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Abstract

The Unruh effect is one of the most important results from quantum field theory in curved
spacetimes. It states that, if we have a field in vacuum state in Minkoski spacetime, while an
inertial observer detects no particle, an accelerated observer in the same spacetime would detect
a thermal bath with temperature proportional to its acceleration. However, it is necessary an ac-
celeration of order of 1020m/s2 so we can observe a temperature of order 1K. We can not detect
the Unruh effect with current technology. An experiment to verify Unruh effect would be an im-
portant milestone in quantum field theory experiments. As important as verifying the existence
of the effect, is verifying if the theory predicts the relation between temperature and acceleration
correctly. Therefore, temperature estimation precision is a main concern for any experimental
scheme to test the Unruh effect. Quantum metrology is a field of physics dedicated to exploit
quantum resources, as quantum coherence and quantum entanglement, to improve parameter
estimation in quantum systems. In this thesis we investigate the estimation of Unruh temper-
ature in the context of relativistic quantum metrology. We study two cases: (i) one uniformly
accelerated Unruh-DeWitt detector which undergoes acceleration for a finite amount of proper
time, so we can investigate the influence of coherence in temperature estimation precision; and
(ii) two entangled Unruh-DeWitt detectors, one inertial and the other uniformly accelerated, so
we can study the role of entanglement of the ancilla in the analogous estimation process. We
find that in both cases the possible precision of estimation takes its maximum for accelerations
of order of units of detector energy gap, the signal-to-noise ratio takes its maximum for accel-
erations between two and three orders greater than detector energy gap and that the quantum
coherence (or entanglement of the ancilla) are not quantum resources for Unruh temperature
precision estimation. Our results represent an additional challenge to Unruh effect experimen-
tal verification. Moreover, we translate our results to estimation of Hawking temperature in
the vicinity of a Schwarzchild black hole event horizon. We obtain the suitable Unruh-DeWitt
detector energy gap so one can realize trustworthy temperature measurement in this context.

Keywords: Quantum Metrology, Unruh Effect, Quantum Information, Quantum Fisher In-
formation, Relativistic Quantum Metrology, Relativistic Quantum Information, Unruh Temper-
ature Estimation Precision.
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Resumo

O efeito Unruh é um dos principais resultados vindos da teoria quântica de campos em
espaços curvos. Ele diz que, se tivermos um campo no estado de vácuo no espaçotempo de
Minkowski, enquanto um observador inercial não detecta nenhuma partı́cula, um observador
acelerado no mesmo espaçotempo detecta um banho térmico de temperatura proporcional a
sua aceleração. No entanto é necessária uma aceleração da ordem de 1020m/s2 para que seja
observada uma temperatura de Unruh da ordem de 1K. Não somos capazes de detectar o
efeito Unruh com a tecnologia atual. Um experimento capaz de verificar o efeito Unruh seria
um marco importante entre os experimentos sobre teoria quântica de campos. Tão importante
quanto verificar a existência do efeito, é verificar se a teoria prevê a relação entre aceleração
e temperatura corretamente. Portanto, a precisão da estimativa da temperature é uma questão
central para qualquer esquema experimental que visa testar o efeito Unruh. Metrologia quântica
é um campo da fı́sica que se dedica a explorar recursos quânticos, como coerência e emaran-
hamento, para melhorar a estimativa de parâmetros em sistemas quânticos. Nesta tese inves-
tigamos a estimativa da temperatura de Unruh no contexto de metrologia quântica relativistica.
Nós estudamos dois casos: (i) um detector de Unruh-DeWitt uniformemente acelerado por um
tempo finito, de forma que possamos investigar a influência da coerência na precisão da estima-
tiva de temperatura; e (ii) dois detectores de Unruh-DeWitt emaranhados, um inercial e outro
uniformemente acelerado, para que possamos estudar o papel do emaranhamento da ancilla no
processo análogo de estimativa . Em ambos os casos, descobrimos que a precisão possı́vel
da estimativa possui valor máximo para acelerações da ordem de unidades do gap de energia
do detector, a razão sinal-ruı́do toma seu valor máximo entre duas e três ordens de grandeza
maiores que a do gap de energia do detector e que a coerência quântica (ou emaranhamento
da ancilla) não contituem recursos quânticos para a precisão da estimativa da temperatura de
Unruh. Nossos resultados representam um desafio adicional para a verificação experimental do
efeito Unruh. Além disso, traduzimos nossos resultados para a estimativa da temperatura de
Hawking nas proximidades de um horizonte de eventos de um buraco negro de Schwarzchild.
Obtemos o gap de energia adequado do detector de Unruh-DeWitt para que se possa realizar
medições confiáveis de temperatura neste contexto.

Palavras chave: Metrologia Quântica, Efeito Unruh, Informação Quântica, Informação de
Fisher Quântica, Metrologia Quântica Relativı́stica, Informação Quântica Relativı́stica, Estima-
tiva de Precisão da Temperatura de Unruh.
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Chapter 1

Introduction

Quantum field theory in curved spacetime (QFTCS) [1–3] is the most conservative attempt
to obtain low-energy quantum gravity insight. It is a theory of quantum fields constructed
in a classical relativistic spacetime background which gives us the only results we have for
quantum gravity in low-energy regime. The two main results one could obtain from QFTCS is
the Hawking radiation [5, 6] and the Unruh effect [7, 8]. The Hawking radiation phenomenon
states that black holes create and emit particles at the rate of a body with temperature κ/(2π),
where κ denotes the surface gravity [4] (we use natural units along all this thesis c = ~ = KB =

G = 1). The Unruh effect was discovered by Bill Unruh in 1976 in an attempt to gain insight
about Hawking radiation. It states that an observer with constant acceleration in Minkowski
vacuum will see himself immersed in a thermal bath. One of the main consequences of Unruh
effect is that it shows that the concept of particle is observer dependent.

Some physicists contest the existence of the Unruh effect. In Ref. [9] Belinskiĭ et al.

claim that, in the original derivation of Unruh effect, the quantization of the Rindler modes
assumes vanishing fields at the boundaries of Rindler manifold and that would lead to the prob-
lem of quantizing a field with Hamiltonian which is not equivalent to quantizing the free field in
Minkowski spacetime. In Ref. [10] Narozhy et al. claim the Unruh quantization procedure sets
a boundary equivalent to cutting off the origin of Minkowski spacetime, changing the spacetime
topology and symmetry group, and prohibiting any mode that crosses that point. This implies
that procedures would be based in an incomplete set of modes in Minkowski spacetime and,
then, the Unruh effect would come from a non rigorous derivation. In Ref. [11] Ford and
O’Connell claim that a detector uniformly accelerated in vacuum thermalizes at Unruh temper-
ature but do not irradiate. In Ref. [12] Buchholz and Verch claim that macroscopically, an
accelerated observer will not realize a measurement of any global thermal effects in Minkowski
vacuum. Authors also claim that microscopic probes used as Unruh temperature detectors re-
sponse to acceleration is not due to Unruh effect but it is induced by measurement process.
However, last reference is contradicted by Ref. [13] where Lima et al. claim that an extended
body uniformly accelerated in Minkowski vacuum evolves to a Gibbs thermal state with local
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temperature given by the Unruh temperature.

The above challenges to the Unruh effect existence are based in the claim that the set of
modes chosen by Unruh in his original derivation is not a complete set of modes. This critic
does not apply, however, to the derivation obtained by Sewell [14] using axiomatic quantum
field theory, based in Bisognano-Whichmann theorem [15, 16]. It does not apply to the deriva-
tion of Unruh effect obtained by Unruh and Weiss [17] by Feynman integral formulation neither.
Moreover, Unruh and Wald have demonstrated in 1984 [18] that the Unruh effect keeps the con-
sistency of field theory in uniformly accelerated frames solving apparent paradoxes regarding
energy conservation and causality. In this scenario, Unruh effect stands solid as a credible
quantum field theory prediction.

The Unruh effect was not experimentally verified since it predicts it is necessary an accel-
eration of order of 1020m/s2 so we can observe a temperature of order 1K. The engineer-
ing required to obtain linear acceleration to reach a detectable temperature was not achieved
yet. Still, it is important to invest energy and resources to reach the Unruh effect experimental
verification. Besides settle any possible debate about the effect’s existence, an experimental
verification of the Unruh effect would be an important experiment of quantum field theory fun-
damentals, would change the Unruh effect status from theoretical prediction to (dis)confirmed
phenomenon, it would increase the role of observations we have from nature and would give us
more data we can work on.

Despite the engineering challenge involved with the Unruh effect experimental verification,
there are some proposals for the Unruh effect observation. In Refs. [19, 20] Bell and Leinaas
study the depolarization of electrons in magnetic field to estimate Unruh temperature. They
conclude this effect is not observable for linear acceleration real experiments but it can be ob-
served in ideal storage rings. In Ref. [21] Rogers proposes to detect radiation due to Unruh
effect in accelerated electrons orbiting in a Penning trap. Such proposes involving electrons
constrained to rings have the problem that you can not formally derive Unruh effect in these
cases since the effect is derived for accelerated observers for whom we can associate a time
translation symmetry. This is not possible for circularly moving observers. In Ref. [22] Chen
and Tajima claim it is possible to detect Unruh radiation through electrons accelerated by high-
intensity lasers. In Ref. [23] Schützhold, Schaller and Habs show that, for electrons accelerated
by electric field of ultra-strong lasers, the resulting Unruh effect radiation consists of maximally
entangled photons pairs. They conclude the Unruh effect radiation can be discriminated from
the classical (Larmor) radiation due to different spectral and angular distributions. However
such ultra-intense lasers were not realized yet and such observations can not be made. In Ref.
[24] Matsas and Vanzella study the decay of protons and neutrons in accelerated regimes and
conclude that dominant processes of high accelerated protons and neutrons are different from
inertial and small accelerated ones. However the lifetime of protons in real accelerators is still
very long and such observation is not possible. In Ref. [25] Scully et al. propose an experiment
to detect Unruh radiation using ground state atoms in cavities. In Ref. [26] Martı́n-Martı́nez,
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Fuentes and Mann claim accelerated detectors, under certain conditions, obtain a Berry phase
which depends on Unruh temperature and differs from Berry phase for inertial detectors in con-
tact with thermal baths. They claim this effect can be observed for accelerations of 109 times
smaller than usual proposals to detect Unruh temperature by linearly accelerated detectors and
the acceleration would need to be sustained only by times of nanoseconds. However engineer-
ing needed to implement proposes of Refs. [25] and [26] are not available yet. In Ref. [27]
Cozzella et al. finds dependency over Unruh temperature of long wavelengths radiation spec-
trum from circularly moving charges accelerated in direction perpendicular to circular trajectory
plane. This is interesting because the authors propose to verify Unruh effect using standard clas-
sical electrodynamics. In Ref. [28] Hu et al. implement a simulation of Unruh effect using
cesium Bose-Einstein condensate and observe data which agrees with Unruh prediction.

Despite the fact the proposes above are very distinct from each other, they have in common
the fact that non of them regard the possible precision of Unruh temperature estimation. About
estimation precision, there is a whole estimation theory concerned with the problem of estima-
tion of parameters [29–34]. The estimation protocol has four steps: (1) preparation of probe
state; (2) interaction of probe state with the system of interest; (3) measurement of the probe;
(4) decode information about the parameter of interest from measured data. Related to estima-
tion theory there is the field of physics known as quantum metrology [35] which is dedicated to
employ quantum resources as entanglement and coherence to enhance precision in estimation
of parameters from quantum systems. We shall highlight some achievements from the field.
In Ref. [36] Giovannetti, Lloyd and Marccone show how to employ quantum squeezing and
quantum entanglement to beat standard quantum limit. In Ref. [37] Micadei et al. show that
measuring probes simultaneously in entangled basis and measuring probes sequentially hold
the same precision for classically correlated probes while the simultaneous measurement holds
better precision for noisy multipartite quantum systems. Quantum metrology also provided de-
velopments in quantum illumination. This is a technique which consists in illuminating objects
of interest with entangled light in order to enhance detecting and imaging those objects. In
Ref. [38] Lloyd shows that if entangled light is used for photodetection, when one employ a
sign with n bits of entanglement it is possible to increase the effective signal-to-noise ratio by
a factor of 2n. In Ref. [39] Aguilar et al. implement an experimental scheme for quantum
target detection by linear optical measurement devices. They found that polarization-entangled
photon pairs improve over separable polarization states when the signal to noise ratio is greater
than 1/40. In Ref. [40] Barzanjeh et al. implement an experiment demonstrating quantum
illumination at microwave frequencies for a room-temperature object. We also may highlight
the role of quantum metrology in quantum thermometry [41]. This field concerns about con-
trolling and measuring the temperature systems which operates in quantum regime and search
for employments of quantum entanglement and quantum coherence to enhance temperature
measurement. In Ref. [42] Cavina et al. generalize, for single-qubit thermometry, the rela-
tion between temperature uncertainty and the heat capacity of the qubit in a non-equilibrium



4

regime using quantum properties as coherence. We also highlight developments of quantum
metrology in gravitational effects in quantum systems. In Ref. [43] Pang and Cheng develop a
quantum treatment of interactions between gravitational waves and optomechanical detectors.
In Ref. [44] Xu et al. report the result of an experiment in which they create a pair of entan-
gled photons, send one to the quantum satellite Micius and retain the other on Earth. They find
no decorrelation between the pair of photons. The results contradict a quantum gravity theory
called event formalism.

