Information Theory — Foundations and Applications

Quantum critical systems

Lucas Chibebe Céleri

Institute of Physics Federal University of Goiás

2024 — Basque Center for Applied Mathematics University of Basque Country

Equilibrium quantum phase transition

A fundamental quantity in the statistical description of open quantum systems is the equilibrium partition function

$$
Z = \text{Tr}\left[e^{-\beta H}\right]
$$

From which we can define all the thermodynamic potentials, as the free energy

 $F = -\beta^{-1} \ln Z$

Phase transition

Thermodynamic potentials become nonanalytic as a function of the control parameter.

Dynamical quantum phase transition

Let us consider a quantum quench:

• The system is prepared in the ground state of the initial Hamiltonian

$$
H_0(\lambda = \lambda_0) |\psi_0\rangle = \epsilon_0 |\psi_0\rangle
$$

- At $t = 0$ the control parameter λ suffers a sudden change $\lambda_0 \rightarrow \lambda_f$, associated with the change in the Hamiltonian $H_0 \to H_f$.
- The evolved state of the system, at any time $t > 0$ is given by

$$
|\psi_t\rangle = e^{-iH_f t} |\psi_0\rangle
$$

Dynamical quantum phase transition

The central quantity here is the Loschmidt echo \mathcal{L}_t

$$
G_t = \langle \psi_0 | \psi_t \rangle \qquad \qquad \mathcal{L}_t = |G_t|^2
$$

Since the ground state can be degenerate, we can consider the return probability to the ground state manifold

$$
P_t = \sum_{\alpha=1}^g P_{\alpha} \qquad P_{\alpha} = \langle \psi_{\alpha} | \psi_t \rangle
$$

 $\{\ket{\psi_\alpha}\}_{\alpha=1}^g$ is the set of degenerate ground states of the initial Hamiltonian.

But why is this quantity relevant?

Because of the formal similarity of Loschmidt amplitudes with partition functions!

The dynamical quantum phase transition¹

The DQPT will be identified as the nonanalytical behaviour of the rate function

$$
r(t) = -\lim_{N \to \infty} \frac{1}{N} \ln \mathcal{L}_t
$$

as a function of time, based on the similarities between such a quantity and the partition function.

¹M. Heyl, A. Polkovnikov and S. Kehrein, Phys. Rev. Lett. **110**, 135704 (2013) **4/19**

The Fisher zeros²

Equilibrium system with boundary conditions imposed on two ends a distance R apart from each other. The boundary partition function can be written as

$$
Z = \langle \psi | e^{-HR} | \phi \rangle \,,
$$

 $|\psi\rangle$ and $|\phi\rangle$ encodes the boundary conditions while H is the bulk Hamiltonian.

Formally, the Loschmidt amplitude can be identified as $R = it$. Accordingly, the initial state $|\psi_0\rangle$ plays the role of the boundary conditions in time!

 $2²M$. E. Fisher, The nature of critical points (Lectures in Theoretical Physics vol VIIC) (1968) C. N. Yang and T. D. Lee, Phys. Rev. **87**, 404 (1952) T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952)

Fisher zeros

In the eigenbasis of the Hamiltonian we can write the complex Loschmidt amplitude with $t \to z = t + i\tau$ as

$$
\mathcal{G}_z = \sum_{\alpha} \left\langle E_{\alpha} | \psi_0 \right\rangle e^{-iE_{\alpha}z}
$$

This is an analytical function since it is a sum of analytical ones. The Weierstrass theorem says that

$$
\mathcal{G}_z = e^{\mu(z)} \Pi_i (z_i - z)
$$

with z_i being the *i*-th zero of \mathcal{G}_z in the complex plane while $\mu(z)$ is analytic. Therefore, the nonanalytic behaviour of G_z is contained in the structures of the zeros z_i .

Fisher zeros

Disregarding $\mu(z)$, the singular contribution to the rate function comes from

$$
-\frac{1}{N}\sum_{i}\ln\left[z_{i}-z\right]
$$

Fisher zeros — Thermodynamic limit

Nonanalyticities and thus phase transitions occur whenever a line or a boundary of an area of the Fisher zeros crosses the real line.

$$
H = -hJ_z - \frac{\gamma_x}{2j}J_x^2
$$

³H. Lipkin, N. Meshkov and A. Glick, Nucl. Phys. **62**, 188 (1965); N. Meshkov, A. Glick and H. Lipkin, Nucl. Phys. **62**, 199 (1965); A. Glick, H. Lipkin and N. Meshkov, Nucl. Phys. **62**, 211 (1965) **9/19**

10/19

11/19

Q**-Husimi function**

For any state ρ , the Q -Husimi function is defined as

$$
Q=\,\langle\Omega|\rho|\Omega\rangle
$$

The spin coherent state $|\Omega\rangle$ can be constructed from the maximum angular momentum state $J_z | m = j \rangle = j | m = j \rangle$ as

$$
|\Omega\rangle = e^{-i\phi J_z} e^{-i\theta J_y} |m = j\rangle
$$

 $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$. The expectation values of the angular momentum operators in this state obeys

$$
(\langle J_x \rangle, \langle J_x \rangle, \langle J_x \rangle) = j(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

Wehrl entropy production⁴

Based on this quasi-probability distribution, we can define the associated entropy

$$
S_Q = \frac{2j+1}{4\pi} \int d\Omega Q(\Omega) \ln Q(\Omega)
$$

The entropy production rate can them be defined as

$$
\frac{\mathrm{d}S_Q}{\mathrm{d}t} = \Pi_Q \ge 0
$$

The last inequality follows from the second law of thermodynamics, which demands S_O to be a monotonically increasing function of time for a closed system.

⁴A. Wehrl, Rev. Mod. Phys. **50**, 221 (1978) **14/19**

Entropy for the LMG model⁵

⁵B. O. Goes, G. T. Landi, E. Solano, M. Sanz and LCC, Phys. Rev. Research **²**, 033419 (2020) **15/19**

Entropy production for the LMG model

16/19

The critical times

Take home messages

- A quantum phase transition can occur in complex systems in the time domain. They are characterised by the structure of the Fisher zeros of the Loschmidt amplitude.
- Although entropy production rate is not always positive, on average it monotonically increases in time, indicating that information is being spread over the system due to a DPT.
- Just like in the case of equilibrium quantum phase transition, a thermodynamic theory for the dynamical case seems possible 6 .

⁶A. B. Nascimento and LCC, Phys. Rev. A **110**, 052223 (2024) P. H. S. Bento, A. del Campo and LCC, Phys. Rev. B **109**, 224304 (2024) **18/19**

Thank you for your attention

lucas@qpequi.com

www.qpequi.com

