum operation N

D(ρ||σ) ≥ D(N (ρ)||N (σ))

which implies non-negativity of the relative entropy,D(ρ||σ) ≥ 0.
Finally, one interesting inequality is the quantum Pinsker inequality

D(ρ||σ) ≥ 1

2 ln 2
||ρ− σ||21

19/27



Data processing inequality
Processing quantum data reduces correlations. This is the statement of fun-
damental inequalities known as quantum data processing inequalities

Coherent information
Let NB→B′ be a quantum channel and σAB′ = NB→B′(ρAB). Then

I(A;B)ρ ≥ I(A;B′)σ

Mutual information
LetNA→A′ andMB→B′ be quantum channels on subsystemsA andB, respec-
tively, and σA′B′ = NA→A′ ⊗ MB→B′(ρAB). Then

I(A : B)ρ ≥ I(A′ : B′)σ
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The Holevo bound
Suppose that Alice prepares the ensemble

E = {pX(x), ρxB}

and then send it to Bob without any information regarding the value of x. Let
us thing about it as a quantum channel whose input random variable is X.
Since Bob does not know the value of this randomvariable, its expected density
operator is

ρB =
∑
x

pX(x)ρxB

Bob then has to determine x by performing some measurement on this state.
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The Holevo bound
The information accessible to Bob is defined as

Iacc(E) = max
Λ

I(X : Y )

with Y being the random variable associated withe Bob’s measurement. This
is a very intuitive definition that characterizes the maximum information about
x Bob can obtain. Although it is highly difficult to compute it, an upper bound
was determined by Holevo

Iacc(E) ≤ χ(E) = S(ρB)−
∑
x

pX(x)S(ρxB)

χ is called the Holevo quantity and it is straightforward to compute.
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Meaning of von Neumann entropy
Wenowcangive ameaning of the vonNeumannentropywith the Schumacher’s
compression theorem, which is the quantum data compression theorem.

The protocol is characterized by three parameters n, R, and ϵ, corresponding
to the length of the original quantum data sequence, the rate, and the error,
respectively.

The protocol consists of four steps: preparation, encoding, transmission and
decoding.
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Meaning of von Neumann entropy

• Preparation. The quantum information source outputs a sequence
|ψxn⟩An of quantum states according to the ensemble {pX(x), |ψx⟩}
where

|ψxn⟩An = |ψx1⟩A1
⊗ · · · ⊗ |ψxn⟩An

For someone ignorant of the classical sequence xn, the density operator
is ρ⊗n where

ρ =
∑
x

pX(x) |ψx⟩⟨ψx|

• Encoding. Alice encodes the systems An according to some
compression channel EAn→W , whereW is a quantum system of size 2nR,
with R being the rate of compression

R =
1

n
log dimHW
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Meaning of von Neumann entropy

• Transmission. Alice transmits the system to Bob using nR quantum
qubit channels.

• Decompression. Bob sends the system to the decompression channel
DW→An . The error is characterized by the trace distance

1

2
||ρ⊗n − (EAn→W ◦ DW→An(ρ⊗n))||1 ≤ ϵ

The compression rate R is achievable if there exists an (n, R+ δ, ϵ)
quantum compression code for all δ > 0, ϵ ∈ (0, 1), and sufficiently large
n. The quantum data compression limit of ρ is equal to the infimum of all
achievable quantum compression rates.
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Meaning of von Neumann entropy
In this context, the quantum data compression theorem states that

Schumacher’s compression theorem
Suppose that ρA is the density operator corresponding to a quantum informa-
tion source. Then the quantum entropy S(A)ρ is equal to the quantum data
compression limit of ρ.

Such a theorem gives and operational meaning to the von Neumann entropy
in the same sense that classical data compression (first Shannon coding the-
orem) gives a meaning to the Shannon entropy.
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