As we can see, there is a wide range of applications for quantum metrology. Going back
to discussion about Unruh effect detection, we should emphasize that, not only the detection of
Unruh effect is important, but the precise estimation of Unruh temperature is needed, since we
should verify if QFTCS gives the right prediction about its value. In this scenario, it seems a
good strategy to apply quantum metrology protocols to investigate Unruh temperature estima-
tion. In this context we developed the studies which based this PhD thesis. We investigate the
precision we can estimate Unruh temperature. We do so by analyzing an important quantity for
estimation theory: the quantum Fisher information [45] in the Unruh effect context.

Some studies about quantum metrology of Unruh effect were already realized. In Ref. [46]
Tian et al. use master equation approach for open quantum systems to solve the dynamics
of the state of the system. They calculate Fisher information for the population measurement
and compare it to quantum Fisher information to obtain the optimal population measurement
according to optimal quantum measurement condition. The authors concluded that, in the long
time regime, the precision of the estimation of the temperature does not depend on the initial
state preparation. In Ref. [47] Tian et al. study the evolution of a detector treated as an open
quantum system in two distinct cases: inertial and uniformly accelerated. The authors compared
the evolved states of each case and concluded that when the probe is initially entangled with
a static detector they could enhance the distinguishability between the two distinct cases: the
evolution of a static detector and the evolution of accelerated probe. In Ref. [48], Wang et al.

studied the dependency of the detector energy gap and the strength of the interaction between the
detector and the scalar field for the precision in the estimation of the Unruh temperature. The
authors derive quantum Fisher information and studied the role of entanglement, concluding
that it helps improving the precision of Unruh temperature estimation.

We want to go forward on development of quantum metrology for Unruh effect and answer
the question: Can we utilize quantum entanglement and quantum coherence to enhance Unruh
temperature estimation precision? To provide this answer we utilize Unruh-DeWitt detectors in
flat spacetime couped to an external massless field in vacuum state and investigate two distinct
cases: one accelerated detector in order to search for a relation between coherence and quantum
Fisher information of detector; and the case of two detectors, one uniformly accelerated, one
inertial, so we can study the influence of entanglement on temperature estimation precision. At
last, we translate our results for the estimation of Hawking temperature at the vicinity of a black
hole event horizon.
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We find that quantum coherence of initial state of the single probe and quantum entangle-
ment of initial state of the pair of probes play no role in precision of Unruh temperature. The
most interesting result we find is a relation between maximum sign-to-noise ratio acceleration
value and entanglement sudden death acceleration value [49]. When the pair of detectors are
maximally entangled, the maximum sign-to-noise ratio acceleration value coincides with the
entanglement sudden death acceleration value.

This thesis is organized in the following way: in the first chapter we present the Unruh
Effect. We discuss basic theory of the free scalar field in curved spacetimes, we talk about
Bogoliubov transformations, we present the Rindler spacetime and finally, we present the Unruh
effect derivation. In the second chapter we present some metrology quantities which are going
to be useful for us. We discuss classical and quantum Fisher information and sign-to-noise
ratio. In the third and last chapter we present our original results. We first describe our detector
model, and then we show the relation between precision and coherence, the relation between
precision and entanglement, and finally, the precision of Hawking radiation estimation in the
vicinity of a black hole event horizon.





Chapter 2

Unruh Effect

In this chapter we present the Unruh effect. In section 2.1 we present the basic formalism of
quantum field theory in curved spacetime. In section 2.2 we present how to obtain the relation
between different choices of positive frequency modes of Klein-Gordon equation. In section
2.3 we present the coordinate system adapted to constant acceleration. Finally we present in
section 2.4 the Unruh Effect.

2.1 Free Scalar Fields in Curved Spacetime

Unruh effect is a phenomenon originally derived in Minkowski spacetime. However, the
formalism we use to derive it lies in quantum field theory in curved spacetime. This is due to
the fact that accelerated observers are better described by trajectories in Rindler spacetime, and
the tools we use to change description from a quantum field theory in Minkowski to Rindler
spacetime belong to quantum field theory in curved spacetime. We aim to obtain the relation
between inertial (Minkowski) description of a system and the accelerated (Rindler) one. Our
first step is to present in this section the theory of free scalar fields in curved spacetime. We do
not pretend to make a detailed and wide exposition here. For a complete discussion we suggest
[1–3].

A quantum field theory can be properly defined in spacetime with some restrictions. Our
spacetime will be modeled by a 4-dimensional pseudo-riemannian manifold (S,gab) with signa-
ture (−+ ++). We assume (S,gab) is time-orientable i. e. it is possible to define continuously
a distinction of non-spacelike vectors into future-directed and past-directed vectors [50]. The
problem of the differential equation with initial value in S must be well defined, and this holds
if (S,gab) is globally hyperbolic.

Definition 2.1.1. Let A ⊂ S . We denote D(A) = {p ∈ S| every non-spacelike curve through p

intersects A}. If there exists a hypersurface Σ ⊂ S such that D(Σ) = S, we call Σ a Cauchy

surface and we say that S is globally hyperbolic.
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If S is globally hyperbolic, it is possible to define a coordinate system such that the hyper-
surface of constant time coordinate is a Cauchy surface [51]. If we know the initial state of a
system in a given moment, then we can predict the state of the system in any time of the future
or the past, and then, the problem of initial value in S is well defined [50].

For our purposes, it is sufficient to present the free scalar field in a static spacetime. A static
spacetime is a spacetime where one can define a coordinate system (t,x) which metric line
element takes the form:

ds2 = −gtt(x)dt2 + hijdx
idxj, (2.1)

where gtt(x) > 0. Here we denote the space coordinates as bold letters and spacetime coordi-
nates as usual letters.

Now we have established the restrictions to our spacetime, we can begin to talk about the
scalar field. In spacetime (S,gab) the Klein-Gordon lagrangian density is

L =

√
−g(∇aφ∇aφ+m2φ2)

2
. (2.2)

Where ∇a is the riemannian covariant derivative, g ≡ det(gab) and m is the mass of the field.
The Euler-Lagrange equations in S are:

∂L
∂φ
−∇a

∂L
∂(∇aφ)

= 0, (2.3)

which result in the Klein-Gordon (KG) equation:

(∇a∇a −m2)φ = 0. (2.4)

Klein-Gordon equation describes the behaviour of the scalar field φ of mass m in the space-
time (S,gab). In order to describe the space of solutions of Eq. ( 2.4), we shall look for a
complete set of solutions of Klein-Gordon equation. Let f1(x) and f2(x) be two complex so-
lutions of Eq. ( 2.4), we define a quantity in the space of solutions of Klein-Gordon equation
which we will call the Klein-Gordon inner product:

(f1,f2)KG ≡ i

∫
Σt

d3x
√
h(f ∗1∇af2 − f2∇af

∗
1 )na, (2.5)

where h ≡ det(hij), Σt is the hypersurface of constant t, f ∗1 is the complex conjugate of f1 and
na is the unit normal vector to Σt pointed to future. Note that Klein-Gordon inner product is
not positive-definite, so call it an inner product is a abuse of nomenclature we allow ourselves
because it is largely used in literature. The integral above does not depend on any specific t,
since, using Eq. ( 2.4), we can show that the time derivative of the expression above vanishes.
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Now let {fi,f ∗i }i∈I be a complete set of Klein-Gordon solutions such that:

f̃i(s,x) =

∫
dt eistfi(t,x), f̃i(s < 0,x) = 0 (2.6)

(fi,fj)KG = −(f ∗i ,f
∗
j )KG = δij, (2.7)

(fi,f
∗
j )KG = (f ∗i ,fj)KG = 0. (2.8)

We are going to call the elements of the family {fi,f ∗i }i∈I the modes. Equation ( 2.6) shows
that fi are the positive frequency solutions, so f ∗i are negative frequency solutions. Equation
( 2.7) states that the family {fi,f ∗i }i∈I is normalized and Eq. ( 2.8) states that positive frequency
solutions are orthogonal to negative frequency solution relative to Klein-Gordon inner product.
We assume that the set of labels I is discrete, but the generalization to continuous case is
straightforward.

The set {fi} endowed with KG inner product (·,·)KG spans the Hilbert space HKG. Also
the set of f ∗i endowed with −(·,·)KG spans the Hilbert space HKG [3]. Our particle notion is
going to be related to states in the Fock space

F(HKG) =
∞⊕
i=0

[
S

(
i⊗

j=0

HKG

)]
, (2.9)

where S denotes the simmetrization operator meaning that S
(⊗i

j=0HKG

)
denotes the space

of completely symmetric tensor of rank i ofHKG.

Now we have defined the Hilbert space HKG and its associated Fock space F(HKG), we
can move forward and quantize the Klein Gordon field. First step is to define the conjugate
momentum of a field. Given a solution φ to Eq. ( 2.4), we define the conjugate momentum of
the field as:

π ≡ ∂L
∂(∂tφ)

=

√
h∂tφ√
gtt

. (2.10)

The quantization procedure consists of associating to φ and π the operators φ̂ and π̂ that acts on
F(HKG) and must satisfies the canonical equal-time commutation relations:[

φ̂(t,x),π̂(t,x′)
]

= iδ(x,x′) (2.11)[
φ̂(t,x),φ̂(t,x′)

]
= [π̂(t,x),π̂(t,x′)] = 0. (2.12)

where the δ is the 3-dimensional Dirac function.

Since {fi,f ∗i }i∈I is an orthonormal base of the space of solutions of Klein-Gordon equation,
we can expand any solution φ of Eq. ( 2.4) in terms of fi and f ∗i . After the quantization
procedure we can still employ {fi,f ∗i }i∈I to expand the field operator φ̂ using the the operators
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a and a† which are called annihilation and creation operators respectively [1, 2]:

φ̂(x) =
∑
i∈I

a(f ∗i )fi + a†(fi)f
∗
i . (2.13)

From the above expansion we obtain:

a(f ∗i ) = (fi,φ̂)KG, a
†(fi) = (φ̂,f ∗i )KG. (2.14)

The canonical commutations relations in Eqs. ( 2.11) and ( 2.12) can be written in terms of
operators a and a† as

[
a(f ∗i ),a†(fj)

]
= (fi,fj)KG1 = δij1, (2.15)[

a(f ∗i ),a(f ∗j )
]

=
[
a†(fi),a

†(fj)
]

= 0, (2.16)

where 1 denotes the identity operator on F(HKG).

The vacuum state |0〉 of F(HKG) is defined as the state that a(f ∗i )|0〉 = 0 for all modes fi.
Note that the definition of the vacuum depends on the modes.

Now, let’s say we have two different observers, A and B, of the same system modeled by a
scalar quantum field. Observer A chooses a complete set of orthonormal modes {fi,f ∗i }i∈I and
B describes the system with a different complete set of modes {bj,b∗j}j∈J . Given a particular
state of the system, as A will describe the state in terms of {fi,f ∗i } while B describes it in terms
of {bj,b∗j}, A and B may interpret the same state differently. In particular, what is the vacuum
state for A may be interpreted not as a vacuum by B. This is the basis of Unruh Effect. To
understand properly the relations between different complete sets of modes we need to present
Bogoliubov transformations. We will discuss it in next section.

2.2 Bogoliubov Transformations

Let {fi,f ∗i }i∈I and {bj,b∗j}j∈J be two different complete sets of orthonormal modes of so-
lution space S = HKG ⊕HKG. Since they are both complete we can write:

bj =
∑
i∈I

αjifi + βjif
∗
i , (2.17)

b∗j =
∑
i∈I

α∗jif
∗
i + β∗jifi. (2.18)
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But, it’s also true that:

fi =
∑
j∈J

(bj,fi)KG bj − (b∗j ,fi)KG b
∗
j , (2.19)

f ∗i =
∑
j∈J

−(b∗j ,f
∗
i )KG b

∗
j + (bj,f

∗
i )KG bj. (2.20)

We get from Eq. ( 2.17), Eq. ( 2.18) and from the property (f ∗1 ,f
∗
2 )KG = −(f2,f1)KG:

αji = (fi,bj)KG = (bj,fi)
∗
KG, (2.21)

βji = (b∗j ,fi)KG = −(bj,f
∗
i )∗KG. (2.22)

Combining the above expressions with Eqs. ( 2.19) and ( 2.20), we get:

fi =
∑
j∈J

α∗jibj − βjib∗j , (2.23)

f ∗i =
∑
j∈J

αjib
∗
j − β∗ji bj (2.24)

We can expand field operator as

φ̂ =
∑
i∈I

a(f ∗i )fi + a†(fi)f
∗
i =

∑
j∈J

a(b∗j)bj + a†(bj)b
∗
j . (2.25)

Combining the above expression with Eqs. ( 2.17) and ( 2.18), we get:∑
i∈I

a(f ∗i )fi + a†(fi)f
∗
i =

=
∑
j∈J

a(b∗j)

(∑
i∈I

αjifi + βjif
∗
i

)
+ a†(bj)

(∑
i∈I

α∗jif
∗
i + β∗jifi

)
=
∑
j∈J

∑
i∈I

(
a(b∗j)αji + a†(bj)β

∗
ji

)
fi +

(
a(b∗j)βji + a†(bj)α

∗
ji

)
f ∗i

=
∑
i∈I

(∑
j∈J

a(b∗j)αji + a†(bj)β
∗
ji

)
fi +

(∑
j∈J

a(b∗j)βji + a†(bj)α
∗
ji

)
f ∗i . (2.26)

and by comparison we conclude that:

a(f ∗i ) =
∑
j∈J

αjia(b∗j) + β∗jia
†(bj), (2.27)

a†(fi) =
∑
j∈J

βjia(b∗j) + α∗jia
†(bj). (2.28)
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By analogous calculations we obtain:

a(b∗j) =
∑
i∈I

α∗jia(f ∗i )− β∗jia†(fi), (2.29)

a†(bj) =
∑
i∈I

−βjia(f ∗i ) + αjia
†(fi). (2.30)

The transformations given in Eqs. ( 2.27) to ( 2.30) are called Bogoliubov transformations.
They show how annihilation and creation operators from different complete set of orthonormal
modes of a same space are related.

We define the vacuum states of each orthonormal positive frequency modes:

a(f ∗i )|0f〉 = 0 ∀i ∈ I, (2.31)

a(b∗i )|0b〉 = 0 ∀j ∈ J . (2.32)

Let N f
i = a†(fi)a(f ∗i ) and N b

j = a†(bj)a(b∗j) be the number operator to each family {fi,f ∗i }i∈I
and {bj,b∗j}j∈J . Naturally, expectation value of N f

i in |0f〉 vanishes just like N b
j in |0b〉. How-

ever we find:

〈0b|N f
i |0b〉 =

∑
j∈J

|βji|2, (2.33)

〈0f |N b
j |0f〉 =

∑
i∈I

|βji|2. (2.34)

Equations ( 2.33) and ( 2.34) show that the vacuum state of an observer who defines {fi}i∈I as
his positive frequency modes may not be “empty” from the point of view of an observer that
defines {bj}j∈J as his positive frequency modes and vice versa. Thats the core of Unruh effect.
An accelerated observer does not see the inertial vacuum as an empty space because he defines
his positive frequency modes differently from an inertial observer. In the next section we show
how an accelerated system can be described using Rindler coordinates.

2.3 Rindler Coordinates

In this section we present Rindler spacetime. It provides a very suitable way to describe
accelerated worldlines in Minkowski spacetime. As we will see, there are Rindler coordi-
nate systems in which trajectories of constant space coordinates describe timelike curves in
Minkowski spacetime with constant proper acceleration. Let (t,x,y,z) be Minkowski coordi-
nates. Minkowski metric in these coordinates is given by:

ds2 = −dt2 + dx2 + dy2 + dz2. (2.35)
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Consider the following coordinate transformations:

t(τ,ξ,y,z) =
1

a
eaξ sinh aτ,

x(τ,ξ,y,z) =
1

a
eaξ cosh aτ,

y(τ,ξ,y,z) = y, z(τ,ξ,y,z) = z, (2.36)

where a is a fixed parameter that has a physical meaning which we will discuss later. Notice
that the new coordinates cover only the region that satisfies x > |t|. This region is called right
Rindler wedge, or, as we’ll call it, wedge I. If we cover the region x < −|t|with the coordinates:

t(τ̃ ,ξ̃,ỹ,z̃) =
1

a
eaξ̃ sinh aτ̃ ,

x(τ̃ ,ξ̃,ỹ,z̃) = −1

a
eaξ̃ cosh aτ̃ ,

y(τ̃ ,ξ̃,ỹ,z̃) = ỹ, z(τ̃ ,ξ̃,ỹ,z̃) = z̃, (2.37)

then, we describe the region |x| > |t|. Trajectories of fixed ξ, y and z are integral curves of
the Killing vector field B = a(x∂t + t∂x) while trajectories of fixed ξ̃, ỹ and z̃ of coordinates
given in Eq. ( 2.37) are integral curves of the Killing vector field B̃ = −a(x∂t + t∂x). These
trajectories are hyperboles, since:

x2 − t2 =
e2aξ

a2
. (2.38)

Figure 2.1 ||| The hyperbole is the trajectory of a constant ξ while curves of constant τ are straight
lines through the origin. Trajectories of constant ξ correspond to worldlines of points that move
with constant proper acceleration.
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The metric tensor field of wedge I in coordinates given in Eqs. ( 2.36) is:

ds2 = e2aξ(−dτ 2 + dξ2) + dy2 + dz2. (2.39)

In wedge II we get the same expression but with coordinates with tilde. For shorthand, in some
moments, we won’t differentiate both coordinate systems but difference will be clear by context.
The metric is static in both wedges. Curves of constant ξ are timelike in wedges I and II and
spacelike in the other 2 wedges corresponding to region |x| < |t|. Wedges I and II are causally
disconnected and each one of them is globally hyperbolic.

Since the proper time is t = eaξτ , the four-velocity, in Minkowski coordinates, is

ui = (± cosh aτ,± sinh aτ, 0, 0). (2.40)

It satisfies condition uiui = −1. Their proper four-acceleration is

ui∇iu
j = (

a

eaξ
sinh aτ,

a

eaξ
cosh aτ, 0, 0), (2.41)

which has magnitude a
eaξ

. Then, for ξ = 0, the hyperboles describe accelerated points in
Minkowski spacetime with proper constant acceleration a.

Therefore, suppose we solve Klein-Gordon equation in Minkowski spacetime and in Rindler
spacetime, define in each case a complete set of orthonormal modes and find the Bogoliubov
transformations which relates them. As Rindler coordinates with ξ = 0 describes worldlines
of uniformly accelerated observers with proper acceleration a, what we get from this specific
Bogoliubov transformations is how to interpret observations made by an inertial observer from
the point of view of an accelerated one. In particular, we will be able to interpret the vacuum
seen by an inertial observer from the point of view of an accelerated observer, and from this
system will emerge Unruh effect, which we will discuss in next section.

2.4 The Unruh Effect

The Unruh effect is a phenomenon discovered by Bill Unruh in 1976 [7] in an attempt to
gain insight on recently discovered Hawking radiation [5, 6]. The phenomenon lies in the dis-
tinct perceptions different observers can have of a same quantum field state. In particular, it is
about how an uniformly accelerated observer perceives a vacuum state seen by an inertial ob-
server. We will show that, while an inertial observer just sees vacuum, the accelerated observer
sees himself immersed in a thermal bath. We will present this effect in details in this section.

First step to reach Unruh effect is to solve Klein-Gordon equation and define the complete
set of orthonormal modes for different observers. We begin by the inertial observer considering
Klein-Gordon equation in Minkowski spacetime and, then, we consider the same equation in
Rindler spacetime and, in this case the complete set of orthonormal modes will be related to the
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accelerated observer.

Consider the massless Klein-Gordon equation:

∇i∇iφ = 0. (2.42)

The natural choice of orthonormal modes in Minkowski spacetime is [74, 75] {vk}, where

vk =
1√

16π3k0

ei(kx−k0t), (2.43)

and k0 = |k|.

Meanwhile, in order to describe constant accelerating frames we adopt the coordinates
shown in Eq. ( 2.36) considering wedge I. In such coordinates Eq. ( 2.42) is written as [8]:[

∂2

∂τ 2
− ∂2

∂ξ2
− e2aξ

(
∂2

∂y2
+

∂2

∂z2

)]
φ = 0, (2.44)

and the orthonormal complete set of solutions of positive frequency is {uIωk⊥ = ϕωk⊥(ξ,x⊥)e−iωτ},
where x⊥ = (y,z), k⊥ = (ky,kz), and [8, 76]:

ϕωk⊥(ξ,x⊥) =

(
sinh(πω/a)

4π4a

)
Kiω/a

(
k⊥eaξ

a

)
eik⊥·x⊥ , (2.45)

where k⊥ = |k⊥|, Kj(z) is modified Bessel function.

These are positive frequency modes for Rindler wedge I. If we develop the same treatment
to wedge II using the coordinates given in Eq. ( 2.37), we get the same differential equation as
in Eq. ( 2.44) and, consequently, solutions which are basically the same expression of uIωk⊥ but
in coordinates of wedge II. We denote it by uIIωk⊥ . We can extend solutions uIωk⊥ to all the region
|x| > |t| by defining uIωk⊥ ≡ 0 over wedge II and, analogously, uIIωk⊥ ≡ 0 over wedge I. This
way, if {uIωk⊥} span the positive frequency Hilbert space of solutions of Eq. ( 2.42) on wedge I
which we denote byHI

KG, and {uIIωk⊥} spanHII
KG. This way, the setHI

KG⊕HII
KG⊕H

I

KG⊕H
II

KG

is the space of solutions on region |x| > |t|. It’s also possible to extend these solutions to all
Minkowski spacetime [7, 8] such that {uIωk⊥ ,u

II
ωk⊥
} becomes a complete set of modes of the

space of solutions of Eq. ( 2.42) on Minkowski spacetime. Therefore, we can write any field
operator in Minkowski spacetime as:

φ̂(x) =

∫ ∞
0

dω

∫
dk⊥

[
a(uI∗ωk⊥)uIωk⊥ + a†(uIωk⊥)uI∗ωk⊥ + a(uII∗ωk⊥)uIIωk⊥ + a†(uIIωk⊥)uII∗ωk⊥

]
.

(2.46)
We denote |0M〉 the state such that a(v∗k)|0M〉 = 0 ∀k and |0R〉 the state such that a(uI∗ωk⊥)|0R〉 =

a(uII∗ωk⊥)|0R〉 = 0 ∀ω,k⊥.

To obtain Bogoliubov coefficients we expand {uIωk⊥ ,u
II
ωk⊥
} in terms of {vk}. As Bogoliubov
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coefficients vanish for different k⊥ the relation gets:

uIωk⊥ =

∫ ∞
−∞

dkx√
4πk0

(
αIωkxk⊥ei(kxx−k0t) + βIωkxk⊥e−i(kxx−k0t)

) eik⊥·x⊥

2π
, (2.47)

uIIωk⊥ =

∫ ∞
−∞

dkx√
4πk0

(
αIIωkxk⊥ei(kxx−k0t) + βIIωkxk⊥e−i(kxx−k0t)

) eik⊥·x⊥

2π
. (2.48)

We can calculate Bogoliubov coefficients explicitly [8, 77]:

αIωkxk⊥ = αIIω−kxk⊥ =
eπω/2a√

4πk0a sinh(πω/a)

(
k0 + kx
k0 − kx

)−iω/2a
, (2.49)

βIωkxk⊥ = βIIω−kxk⊥ = − e−πω/2a√
4πk0a sinh(πω/a)

(
k0 + kx
k0 − kx

)−iω/2a
. (2.50)

From Eqs. ( 2.49) and ( 2.50), the following relations hold:

βIωkxk⊥ = −e−πω/aαII∗ωkxk⊥ , (2.51)

βIIωkxk⊥ = −e−πω/aαI∗ωkxk⊥ . (2.52)

The above relations show that the Bogoliubov coefficients related to negative energy fre-
quencies of Minkowski modes (v∗k) in one wedge is proportional to conjugated coefficient re-
lated to positive energy frequencies of Minkoswki modes (vk) in the oposite wedge. This have
an interesting implication. Consider the following modes:

g−ωk⊥ ≡
uIωk⊥ + e−πω/auII∗ω−k⊥√

1− e−2πω/a
, (2.53)

g+ωk⊥ ≡
uIIωk⊥ + e−πω/auI∗ω−k⊥√

1− e−2πω/a
. (2.54)

If we substitute Eqs. ( 2.47) and ( 2.48) into Eqs. ( 2.53) and ( 2.54) and use Eqs. ( 2.51) and
( 2.52), we get:

g−ωk⊥ =

∫ ∞
−∞

dkx√
4πk0

αIωkxk⊥

√
1− e−2πω/aei(kxx−k0t)

eik⊥·x⊥

2π
, (2.55)

g+ωk⊥ =

∫ ∞
−∞

dkx√
4πk0

αIIωkxk⊥

√
1− e−2πω/aei(kxx−k0t)

eik⊥·x⊥

2π
. (2.56)

Therefore, g−ωk⊥ and g+ωk⊥ are purely positive frequency solutions in Minkowski spacetime.

The considerations above enable us to notice an important relation between positive fre-
quency solutions of Klein-Gordon equation regarding Mikowski and Rindler time isometries.
Let ψIω be a positive frequency solution, regarding Rindler time τ , in wedge I, that vanishes in
wedge II. From Eq. ( 2.45) and the definition of uIωk⊥ , ψIIω = (ψIω ◦ ζ)∗, where ζ(t, x, y, z) =

(−t,−x, y, z), is a positive frequency solution regarding τ in wedge II that vanish in wedge I.
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We have that

φ1
ω = ψIω + e−πω/aψII∗ω , (2.57)

φ2
ω = ψIIω + e−πω/aψI∗ω , (2.58)

are positive frequency solutions regarding Minkowski time isometry.

Now, from Eqs. ( 2.53) to ( 2.56) we conclude that g−ωk⊥ and g+ωk⊥ are proportional to vk,
such that a(v∗k) is proportional to a(uI∗ωk⊥)− e−πω/aa†(uIIω−k⊥) and a(uII∗ωk⊥)− e−πω/aa†(uIω−k⊥).
Therefore, the expression bellow holds:

[
a(uI∗ωk⊥)− e−πω/aa†(uIIω−k⊥)

]
|0M〉 = 0, (2.59)[

a(uII∗ωk⊥)− e−πω/aa†(uIω−k⊥)
]
|0M〉 = 0. (2.60)

It is time to introduce a more rigorous treatment of the Rindler modes. The family of
solutions {uIωk⊥ ,u

II
ωk⊥
} is not normalizable. This way they can not belong to Hilbert spaces

HI
KG and HII

KG. In order to fix that we assume that the modes are wrapped by wave packages
sharply peaked about some discrete frequencies ωi, i ∈ N, such that we manage the substitution
uIωk⊥ → uIωik⊥ . This way we ensure consistency [1]. For simplicity of notation we will denote
in this section a(uI∗ωik⊥) = aIi and analogously the other annihilations and creation operators.

Using Eq. ( 2.59) and commutators among operators aIi ,a
I†
i ,a

II
i and aII†i , we find:

〈0M |aI†i aIi |0M〉 = e−2πωi/a〈0M |aII†i aIIi |0M〉+ e−2πω/a. (2.61)

Now, using Eq. ( 2.60) and the same commutators, we find:

〈0M |aII†i aIIi |0M〉 = e−2πωi/a〈0M |aI†i aIi |0M〉+ e−2πω/a. (2.62)

Solving Eqs. ( 2.61) and ( 2.62), we obtain:

〈0M |aI†i aIi |0M〉 = 〈0M |aII†i aIIi |0M〉 =
1

e2πω/a − 1
. (2.63)

Hence, the expectation value of Rindler particle number operator is that of a Bose-Einstein
particle in a thermal bath of temperature T = a/2π. This suggests that Minkowski vacuum can
be expressed as a thermal state in Rindler wedge with boost generator as Hamiltonian.

To look for the |0M〉 in terms of Rindler modes we multiply Eq. ( 2.59) by aI†i and Eq.
( 2.60) by aII†i to find:

(aI†i a
I
i − a

II†
i aIIi )|0M〉 = 0. (2.64)
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Hence, for each frequency, there is the same number of particles in I and II. Then we can write:

|0M〉 ∝
∏
i

∞∑
ni=0

Cni
ni!

(aI†i a
II†
i )ni |0R〉. (2.65)

The equation above says that Minkoski vacuum will be proportional to a general state which,
for the same mode frequency ωi, will have the same number of excited Rindler modes in wedge
I and wedge II. The product runs over different frequencies because creation operators of modes
with different frequencies commute.

Using Eqs. ( 2.59) and ( 2.60) we can get the recursion relation to Cni:

Cni+1 − e−πωi/aCni = 0, (2.66)

which implies Cni = e−niπωi/aC0. So we get to our final relation:

|0M〉 =
∏
i

[√
1− e−2πωi/a

∞∑
ni=0

e−niπωi/a|nIi 〉 ⊗ |nIIi 〉

]
. (2.67)

If we calculate the density matrix of Minkowski vacuum and decide to observe just wedge I
(since I and II are causally disconnected) we get:

ρI =
∏
i

[
(1− e−2πωi/a)

∞∑
ni=0

e−2niπωi/a|nIi 〉〈nIi |

]
. (2.68)

This is the density operator of a free boson system with temperature T = a/2π. The above
expression implies that an observer accelerated in Minkowski spacetime, where an inertial ob-
server can only observe vacuum, sees himself immersed in a thermal bath with temperature
dependent on acceleration. This is the Unruh Effect.

This result is quite counter-intuitive. First implication is that the very notion of particle
is observer dependent. Where an inertial observer can only perceive the vacuum, an acceler-
ated observer will witness a bath of particles. This phenomenon is an evidence that the real
fundamental physical entity is the quantum field, not the particles related to it.

Unruh effect also implies that a human observer in the intergalactic space where, by good
enough approximation, there is nothing except the observer, will freeze since the temperature
will be nearly the absolute zero. However, if by any means the observer accelerates, he will
feel a temperature which can be as high as the nucleus of the sun, if he accelerates enough.
Acceleration in empty space would be the difference between dying frozen or burned.

The effect is quite subtle, however. If we abandon for a while natural units and add back the
physical constants to the Unruh temperature we obtain:

T =
a~

2πKBc
, (2.69)
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where KB is the Boltzmann constant and c is light velocity. The Above expression tells us
that, in the international system of units, it is required an acceleration of order of 1020m/s2 to
obtain an Unruh temperature of order 1K. Such acceleration is not achievable with our current
technology. So, Unurh effect was not directly observed yet. This difficulty related to Unruh
temperature detection is the obstacle to achieve this experimental observation so important to
physics fundamentals. Theoretical efforts to overcome technological limitations are certainly
welcome. In this context we hope that quantum metrology can give us an insight about the
most suitable experimental scheme to look for Unruh effect. With this hope we conducted the
research that based this thesis.





Chapter 3

Metrology Quantities

3.1 Classical Fisher Information

Fisher Information raises from the context of the theory of estimation, founded by Ronald
Aylmer Fisher in a series of fundamental papers [29–32]. For any experiment we run, we get
as an answer a sample of observed data. Frequently we have some previous knowledge about
the studied system so we can assume a probability distribution depending on some unknown
parameters to model the experiment results. A standard problem of theory of estimation is to
determine the parameters of a probability distribution from a sample of data.

We model experimental observation events as probability spaces (X ,A,Pr) (see appendix
E for definitions) where the nonempty set X is understood as the set of elementary events or
possible outcomes, the σ-algebra A of X is understood as the observable events and Pr is the
probability measure of A.

A single measurement is modeled as a random variable X : X → R. If we repeat the
experiment several times the sample of data we get can be expressed as set of independent
identical distribution (i.i.d.) random variables. From the set of experiment’s measured data we
shall try to estimate the unknown parameter.

Definition 3.1.1. Let Xi : X ′ → X , i ∈ {1, · · · ,n} i.i.d. random variables with probability

density p(x,θ). The estimator of the parameter θ ∈ Θ for a sample of size n given by results of

(Xi)i∈{1,··· ,n} is a map E : X n → Θ.

An estimator is an attempt to approximate the value of the parameter θ. For example, let
X1, · · · , Xn be drawn i.d.d.. We can use as an example repeated measures of an experiment.
Given a previous knowledge about the physical behavior of the system, we assume a normal
distribution for the quantity measured with mean value θ and standard deviation σ. We can
estimate θ defining a function E such that E(X1, · · · , Xn) = 1

n

∑n
i=1Xi. The function E is an

estimator of the parameter θ from the sample.

In order to evaluate how good is the estimator, we define the error of the estimator
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Definition 3.1.2. Let E be an estimator. The function Er : Θ → R, Er(E) ≡ E − θ is called

the error function of the estimator E .

Note that, a priori, we do not know the value θ. We shall call the theoretical “right” value of θ
the true value of the parameter. The use of the true value is the development of concepts related
to the error of experiment measurements. This will become more clear in the next examples.

Definition 3.1.3. The bias of an estimator for the parameter θ is the expected value Eθ(E − θ)
of the error of the estimator. The subscript θ means that the expectation is referent to the density

p(x,θ).

The estimator is called unbiased when Eθ(E − θ) = 0 ∀θ ∈ Θ. This implies that Eθ(E) = θ

i.e. the experiment has no systematic error.

As an example, let X1, · · · ,Xn be drawn i.d.d. with density function p(x,λ) = 1
λ
e−x/λ, x ∈

[0,∞). We define 2 estimators for λ, E1 = X1 and E2 = 1/n
∑n

i=1Xi. We have that Eλ(E1) =∫∞
0
x e−x/λ

λ
dx. Integrating by parts we have Eλ(E1) = λ and E1 is, then, unbiased. Also

Eλ(E2) =
∫

1
n

(
∑n

i=1 xi)
(∏n

i=1
e−xi/λ

λ
dxi

)
= 1

n

∑n
i=1

∫ ∏n
j=1 xi

e−xj/λ

λ
dxj = nλ

n
= λ. So,

E2 = λ which is unbiased as well.

The bias is an approach to measure how good is the estimator we choose. However, it’s
not a good measure of quality since a vanishing bias does not guarantee that the error function
has a small result with high probability. For example, if we define a unbiased estimator to a
probability density with large dispersion, there will be a high probability of obtaining a large
value of error. So, we still need something else to measure and compare estimators. That will
be a loss function.

Let (X ′,A′,Prθ) be a probability space where the subscript θ means that the probability
measure depends on the parameter θ ∈ Θ and (Xi)i∈{1,··· ,n} a family of i.d.d. random variables
with value in (X ,A).

Definition 3.1.4. Let (D,B) be a measurable space called a decision space. A decision func-
tion is a map δ : X n → D. The cartesian product X n depends on how many observations the

decision is based on.

Definition 3.1.5. A loss function is a map L : Θ×D → R that is meant to quantify the cost of

a bad decision making.

Definition 3.1.6. We call a risk function of a decision δ the average

R(θ,δ) = Eθ(L(θ,δ)) =

∫
Xn
L(θ,δ(x1, · · · ,xn))pX1(x1,θ) · · · pXn(xn,θ)dx1 · · · dxn.

In the integral above we assume that the observation space is the measure space i.e. X =

Xi(X ′), ∀i ∈ {1, · · · ,n}. In statistical estimation context, the decision is the estimator to
choose and the loss function is meant to quantify how bad is the estimator approximation. The
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most commonly chosen loss function is the squared error loss L(θ,E) = (E − θ)2 since it’s risk
function is exactly the variance of the estimator R(θ,E) = Eθ[(E − θ)2] and the calculations in
this case are simpler [71]. We’ll choose as loss function the squared loss function and we will
understand a good estimator the one that has a low average squared error (low risk function)
and which error vanishes when n→∞.

Since we assign a notion of quality to estimator we shall rank them according to their qual-
ity:

Definition 3.1.7. An estimator E1 is said to dominate another estimator E2 if, for all θ ∈ Θ we

have

Eθ[(E1(X1, · · · ,Xn)− θ)2] ≤ Eθ[(E2(X1, · · · ,Xn)− θ)2]

If it’s now possible to rank estimators a natural question to make is: “Is there a best esti-
mator?” or, to put it in our terms “Is there a estimator that dominates over the others?”. To
answer this question we shall present the Cramér-Rao bound on the mean squared error of any
estimator. In order achieve it, we define the score of the distribution p(x,θ):

Definition 3.1.8. Let X : X ′ → X be a random variable of density p(x,θ). The score function
V : X ′ → R is a random variable defined by

V =
∂

∂θ
ln p(X,θ) =

∂
∂θ
p(X,θ)

p(X,θ)

Note that the mean value of the score is

Eθ(V ) =

∫
X

∂
∂θ
p(x,θ)

p(x,θ)
p(x,θ)dx =

∫
X

∂

∂θ
p(x,θ)dx =

∂

∂θ

∫
X
p(x,θ)dx =

∂

∂θ
1 = 0. (3.1)

Here we assume p(x,θ) and ∂
∂θ
p(x,θ) are continuous over their domain. The expression

above implies that the variance of the score isEθ[(V −Eθ(V ))2] = Eθ(V
2)−Eθ(V )2 = Eθ(V

2).
We can define the score of a family of random variables (Xi)i∈{1,··· ,n} drawn i.i.d.. Since
the probability density of a combined observation of the family of random variables satisfies
p(x1, · · · ,xn,θ) =

∏n
i=1 p(xi,θ) we have:

V (X1, · · · ,Xn) =
∂

∂θ
ln p(x1, · · · ,xn,θ) =

n∑
i=1

∂

∂θ
ln p(xi,θ) =

n∑
i=1

V (Xi) (3.2)

The family of random variables (V (Xi))i∈{1,··· ,n} are i.d.d. and has vanishing mean value.
We are finally ready to define the Fisher information (F.I.).

Definition 3.1.9. The Fisher Information of the parameter θ is the variance of the score

F (θ) = Eθ([(
∂

∂θ
ln p(x,θ))2]
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In the case we have multiples observations expressed by the family (Xi)i∈{1,··· ,n}, the Fisher
information is

Fn(θ) = Eθ[V (X1, · · · ,Xn)2] = Eθ

( n∑
i=1

V (Xi)

)2


= Eθ

 n∑
i=1

(V (Xi))
2 +

n∑
i,j=1
i 6=j

V (Xi)V (Xj)



= Eθ

[
n∑
i=1

(V (Xi))
2

]
+ Eθ

 n∑
i,j=1
i 6=j

V (Xi)V (Xj)


=

n∑
i=1

F (θ) +
n∑

i,j=1
i 6=j

Eθ[V (Xi)]Eθ[V (Xj)]

=
n∑
i=1

F (θ) = nF (θ). (3.3)

So, the F.I. of n i.d.d. random variables is n times the F.I. of a single random variable. The
significance of Fisher information get clear with Cramér-Rao theorem [33, 34].

Theorem 3.1.1 (Cramér-Rao Theorem). The mean squared error of an unbiased estimator of

the parameter θ, E(X), is lower bounded by the inverse of the Fisher information

V ar(E) ≥ 1

F (θ)

The proof is presented in appendix F.

The above bound is valid for any unbiased estimator. It establishes a limit for the quality
of the estimator. Estimators that meet the lower bound of Cramér-Rao inequality are called
efficient estimators. Since F.I. is the mathematical entity that sets the bound for any estimator
of θ, F.I. is related to the amount of information that exists about the parameter θ in the sample
of data. The larger F.I. is, smaller the variance bound will be and more accurate may be the
estimations of θ. So, the larger F.I. is, the larger the amount of information about θ in the
sample of data.

As an example, let (Xi)i∈{1,··· ,n} i.d.d. random variables with probability density p(x,θ) =
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N(θ,1), where N(θ,1) denotes the normal distribution with mean value θ and unit variance.

N(θ,1) =
1

2π
e−(x−θ)2/2. (3.4)

Let’s calculate the F.I. of this probability distribution. First the score:

V =

∂
∂θ

[
1

2π
e−(x−θ)2/2

]
1

2π
e−(x−θ)2/2

= x− θ (3.5)

Then, we calculate the F.I.

F (θ) = Eθ[(x− θ)2] = 1. (3.6)

The expression above holds for a single random variable, since we have a sample of n
observations, we have

F (θ) = n. (3.7)

So we claim that, for any estimator E of the parameter θ, V ar(E) ≥ 1/n. Now if we
calculate the variance of the usual estimator of the mean value X = X1+···+Xn

n
we obtain

Eθ[(X − θ)2] = Eθ

[(
x1 + · · ·+ xn

n
− θ
)2
]

= Eθ

 n∑
i=1

x2
i

n2
+

n∑
i,j=1
i 6=j

xixj
n2
− 2

n∑
i=1

θxi
n

+ θ2


=
Eθ(x

2)

n
+
θ2(n2 − n)

n2
− 2θ2 + θ2 =

Eθ(x
2)− θ2

n
=

1

n
=

1

F (θ)
. (3.8)

So we conclude that X meets the Cramér-Rao bound of the variance of the estimator of θ
and, then, it is an efficient estimator.

We presented here the 1-parameter Fisher Information. It is possible to generalize the con-
cept of Fisher Information for the multiparameter case. If we consider a probability density
function that depends on various parameters p(x,θ1, · · · ,θn) = p(x,θ). The Fisher information
of that probability density will be the matrix:

Fij(θ) =

∫
dx p(x,θ)

∂

∂θi
(ln p(x,θ))

∂

∂θj
(ln p(x,θ)) . (3.9)

This matrix is also called the Fisher information matrix. If we denote by Ei an unbiased
estimator of the parameter θi and the covariance matrix Σij = Eθ[(Ei − θi)(Ej − θj)], the
Cramér-Rao inequality gets the form [72]:

Σij ≥ F−1
ij (θ). (3.10)

Here, F−1
ij (θ) denotes the inverse of Fij(θ) and the inequality means that the difference
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Σij − F−1
ij (θ) is a nonnegative matrix.

Finally, F.I. quantifies how sensible the probability distribution is regarding the change in
the parameter. If a small variation in the parameter results in a drastic change in the probability
distribution, there will be a very distinguishable relation between the parameter value and the
probability distribution such that we can estimate the value of the parameter by looking at
it’s probability distribution precisely. Otherwise, if even a large variation results in a small
perturbation of the probability distribution, it will be a much harder task to distinguish which
probability distribution is related to each parameter value and we will not be able to realize a
precise parameter value estimation. Next we explore what is Fisher information for quantum
systems.

3.2 Quantum Fisher Information

We saw in the last section that the estimation theory is concerned about the problem of
estimation of a parameter from a sample of data. This theory was developed before the raise
of quantum mechanics and was thought in classical context. When we are dealing with quan-
tum systems, quantum properties discussed in sections B and C bring new characteristics to
estimation problem. In quantum context estimation problem is known as quantum metrology.
We shall present in this section an important quantity for quantum metrology accuracy: the
quantum Fisher information.

The problem of quantum metrology is the estimation of a parameter ξ from a set of quantum
measurements. This is done in following steps:

1. Preparation of the probe state;

2. Interaction of the probe with the system of interest;

3. Measurement of the probe;

4. Decode the information of interest from measured data.

In the first step we prepare a controllable system in a definite, blank state. During step 2
the information about the desired parameter is codified into the state of the probe. This is the
codification step. In step 3 we read this information by measuring the probe. By repeating this
process several times, we realize the last step, the decoding. We shall estimate the state obtained
after the interaction with the system of interest and we can get from the state the value of ξ up
to a certain precision.

A key quantity in this process is Fisher information. We already discussed Fisher informa-
tion in classical context in section 3.1. It bounds the precision at which ξ can be estimated as
stated by Cramér-Rao theorem. This same theorem has a version for quantum context as we
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will present here [45]. From definition 3.1.9, the classical Fisher information is given by:

F (ξ) =

∫
X
dx

[∂ξp(x,ξ)]
2

p(x,ξ)
(3.11)

where we used the notation ∂ξ ≡ ∂/∂ξ.

In quantum metrology context, as described above, we prepare a state ρ0 and leave it to
interact with the system of interest so it evolve to ρξ, the state in which the information about
the parameter ξ is encoded. As discussed in section B, measurements are described by a POVM
{Πx} and the probabilities are computed applying Born’s rule:

p(x,ξ) = Tr(Πxρξ). (3.12)

combining Eq. ( 3.12) and Eq. ( 3.11), we get:

F (ξ) =

∫
X
dx

[∂ξTr(Πxρξ)]
2

Tr(Πxρξ)
. (3.13)

There are several possible sets of POVM’s that we can choose and different sets will provide
a distinct amount of information about the probe, thus resulting in a different value for the
Fisher information. We define quantum Fisher information (QFI), J(ξ), as the maximum of
F (ξ) over all possible POVM’s. In appendix G we present the derivation of QFI in details. The
maximization of F (ξ) over all possible POVM’s results in:

J(ξ) = Tr(ρξL
2
ξ) = Tr(∂ξρξLξ), (3.14)

where Lξ is the symmetric logarithm derivative (SLD), defined by the Lyapunov equation:

∂ξρξ =
Lξρξ + ρξLξ

2
. (3.15)

The solution of Eq. ( 3.15) is:

Lξ = 2

∫ ∞
0

dte−ρξt∂ξρξe
−ρξt. (3.16)

Such that if we consider the spectral decomposition of the probe system ρξ =
∑

j pj|ej〉〈ej|,
0 < pj ≤ 1,

∑
j pj = 1, as we present in appendix G, we obtain the expression:

J(ξ) = 2
∑
ij

|〈ei|∂ξρξ|ej〉|2

pi + pj
, (3.17)

where i,j in summation just includes terms such that pi + pj 6= 0.

We can then compute the infinitesimal change in the probe state as ∂ξρξ =
∑

j ∂ξpj|j〉〈j|+
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pj|∂ξj〉〈j|+pj|j〉〈∂ξj|. Remembering that ∂ξ〈i|j〉 = 〈∂ξi|j〉+〈i|∂ξj〉 = 0, we show in appendix
G that the quantum Fisher information can be written in the following form

J(ξ) =
∑
i

(∂ξpi)
2

pi
+ 2

∑
i<j

2(pi − pj)2

pi + pj
|〈i|∂ξj〉|2. (3.18)

We will refer to the first and second terms as the classical and quantum parts of the Fisher
information. We note that the Crammér-Rao inequality is also valid for J(ξ) [45]. This fact
allow us to interpret Fisher information as a measure of the amount of information about ξ that
was codified in the state ρξ. Qantum Fisher Information quantifies how sensible the quantum
state is regarding the parameter. If a small variation in the parameter results in a large change in
the quantum state, parameters values close to each othe will be related to more distinguishable
quantum states and we will be able to estimate the value of the parameter through it’s quantum
state precisely. Otherwise, we will not be able to realize a precise parameter value estimation.

3.3 Signal-to-Noise Ratio

We have discussed in last section that, through Crammér-Rao theorem, quantum Fisher
information defines a boundary to the parameter estimation precision in quantum context. We
chose the variance to quantify the precision of estimation. However, the variance alone is not
enough to determine how credible is an estimation. A small variance is needed to claim that an
estimated parameter is zero while a larger variance is tolerable if the estimated value is large.
So, in order to determine how good is an estimation it is more suitable to look at the signal-to-
noise ratio (SNR).

Definition 3.3.1. Let ξ be the parameter of interest. The signal-to-noise ratio for a single

measurement is defined as:

Rξ =
ξ2

V ar(Eξ)
; (3.19)

The definition of SNR is nothing more than the square of the ratio between the estimation
mean value and the standard deviation. It is dimensionless and when it results in a large value,
it means the standard deviation of the estimation is small compared to it’s mean value. In this
case estimation is precise.

By Crámmer-Rao inequality, Rξ is bounded:

Rξ ≤ ξ2Jξ ≡ Qξ. (3.20)

Here we denote as Qξ the maximum SNR possible to a estimation scheme. In the next
chapter we will analyze the behavior ofQξ of our system regarding some parameters we control.



Chapter 4

Quantum Metrology and Unruh Effect

We will study the precision in the estimation of Unruh temperature. The choice of the
system we will consider is crucial since it has to be simple enough we can handle with but still
be able to model a practical measurement scenario to be useful. We use a two-level detector
model in flat spacetime to study two distinct cases: (i) one detector with constant acceleration
interacting with en external field in vacuum state so we can study the influence of coherence in
estimation of Unruh temperature. (ii) two detectors, one with constant acceleration interacting
with an external field in vacuum state and the other one inertial, in order to study the influence
of entanglement in estimation precision of Unruh temperature.

In section 4.1 we define our detector as an Unruh-DeWitt detector. In section 4.2 we look
for the role of coherence in estimation precision of Unruh temperature. In section 4.3 we look
for the role of entanglement in estimation precision of Unruh temperature and find the relation
between signal-to-noise ratio and the entanglement sudden death acceleration. Finally in section
4.4 we translate our results to the vicinity of a Schwarzchild black hole event horizon.

4.1 Detector Model

In this section we present the Unruh-DeWitt detector model introduced by Unruh and Wald
in 1984 [18]. This model was widely used in literature [47–49, 78–80] and the following
calculations can be found in the cited papers. The detectors we are considering are two-level
atoms with energy gap ω. They are examples of qubits. In our approach, detectors internal
degrees of freedom are ruled by quantum mechanics while we assign to them a well defined
worldline. We call this approach semiclassical. The detector proper Hamiltonian is defined as

Hd = ωd†d, (4.1)
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where ω > 0 is the detector energy gap and d†, d are the transition operators for the qubit energy
eigenstates. We denote |0〉 the unexcited and |1〉 the excited qubit energy eigenstates. We have:

d† |1〉 = d |0〉 = 0

d† |0〉 = |1〉

d |1〉 = |0〉 . (4.2)

Given a timelike isometry followed by the detector, we define the time coordinate t as the
proper time of an observer co-moving with the detector and we shall define creation, anihilation
and any other operator depending on time coordinate regarding t. We coupled the accelerated
qubit to a massless free scalar field φ(x), satisfying Eq. ( 2.42), through the interaction Hamil-
tonian [18]:

Hint(t) = ε(t)

∫
Σt

d3x
√
−gφ(x)

[
ϕ(x)d+ ϕ∗(x)d†

]
, (4.3)

where g = det(gab), gab is the spacetime metric, x are coordinates defined on the Cauchy surface
Σt=const associated with the timelike isometry. The real-valued function ε is introduced to keep
the detector switched on for a finite amount of proper time δ. Important to say that ε is smooth
and compact support, so we avoid any ultraviolet divergence in excitation probability [81].
Finally, ϕ is a smooth, compact support, complex-valued function which shapes the region
where the detector interacts with the field in the neighborhood of its worldline.

The total Hamiltonian is:
H = H0 +Hint, (4.4)

where H0 = Hd +HKG and HKG is the free scalar field Hamiltonian. In interaction picture (or
Dirac picture), if we denote the initial state as |Ψ−∞〉, the evolved state |Ψt〉 is given by:

|Ψt〉 = T exp

[
−i
∫ t

−∞
dt′HD

int(t
′)

]
|Ψ−∞〉, (4.5)

where T is time-ordering operator, HD
int(t) =

(
U †0(t)Hint(t)U0(t)

)
and U0(t) is the unitary

time evolution operator related to Hamiltonian H0.

Since after the amount δ of proper time the detector does not interact with the external field,
we have |Ψ∞〉 = |Ψt>δ〉. Noting that in the interaction picture the transition operator gets
d→ e−iωtd, from Eq. ( 4.5) and Eq. ( 4.3) we find:

|Ψ∞〉 = T exp

[
−i
∫
d4x
√
−gφ(x)

(
fd+ f ∗d†

)]
|Ψ−∞〉, (4.6)

where f ≡ ε(t)e−iωtϕ(x). In first perturbation order in relation to ε, Eq.( 4.6) gets:

|Ψ∞〉 =
[
1− i(φ(f)d+ φ(f)†d†)

]
|Ψ−∞〉, (4.7)
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where:
φ(f) ≡

∫
d4x
√
−gφ(x)f. (4.8)

Here the function f plays the role of a test function in Klein-Gordon equation. The solution is
known [1] and we derive it in appendix H:

φ(f) = i
[
a([KEf ∗]∗)− a†(KEf))

]
. (4.9)

Here K is the operator that takes positive frequency part of solutions of massless Klein-Gordon
equation (Eq. ( 2.42)) with respect to timelike isometry and

Ef =

∫
d4x′

√
−g(x′) [GA(x,x′)−GR(x,x′)] f(x′), (4.10)

where GA denotes advanced Green function and GR the retarded Green function.

We assume ε is a very slow varying function compared to ω, so the turning on/off process
of detector is not so fast that compromises the observation of a flip in detectors state. We also
assume that δ � ω−1, so the duration of the acceleration is not short enough we can not observe
the detector flip. With both assumption f gets to be approximately a positive frequency function
[1, 49]:

KEf ≈ Ef, KEf ∗ ≈ 0. (4.11)

So, denoting λ ≡ −KEf we get to:

φ(f) ≈ ia†(λ), (4.12)

and the final expression for |Ψ∞〉 is:

|Ψ∞〉 = (1 + a†(λ)d− a(λ∗)d†)|Ψ−∞〉. (4.13)

Note that Eq. ( 4.13) tells us there are three possible results from interaction between de-
tector and the external field: (i) nothing happens to the detector nor to the field; (ii) the detector
loses one quantum and the external field gains one quantum; (iii) the detector gains one quan-
tum and the field loses one. This means the excitation/deexcitation qubit process is attached to
its absorption/emission process. The detector is absorbing a quantum from the field, emitting
a quantum to the field or nothing is happening. Therefore, only processes where the detector
flips once or none at all are considered here. The absorbed/emitted quantum is understood as a
particle defined by observers co-moving with the detector according to its timelike isometry as
explained in section 2.2. Next section we’ll apply this model in our specific system.
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4.2 Estimation Precision and Coherence

We consider now one accelerated detector with constant acceleration a in Minkowski space-
time. Our detector moves along the x axis for the finite amount of proper time δ. The worldline
of the detector is:

t(τ) = a−1 sinh aτ, x(τ) = a−1 cosh aτ,

y(τ) = z(τ) = 0, (4.14)

where τ is the detector proper time and (t,x,y,z) are the usual Cartesian coordinates of Minkowski
spacetime. The detector lies in wedge I. We model the region of interaction around the detector
worldline with [49]:

ϕ(x) = (κ
√

2π)−3 exp(−x2/2κ2), (4.15)

with variance κ = const� ω−1.

III

t

x

Figure 4.1 ||| Detector’s worldline representation.

The initial state describing our system is:

|Ψ−∞〉 = |ψd−∞〉 ⊗ |0M〉, (4.16)

where |0M〉 denotes Minkowski vacuum and |ψd−∞〉 the initial state of the detector which is:

|ψd−∞〉 = c0|0〉+ c1|1〉. (4.17)

Here |c0|2 + |c1|2 = 1.

The total Hamiltonian of the single detector system interacting with the field is given by Eq.
( 4.4) and we can just follow the development of section 4.1 to apply Eq. ( 4.13) to evolve our
initial state Eq. ( 4.16). We find:

|Ψ∞〉 = [c0|0〉+ c1|1〉]⊗ |0M〉+ c1|0〉 ⊗ [aRI(λ
∗)|0M〉]− c0|1〉 ⊗

[
a†RI(λ)|0M〉

]
. (4.18)

Here we denote annihilation and creation operators as aRI and a†RI to emphasize that these are
the operators related to Rindler modes in wedge I according to Rindler time isometry just like
presented in section 2.4. We also denote as aM and a†M the operators related to Minkowski
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modes. Regarding the relation between annihilation and creation operators in the Rindler and
Minkowski spacetimes [8, 18]:

aRI(λ
∗) =

aM(F ∗1ω) + e−πω/aa†M(F2ω)

(1− e−2πω/a)1/2
. (4.19)

a†RI(λ) =
a†M(F1ω) + e−πω/aaM(F ∗2ω)

(1− e−2πω/a)1/2
, (4.20)

where the positive frequency solutions are given by

F1ω =
λ+ e−πω/aλ ◦ ζ
(1− e−2πω/a)1/2

, (4.21)

F2ω =
(λ ◦ ζ)∗ + e−πω/aλ∗

(1− e−2πω/a)1/2
. (4.22)

Here, ζ denotes the Rindler wedge reflection isometry ζ(t,x,y,z) = (−t, − x,y,z) defined in
section 2.4.

Now, let’s denote by HRI
KG and HRII

KG the Hilbert space of positive frequencies solutions of
Klein-Gordon equation in Rindler wedge I and wedge II respectively, and byHRI

KG andHRII

KG the
related negative frequencies solutions spaces. Since the four cited Hibert spaces are orthogonal
in relation to Klein-Gordon inner product, and as λ ∈ HRI

KG, and (λ ◦ ζ) ∈ HRII

KG [18], it is
straightforward that (F1ω,F2ω)KG = 0. We obtain:

(Fiω,Fjω)KG =‖ λ ‖2 δij, (4.23)

where [49, 78]:

‖ λ ‖2=
ε2ωδ

2π
e−ω

2κ2 ≡ µ. (4.24)

Now, if we denote |1F̃iω〉 as the normalized state corresponding to |1Fiω〉, i ∈ {1,2}, and remem-
bering the Unruh temperature T = a/(2π), we can write the normalized state of the system after
the time δ as

|Ψ∞〉 = [c0|0〉+ c1|1〉]⊗|0M〉+ c1
µ1/2

(1− e−ω/T )1/2
|0〉⊗ |1F̃1Ω

〉− c0
µ1/2e−ω/(2T )

(1− e−ω/T )1/2
|1〉⊗ |1F̃2ω

〉.
(4.25)

Calculating the density matrix of final state |Ψ∞〉 and tracing out the field degrees of free-
dom, we obtain the final reduced density matrix:

ρd = Trφ(|Ψ∞〉〈Ψ∞|) =
1

N

 (1− e−ω/T )|c0|2 + µ|c1|2 (1− e−ω/T )c0c
∗
1

(1− e−ω/T )c∗0c1 µe−ω/T |c0|2 + (1− e−ω/T )|c1|2

 ,
(4.26)
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where Trφ denotes the partial trace of the field φ and N is the normalization constant:

N = (1− e−ω/T ) + µe−ω/T |c0|2 + µ|c1|2. (4.27)

Now we obtained the evolved detector state, we got to the information about Unruh tempera-
ture T encoded in ρd as discussed in section 3.2. We shall calculate quantum Fisher information
of ρd related to temperature T . By doing so, we can analyze the optimal configurations of pa-
rameters of ρd we control to get the best estimation precision of T . We are supposed to apply
Eq. ( 3.18) to ρd but to accomplish that, we need first to find spectral form of ρd.

To obtain the detector’s density matrix spectral form we will, first, assume that coefficients
c0,c1 ∈ R. Since |ψd−∞〉 is normalized, we write its coefficients as c0 = sin η and c1 = cos η.
If η = π/2 (c0 = 1,c1 = 0) or η = 0 (c0 = 0,c1 = 1), ρd is already in its spectral form and we
can calculate quantum Fisher information forthwith. In order to have a clearer notation we will
denote here on J(T ) = JT . We get:

JT (η = π/2) =
e−ω/Tµω2

T 4(1− e−ω/T )(1− e−ω/T + µe−ω/T )2
, (4.28)

and

JT (η = 0) =
e−2ω/Tµω2

T 4(1− e−ω/T )(1− e−ω/T + µ)2
. (4.29)

Now, for η ∈ (0,π/2), we need to diagonalize ρd. standard diagonalization calculation leeds
to:

ρd =

 1/2− γ 0

0 1/2 + γ

 . (4.30)

The term γ is written as:

γ =

√
γ1 + γ2 + γ3

γ4

, (4.31)

where

γ1 = e−2ω/T (8 + µ(4 + 3µ))− 2e−ω/T (8 + µ2) + (8 + µ(−4 + 3µ)), (4.32)

γ2 = 4µ(1− e−ω/T )(−2 + µ+ e−ω/T (2 + µ)) cos(2η), (4.33)

γ3 = µ(1 + e−ω/T )(−4 + µ+ e−ω/T (4 + µ)) cos(4η), (4.34)

γ4 = 2
√

2
[
(e−ω/T + 1)µ+ (1− e−ω/T )(2 + µ cos(2η))

]
, (4.35)

and fω = (1− e−ω/T ).

The eigenbasis of the density operator is {V1,V2}, with

V1 = 1/N1

(
1

4(1− e−ω/T ) sin(2η)
(γ5 −

√
2
√
γ1 + γ2 + γ3),1

)
, (4.36)
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and
V2 =

1

N2

(
1

4(1− e−ω/T ) sin(2η)
(γ5 +

√
2
√
γ1 + γ2 + γ3),1

)
, (4.37)

where

γ5 = −2e−ω/T (µ− (2 + µ) cos(2η)) + 2(µ+ (−2 + µ) cos(2η)), (4.38)

and N1 and N2 are the normalization constants

N1 =

√√√√((γ5 −
√

2
√
γ1 + γ2 + γ3)

4(1− e−ω/T ) sin(2η)

)2

+ 1,

N2 =

√√√√((γ5 +
√

2
√
γ1 + γ2 + γ3)

4(1− e−ω/T ) sin(2η)

)2

+ 1. (4.39)

Now, with the spectral form Eq. ( 4.30) we can finally apply Eq. (3.18) which lead us
to quantum Fisher information JT (η) for η ∈ (0,π/2). The expression happens to be too
cumbersome, so we present it in appendix I.

Quantum Fisher information JT depends on the parameters (η,µ,T ). Parameter η is related
to the prepared initial state. Parameter µ is related to the period in which the acceleration is on,
δ, to the energy gap ω of the detector energy levels and the range of interaction of the detector κ.
Finally T is related to the constant acceleration a by Unruh temperature expression T = a/(2π).

In section 4.1 we presented the conditions of validity of the model: ε � 1, δω � 1 and
ωκ � 1. Therefore, we set ε = 10−3, δω = 2π104 and ωκ = 10−3 such that µ = 0.01 here
on. We also set ω = 1 such that all the quantities of energy may be presented in units of ω.
We present quantum Fisher information as function of acceleration for some different prepared
initial states in Fig. ( 4.2).

Note that quantum Fisher information has a maximum for accelerations of the order of the
energy gap. This phenomenon is due to the fact that the responsiveness of detector’s state
to temperature change is low, and the proportional variation in ρd is only appreciable when
acceleration reaches the order of the detector’s energy gap. As the acceleration increases the
quantum Fisher information approaches asymptotically to zero. For high acceleration regime,
i. e., for acceleration value much higher than ω, the probability of a click in the detector will
be already very high and it will be hard to distinguish two high temperature values since the
responsiveness of the detector state in this regime will be very low.

This effect adds an additional challenge to Unruh effect experimental detection, since we
expect that the higher the temperature, easier it is to detect it, but harder it will be to make a
precise measurement. We present in Fig. ( 4.3) the behavior of the maximum value of quan-
tum Fisher information JTmax and its respective acceleration value amax as a function of the
parameter η.
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Figure 4.2 ||| Quantum Fisher information JT as function of acceleration for the single detector and
µ = 0.01. Each line in the graphic represent a distinct initial state |ψd−∞〉 with a different value of
η. Acceleration is in units of ω and JT in units of (10−2ω−2).

JT max

amax

0 π

4

π

2

0

1

2

3

4

5

1.7

2.3

3.

3.7

4.3

5.

η

J
T
m
ax

a
m
ax

Figure 4.3 |||Maximum value of quantum Fisher information JTmax and its respective acceleration
value amax as function of initial state parameter η and µ = 0.01. Acceleration is in units of ω and
JTmax in units of (10−2ω−2).

We note in the graphic that the highest value of JTmax has the smallest value of amax (or
temperature). This confirms that the higher sensibility of detector to temperature variation will
happens for the smaller acceleration. This graphic also shows that the greatest accuracy of
temperature detection holds for η = π/2 i.e. |ψd−∞〉 = |0〉. First conclusion we can take from
that is the coherence is not a quantum resource for Unruh temperature estimation. Second,
this happens due to the probability of a spontaneous decay of the excited state because of the
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interaction with the vacuum. The mixture between the spontaneous decay effect and the decay
probability from contact to Unruh thermal bath makes a detector click less informative about
Unruh temperature. At last we present the 3D graphic JT × a× µ for η = π/2 in Fig. ( 4.4).

Figure 4.4 ||| Quantum Fisher information JT as function of acceleration a and µ for the optimal
estimation initial state parameter η = π/2. Acceleration is in units of ω, µ has no dimension and
JT in units of (ω−2).

The parameter µ is directly related to the period of interaction δ between detector and the
external field. When the experimental apparatus is mounted, parameters ε, ω, κ are fixed and
we control only the time of duration of the acceleration of the detector. Figure ( 4.4) shows
that for all values of η, quantum Fisher information increases when µ increases. This is already
expected since greater the duration of interaction, larger probability of detectors transition. The
increase of µ results in a greater rate of probability of detector’s click growth which results
in a greater proportional variation of ρd. This means the responsiveness of ρd to temperature
variation will be greater.

We have presented the results about quantum Fisher information, however, as discussed in
section 3.3, QFI does not tell us about the estimation credibility since it depends on the relation
between the variance of the estimation and the estimation mean value, for which QFI gives
no information about. Therefore, we should look at the signal-to-noise ratio. Bellow, we will
analyze the QT , the upper limit of the SNR, defined by Eq. ( 3.20). In Fig. ( 4.5) we plot the
SNR for different initial states.

Note that the maximum of QT is reached for accelerations two orders of magnitude greater
than JT . Despite the fact that JT reaches its maximum for acceleration of order of ω, just after
its maximum, JT approaches zero in a rate such thatQT ≡ T 2JT still increases. We observeQT

increasing until its maximum, around accelerations values between a = 400ω and a = 630ω,
depending on η, and from this point on QT tends to zero.
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Figure 4.5 ||| QT as function of acceleration for the single detector and µ = 0.01. Each line in the
graphic represent a distinct initial state |ψd−∞〉 with a different value of η. Acceleration is in units
of ω and QT has no dimension.
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Figure 4.6 |||Maximum value of QT , denoted by QTmax, and its respective acceleration value amax
as function of initial state parameter η and µ = 0.01.

We plot in Fig. ( 4.6) the maximum value of QT denoted QTmax by its respective accelera-
tion value denoted amax. Here we see a remarkable negative correlation between the coherence
of the initial state and QTmax. We conclude that quantum coherence spoils the precision of
estimation of Unruh temperature. We can also note the higher value of QTmax for η = π/2.
This is also explained by the probability of spontaneous decay of the excited initial state which
makes less informative the detector click, as discussed before.
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Figure 4.7 ||| QT as function of acceleration µ for different initial state parameters η and acceleration
value. Green lines are η = π/4, black lines have η = π/2. Dotted lines have a = 50ω and solid
lines have a = 500ω.

Now we observe in Fig. ( 4.7) that, besides we showed that JT increases with µ, we show
here that QT has a maximum value when seen as function of µ. It means that after an optimal
time of exposure of the detector δ, the responsiveness of the final state to changes in T decreases.
We can observe that higher the acceleration value, smaller will be the optimal δ value. What is
expected since large acceleration values results in high probability to detect a click of the probe
sooner, which take us to the low responsiveness regime for smaller δ.

We finish here our study of the role of coherence in Unruh temperature estimation precision.
Next section we will present our results regarding the role of entanglement in measurement
precision.

4.3 Estimation Precision and Entanglement

We consider now the case of two non-interacting detectors in Minkowski spacetime. De-
tector A is kept inertial while detector B has constant proper acceleration a along the x axis
for the finite amount of proper time δ. This configuration is refered, in metrology literature, by
an ancilla test instead of an entanglement test. It is however, in relativistic quantum metrology
literature refered most commonly as an entanglement test and that is how we call it in this study.

The worldline of detector B is given by same expressions as Eq. ( 4.14):

tB(τB) = a−1 sinh aτB, xB(τB) = a−1 cosh aτB,

yB(τB) = zB(τB) = 0, (4.40)

where τB is detector B proper time, (tB,xB,yB,zB) are the points of detector B worldline and
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(t,x,y,z) are the usual Cartesian coordinates of Minkowski spacetime. We model interaction
region with the same expression of the single detector case

ϕB(x) = (κ
√

2π)−3 exp(−(x− xB)2/2κ2), (4.41)

with variance κ = const� ω−1.

III

t

x

Figure 4.8 ||| Detectors’ worldlines representation.

The initial state describing the system is:

|Ψ−∞〉 = |ψdd−∞〉 ⊗ |0M〉, (4.42)

where
|ψdd−∞〉 = sin θ|01〉+ cos θ|10〉. (4.43)

Here |ab〉 ≡ |a〉 ⊗ |b〉 where |a〉 ∈ HA and |a〉 ∈ HB, a,b ∈ {0,1}, HA and HB are the Hilbert
space associated to detector A and B respectively.

The free Hamiltonian for detectors is given by Eq. (4.1):

HA = ωd†AdA, (4.44)

HB = ωd†BdB. (4.45)

Here dA and dB denotes transitions operators of detectors A and B. Detector A is kept switched
off during the entire process. It means it does not interact with external field, except indirectly.
Detector B is switched on during the proper time interval δ and interacts with the field through
the rule Eq. (4.3). The total Hamiltonian of the system is given by:

H = HA +HR +HKG +Hint. (4.46)

Therefore we have the time independent HamiltonianH0 = HA+HR+HKG andHint analogous
to Eq. ( 4.3) such that the calculations from section 4.1 holds and we can evolve the state |Ψ−∞〉
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up to first order with Eq. (4.13). It results:

|Ψ∞〉 = (sin θ|01〉+ cos θ|10〉)⊗ |0M〉 − cos θ|11〉 ⊗ (aRI(λ
∗)|0M〉)

+ sin θ|00〉 ⊗
(
a†RI(λ)|0M〉

)
(4.47)

Again we denote annihilation and creation operators as aRI and a†RI to emphasize that these are
the operators related to Rindler modes in wedge I according to Rindler time isometry. We also
denote as aM and a†M the operators related to Minkowski modes. Applying Eq. ( 4.19) and Eq.
( 4.20) we find:

|Ψ∞〉 =(sin θ|01〉+ cos θ|10〉)⊗ |0M〉 −
cos θµ1/2e−ω/(2T )

(1− e−ω/T )1/2
|11〉 ⊗ |1F̃2ω

〉

+
sin θµ1/2

(1− e−ω/T )1/2
|00〉 ⊗ |1F̃1ω

〉, (4.48)

where F1ω and F2ω are defined by Eq. ( 4.21) and Eq. ( 4.22) respectively and |1F̃1ω
〉 and |1F̃2ω

〉
are normalized states associated to one quantum excitation of external field in modes F1ω and
F2ω.

Calculating the density matrix of final state |Ψ∞〉 and tracing out the field degrees of free-
dom, we obtain the final reduced density matrix:

ρdd = Trφ (|Ψ∞〉〈Ψ∞|) =


P1 0 0 0

0 P0 sin2 θ P0 sin θ cos θ 0

0 P0 sin θ cos θ P0 cos2 θ 0

0 0 0 P2

 . (4.49)

Here we use the basis {|00〉,|01〉,|10〉,|11〉}.

P0 =
1− e−ω/T

(1− e−ω/T ) + µ(sin2 θ + e−ω/T cos2 θ)
, (4.50)

P1 =
µ sin2 θ

(1− e−ω/T ) + µ(sin2 θ + e−ω/T cos2 θ)
, (4.51)

P2 =
µe−ω/T cos2 θ

(1− e−ω/T ) + µ(sin2 θ + e−ω/T cos2 θ)
. (4.52)

Now we have the evolved state where the information about Unruh temperature is encoded,
we shall obtain the spectral form of ρdd so we can apply Eq. ( 3.18) to obtain the quantum
Fisher information JT . First we should note that for θ = 0 and θ = π/2 (i.e. |ψdd−∞〉 = |10〉
and |ψdd−∞〉 = |01〉 respectively) Eq. ( 4.49) is already in its spectral form and we can apply Eq.
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( 3.18) straightforwardly to obtain:

JT (θ = 0) =
e−ω/Tµω2

T 4(1− e−ω/T )((1− e−ω/T ) + e−ω/Tµ)2
, (4.53)

and

JT (θ = π/2) =
e−2ω/Tµω2

T 4(1− e−ω/T )((1− e−ω/T ) + µ)2
. (4.54)

However, for θ ∈ (0,π/2), ρdd is not diagonalized and we need to make standard diagonal-
ization calculations to obtain:

ρdd =


P0 0 0 0

0 P1 0 0

0 0 P2 0

0 0 0 0

 , (4.55)

in the basis
{sin θ|01〉+ cos θ|10〉,|00〉,|11〉, cos θ|01〉 − sin θ|10〉}. (4.56)

Note that the basis above does not depend on T . That implies that the quantum term of Eq.
( 3.18) vanishes and the expression simplifies to:

JT =
(∂TP0)2

P0

+
(∂TP1)2

P1

+
(∂TP2)2

P2

. (4.57)

Substituting Eq. ( 4.50), Eq. ( 4.51) and Eq. ( 4.52) in Eq. ( 4.57) we obtain:

JT =
e−ω/Tµω2(e−ω/T (4(1− cos(2θ)) + µ(−1 + cos(4θ))) + 4(1 + cos(2θ)) + µ(1− cos(4θ)))

2T 4(1− e−ω/T )(e−ω/T (−2 + µ(1 + cos(2θ))) + 2 + µ(1− cos(2θ)))2
.

(4.58)
Behavior of JT is presented in the graphic of Fig. ( 4.9).

We can see that, as in the single detector case, the maximum value of quantum Fisher
information holds for acceleration values of the order of the detector’s energy gap ω. The
explanation is analogous to single detector case, the state ρdd has low responsiveness to Unruh
temperature variation, so the proportional variation of ρdd with T is just appreciable for small
transition probability which happens for such values of acceleration. The graphic of Fig. ( 4.10)
corroborates this analysis. Note that the greater value of JTmax has the lowest value of amax.

From Fig. ( 4.9), Fig. ( 4.10) and Fig. ( 4.11) we can conclude that the entanglement is
not a quantum resource for Unruh temperature estimation. This result contradicts what was
suggested in literature [48]. The best initial state for temperature estimation is the separable
state |ψdd−∞〉 = |10〉 (θ = 0). Entanglement seems to not affect QFI. The graphic of Fig. ( 4.11)
present the concurrence as a measure of entanglement (sec. D) overlaid with JT as a function
of θ for distinct values of acceleration. We see no relation between entanglement and JT .
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Figure 4.9 ||| Quantum Fisher information JT as function of acceleration a and µ = 0.01. Each line
represents a different initial state related to a different value of parameter θ. Acceleration is in units
of ω and JT in units of (10−2ω−2).
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Figure 4.10 |||Maximum value of Quantum Fisher information JTmax and its respective acceleration
amax as function of initial state parameter θ and µ = 0.01. Acceleration is in units of ω and JT in
units of (10−2ω−2).

We can also note from Eq. ( 4.53), Eq. ( 4.54), Eq. ( 4.58) and Fig. ( 4.9) that JT → 0

as a → ∞. This can be explained by the low responsiveness of the state ρdd to variation
in temperature in high acceleration regimes. For great acceleration values the final state will
change so subtly that it is a hard task to distinguish two distinct values of Unruh temperature
in this regime. As in single detector case we face an additional challenge for Unruh effect
experimental verification, since detection of small temperatures is a much harder task than
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high temperature detections, but in high Unruh temperature regimes we can not have a precise
estimation of temperature.

The initial state preparation which results in the worst Unruh temperature estimation preci-
sion is θ = π/2 (|ψdd−∞〉 = |01〉). As in the single detector case this happens because, as detector
A does not interact with external field, the state |10〉 can only flip to |11〉 if accelerated, instead,
the state |01〉 can flip to |00〉 even without acceleration because of spontaneous decay probabil-
ity. The mixture between spontaneous decay phenomenon and the transition probability due to
Unruh effect results in a less amount of information about temperature.

0 π

4

π

2

0

1

2

3

0

0.2

0.4

0.6

0.8

1.0

θ

J
T C

Figure 4.11 ||| Quantum Fisher information JT in solid line overlaid with concurrence C in dashed
line as function of parameter θ and µ = 0.01. Each line represents a different acceleration value.
For black line a = 1ω, green line a = 5ω and blue line a = 10ω. Concurrence has no dimension
and JT in units of (10−2ω−2).

We point out that JT increases with µ, as shown in Fig ( 4.12). This is expected since a
larger µ is related with a longer interaction time δ which increases transition probability slope
and consequently the proportional variation of ρdd with acceleration.

Now on we shall analyze the signal-to-noise ratio. As we did in single detector case, we
shall look at SNR upper limit QT . In Fig. ( 4.13) we plot QT as function of acceleration for
some different values of θ.

We observe that the initial state has modest influence on QT . This image corroborates that
entanglement does not play a role in our Unruh temperature estimation scheme. As in single
detector case, QT reaches its maximum value for accelerations two orders of magnitude greater
than the acceleration JT reaches its maximum.

In Fig. ( 4.14) we plot the maximum value of QT , denoted by QTmax, overlapped by its ac-
celeration value, denoted by amax, as function of θ. The greatest value of QTmax is obtained for
θ = 0 (|ψdd−∞〉 = |10〉). This can be explained by the vanishing spontaneous decay probability
of this state.
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Figure 4.12 ||| A 3D graphic of Quantum Fisher information JT as function of acceleration a and
parameter µ for the optimal temperature estimation value θ = 0. Acceleration is in units of ω,
parameter µ has no dimension and JT in units of (ω−2).
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Figure 4.13 ||| QT as function of acceleration for the two detector case with µ = 0.01. Acceleration
is in units of ω and QT has no dimension.

Just like in single detector case, in the current two detector case, while JT increases with
µ, we can see by Fig. ( 4.15) that QT has a maximum value when seen as function of µ. This
maximum is reached for µ < 1. We also observe that for higher acceleration values, the value of
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Figure 4.14 |||Maximum value of QT , denoted by QTmax, and its respective acceleration value
amax as function of initial state parameter θ and µ = 0.01.
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Figure 4.15 ||| QT as function of acceleration µ for θ = 0 and different acceleration values. We
observe QT decreasing for long periods of time δ.

µ in which QT reaches its maximum is smaller. This is due to the fact that for large acceleration
values, sooner the detector reaches the high probability of clicking regime when the final state
loses responsiveness regarding Unruh temperature variation.

Now, we shall present an interesting relation between QTmax and the entanglement sudden
death acceleration value. In 2009, A. Landulfo and G. Matsas [49] observed the entangle-
ment sudden death (ESD) in the same two detector system we are studying. If we prepare an
entangled initial state, the entanglement of the system vanishes for a finite value of accelera-
tion. Interestingly, if we quantify entanglement by concurrence, ESD acceleration value does
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not depend on initial state concurrence, since, of course, we do not have as initial state a sep-
arable state. This is shown by Fig. ( 4.16). Note that for different initial states with different
concurrence values, the acceleration at which concurrence vanishes is the same. This is the
entanglement sudden death acceleration value.
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Figure 4.16 ||| Concurrence as function of acceleration for different θ, here µ = 0.01. Notice that
etanglement sudden death acceleration value is the same for all different θ.

It happens that QTmax is related to entanglement sudden death acceleration value. In Fig.
( 4.17) we plot the value of acceleration amax for different values of θ as a function of µ over-
lapped by ESD acceleration value. Observe that amax for θ = π/4 coincides with ESD acceler-
ation value.

The graphic of Fig. ( 4.17) interestingly suggests that, despite the fact that entanglement
plays no role in Unruh temperature estimation precision or reliability, the decoherence intro-
duced by Unruh Effect that affects the entanglement between both detectors affects the precision
of Unruh temperature estimation the same way. The difference observed from ESD acceleration
value and amax for θ = 0 and θ = π/2 can be explained by the role of spontaneous decay effect
in estimation credibility.

We conclude here the presentation and the discussion of our original results. In next section
we translate our previous results for Hawking radiation estimation precision.

4.4 Estimation Precision in Schwarzschild Black Hole

Although Unruh effect occurs in flat spacetime, we can consider an extension of our re-
sults to the estimation of the Hawking temperature in Schwarzschild spacetime. The metric, in
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Figure 4.17 ||| Acceleration value where QT finds its maximum amax as function of µ for different
θ overlapped with Entanglement Sudden Death (ESD) acceleration value as function of µ. Notice
that ESD coincides with amax for θ = π/4.

Schwarzschild coordinates and making gravitational constant G = 1 is:

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2, (4.59)

where t and r denote the time and radial coordinates respectively, dΩ denotes the S2 differential
element and m the mass in the spacetime.

Schwarzschild coordinates does not cover all the manifold properly since we got a coordi-
nate singularity at r = 2m in Eq. (4.59) [4, 50, 82]. We solve that problem by using a more
suitable coordinate which covers all the manifold. We denote:

r̄ = r + 2m ln |r/2m− 1|. (4.60)

and define the null coordinates

U = −4me(t+r̄)/4m, (4.61)

V = 4me(t−r̄)/4m. (4.62)

Null coordinates leads to the following metric:

ds2 = −2m

r
e−r/2mdUdV + r2dΩ. (4.63)
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Note that metric Eq.(4.63) does not present a singularity at r = 2m and defines r implicitly by

− UV = 16m2
( r

2m
− 1
)
er/2m. (4.64)

Coordintes U and V are defined only for U < 0 and V > 0. However, It’s possible to make
an analytic continuation to extend the domain of U and V to (−∞,∞) [82]. This way we got
UV = 0 if r = 2m and UV = 16m2 for r = 0. Therefore the quadrant U > 0,V < 0 denotes
a copy of U < 0,V > 0, a space identical to the region out of event horizon (r ≥ 2m). If we
define new compactified coordinates

u = 2 arctan(U/4m), (4.65)

v = 2 arctan(V/4m), (4.66)

we can ilustrate the extended Schwarzschild solution in Figure (4.18).

I II

Figure 4.18 ||| Extended Schwarzschild diagram. Angular coordinates are suppressed, so each point
of the diagram represent a S2. Wedges I and II are two identical copies of r > 2m region.

Since Schwarzschild coordinate does not properly cover r = 2m, in order to make analysis
on the event horizon we shall introduce other coordinates

t̄ = t+ 2m ln |r/2m− 1|. (4.67)

In this new coordinate the spacetime metric becomes:

ds2 = −
(

1− 2m

r

)
dt̄2 +

4m

r
dt̄dr +

(
1 +

2m

r

)
dr2 + r2dΩ2. (4.68)
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The above equation is well behaved at r = 2m. We can proceed an analytical continuation
so that r extends its domain to r > 0 (or verify that Eq. (4.68) solves Einstein’s equation for
r > 0).

With (t̄,r,θ,φ) coordinates we can define the static Killing field χ = ∂t̄ at r = 2m. As

〈∂t̄|r=2m,∂t̄|r=2m〉 = 0, (4.69)

The Killing field ∂t̄ is a null vector at the hypersurface r = 2m. It’s also normal to this hypersur-
face since for any vector of the form v = vt̄∂t̄|r=2m+vθ∂θ|r=2m+vφ∂φ|r=2m, where θ,φ denotes
usual angular coordinates of S2, we have 〈∂t̄|r=2m,v〉 = 0. Therefore we call r = 2m a Killing
horizon [1]. The event horizon from the extended Schwarzchild spacetime (Fig. ( 4.18)) can
be generated by null geodesics orthogonal to surface of t̄ = 0,r = 2m. Such event horizons are
called bifurcate Killing horizon [1]. It divides spacetime in four wedges.

If there is a nonsingular vacuum state (i.e. Hadamard form) which is invariant under isom-
metries generated by the Killing field ∂t̄, then the restriction of such vacuum to one wedge will
be a thermal state [83]. Restricting ourselves to the right wedge, I , this state can be written as

ρ =
∏
i

(
(1− e−2πωi/κ)

∑
niI

e−2πωi/κ|niI〉〈niI |

)
. (4.70)

The index i runs over the filed modes. Here, |niI〉 is the ni’th excited state of mode i in wedge
I. Hawking temperature is

T = κ/(2π), (4.71)

where κ denotes the surface gravity.

κ = lim(a(−〈χ,χ〉)). (4.72)

The term −〈χ,χ〉 is the redshift factor and a denotes the proper acceleration of orbits of χ just
outside the horizon i.e. a = (acac)

1/2 where ac = χb∇bχ
c. In the vicinity of the horizon χ will

be timelike. In the limit where we approach the horizon a→∞ and 〈χ,χ〉 → 0.

Note that the definition of a thermal state in Schwarzschild spacetime in the terms we pre-
sented depends on the existence of a Hadamard form vacuum. To prove the existence of such a
vacuum in a general spacetime is quite a hard task. However it has been proved such existence
in Schwarzschild spacetime by Hartle and Hawking [84, 85]. This vacuum state is named af-
ter them, it is called the Hartle-Hawking vacuum |0HH〉. It is invariant under the isommetries
generated by the static killing field χ. Therefore, when restricted to region I of Fig. (4.18) it
assumes the form of Eq. (4.70).

The Hawking temperature, as measured by an observer following a worldline in the direction
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of ∂t̄, is given by
TH =

κ

2π(−〈χ,χ〉)
. (4.73)

From Eqs. (4.72) and (4.73) we can see that, in the neighborhood of the horizon, Hawking
temperature is approximately given by Unruh temperature T = a/(2π). So, static observers
near the horizon of a Schwarzschild black hole experience the same temperature as the observers
with proper acceleration a in Minkowski spacetime.

Therefore, our conclusions regarding the behavior of Fisher information and signal-to-noise
ratio bound QT under constant acceleration in flat spacetime also hold for a static observer
in the vicinity of a Schwarzschild black hole. From the above calculations, the approximation
TH ≈ a/(2π) holds just if we are very close to the horizon, where a takes a great value, implying
bad precision of the estimation of Hawking temperature according to our results expressed in
section 4.2 and 4.3. Remember we observed the greatest temperature estimation precision for
small values of acceleration regarding ω scale. However, this problem can be solved if we can
employ an Unruh-DeWitt detector with a very large energy gap.

But, how large should be detector’s energy gap? From standard calculations of general
relativity we conclude that, in the worldline which follows ∂t̄, i.e., a static observer, we have

a =
m/r2

(1− 2m/r)1/2
. (4.74)

Therefore, near the horizon we have

T ≈
m

2πr2

(1− 2m/r)1/2
. (4.75)

For both cases, the single detector and two detectors, the acceleration value of maximum es-
timation precision was the same 1.6863ω. So, in order to obtain the best estimation precision
according to our first order approximation of the probe state (one-click experiment), we need a
detector with energy gap near ωmaxQFI :

ωmaxQFI ≈
m
r2

1.6863
(
1− 2m

r

)1/2
, as r → 2m. (4.76)

Now, in order to determine the best estimation reliability we need to look at QT . The
single detector and two detectors results in similar maximum values of QT , but the two detector
set up reaches QTmax for smaller acceleration, than we will present only the detector with
energy gap regarding this case. The acceleration value of maximum estimation reliability was
approximately 618ω. So, we need a detector with energy gap near ωmax:

ωmax ≈
m
r2

618
(
1− 2m

r

)1/2
, as r → 2m. (4.77)
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We should point here, however, that a too large ωmax may not be useful as a thermality probe
[86]. We finish here the extension of estimation precision results for Unruh temperature to
estimation precision of Hawking temperature in Schwarzschild blackhole. We concluded that,
since the analogy between Hawking temperature and Unruh temperature holds in the vicinity of
event horizon, where a→∞, Hawking temperature estimation precision will be poor unless we
can afford a detector with a very high energy gap. We presented an estimation of the value ωmax
of the needed detector’s energy gap which provides an optimal Hawking temperature estimation
precision.



Chapter 5

Final Discussion

Unruh effect was discovered by Bill Unruh in 1976 in an attempt to gain insight about
Hawking radiation. It is one of the most important results from quantum field theory in curved
spacetime. It states that in Minkowski spacetime where an inertial observer can see only vac-
uum, an observer with constant acceleration will see himself immersed in a thermal bath. Unruh
effect shows that the concept of particle depends of the observer. However, this phenomenon
was not experimentally verified since it predicts that it’s necessary an acceleration of order of
1020m/s2 so we can observe a temperature of order 1K. The engineering required to obtain
linear acceleration to reach a detectable temperature was not achieved yet. To experimentally
verify this physics fundamentals effect would be an important milestone.

Quantum metrology is a field of physics dedicated to achieve estimation of parameters from
quantum systems with optimal precision. The estimation protocol has four steps: (1) prepara-
tion of probe state; (2) interaction of probe state with the system of interest; (3) measurement of
the probe; (4) decode information about the parameter of interest from measured data. Quantum
metrology looks for employments of quantum resources like quantum coherence and entangle-
ment in order to improve parameter estimation. We can and should apply quantum metrology
protocols and techniques to investigate Unruh temperature estimation to provide theoretical sup-
port to experimental attempts of Unruh effect observations. In this context we developed the
studies which based this PhD thesis.

In chapter 2 we presented Unruh effect in further details. We introduced quantum scalar
fields in curved static spacetimes formalism. We introduced Bogoliubov transformations. We
presented Rindler coordinates and discussed how trajectories of constant spatial coordinates in
Rindler wedges are related to accelerated trajectories in Minkowski spacetime. We showed Un-
ruh effect as the Minkowski vacuum written in Rindler modes by Bogoliubov transformations
results in a thermal state.

In chapter 3 we introduced we talked about quantum Fisher information in its classical
and quantum contexts, discussing the main role this quantity plays in parameter estimation
precision. We also defined the signal-to-noise ration and its upper boundary QT .
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We present our original result in chapter 4. We prepare a Unruh-DeWitt detector coupled
to an external scalar massless field. We accelerate the detector for a finite amount of proper
time δ or until it clicks and measure the detector’s state. We observed that maximum quantum
Fisher Information is obtained for acceleration values of order of the detector energy gap ω.
We concluded this phenomenon is due to the fact that the responsiveness of detector’s state
to temperature change is low, and the proportional variation in ρd is only appreciable for low
values of acceleration. We also observed that as the acceleration increases the quantum Fisher
information goes asymptotically to zero. This effect adds an additional challenge to Unruh
effect experimental detection, since we expect that the higher the temperature, easier it is to
detect it, but harder it will be to make a precise measurement.

We also concluded that the greatest precision of temperature detection holds for initial pre-
pared probe in unexcited state. This imply the coherence is not a quantum resource for Unruh
temperature estimation. This phenomenon happens due to the probability of a spontaneous
decay of the excited state. The mixture between the spontaneous decay effect and the decay
probability from contact to Unruh thermal bath makes a detector click less informative about
Unruh temperature.

We also concluded that for initial prepared state of the probe, quantum Fisher information
increases with time exposition δ. This is already expected since greater the duration of in-
teraction, larger probability of detectors transition and the responsiveness of ρd to changes in
temperature will be greater.

In order to determine the Unruh temperature estimation reliability, we analyzed the signal-
to-noise ratio bound QT . We observed that that maximum of QT is reached for accelerations
two orders of magnitude greater than JT .

We found a remarkable negative correlation between the coherence of the detector state and
the maximum estimation SNR. Quantum coherence spoils the credibility of Unruh temperature
estimation. We also noted through QT analysis the consequence of spontaneous decay proba-
bility of the excited initial state. It results to harm Unruh temperature estimation credibility.

We observed that reliability of Unruh temperature estimation has an optimal period of ac-
celeration δ. The responsiveness of the detector to changes in T decreases after long period of
accelerations and the higher the acceleration value is, smaller will be the optimal δ value.

We also studied the case of two detectors, one inertial and one uniformly accelerated.
The accelerated detector coupled to an external massless scalar field and the inertial detector
switched off. We also observed the maximum precision estimation for values of acceleration of
order of the energy gap ω. The explanation is analogous to single detector case, detector’s state
has low responsiveness to changes in Unruh temperature, so the proportional variation of ρdd
with T is just appreciable for small transition probability which happens for acceleration values
of order of ω.

We also observed quantum Fisher information going asymptotically to zero as acceleration
increases, what is explained by final state responsiveness regarding changes in T lost at high
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acceleration regimes. About our initial objective with this study, to look for enhancement of
estimation precision on Unruh temperature with quantum resources, we concluded that entan-
glement is not a quantum resource to enhance Unruh temperature measurement. This result
contradicts what was suggested in literature [48].

We found that the best probe initial state for temperature estimation precision is |ψdd−∞〉 =

|10〉. This consequence of spontaneous decay phenomenon impact on Unruh temperature infor-
mation encoded in detectors after interaction.

We concluded that temperature QFI increases with δ. This is expected since a larger expo-
sition time increases transition probability slope and consequently the proportional variation of
detector’s state with acceleration.

Analyzing signal-to-noise ratio bound QT , we corroborated our previous conclusion that
entanglement is not a quantum resource to our Unruh temperature estimation scheme. As in
single detector case, QT reaches its maximum value for accelerations two orders of magnitude
greater than the acceleration JT reaches its maximum.

The maximum estimation credibility was found for the initial state |ρdd−∞〉 = |10〉. This can
be explained by the vanishing spontaneous decay probability for this state.

We observed that QT has an optimal value of δ and that higher the acceleration smaller the
optimal δ value of maximum QT . This phenomenon happens also in the single detector case for
the same reasons.

We also observed a remarkable relation between the maximum estimation reliability and
the entanglement sudden death acceleration value. We found that amax for θ = π/4 coincides
with ESD acceleration value. Interestingly, this suggests that, despite the fact that entanglement
plays no role in Unruh temperature estimation reliability, the decoherence introduced by Unruh
Effect that affects the entanglement between both detectors affects the credibility of Unruh
temperature estimation the same way. The difference observed from ESD acceleration value
and amax for θ = 0 and θ = π/2 can be explained by the role of spontaneous decay effect in
estimation credibility.

Finally, we translated our estimation precision results for Unruh temperature to estimation
precision of Hawking temperature in Schwarzschild blackhole. We concluded that, since the
analogy between Hawking temperature and Unruh temperature holds in the vicinity of event
horizon, where the proper acceleration felt by an static observer diverges, temperature estima-
tion precision will be poor unless we afford a detector with a very high energy gap. We obtained
an estimation of the value of detector’s energy gap needed to an optimal Hawking temperature
estimation precision.

The present study provides perspective of some interesting future studies. We are currently
investigating if vacuum entanglement studied by Resnik [79] has any relation with Unruh tem-
perature estimation precision. It would also be interesting to study quantum Fisher information
for Unruh temperature in systems of electrons in circular and oscillatory motion. This way we
could investigate the efficacy of Unruh temperature estimation precision of several experimental
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schemes proposed in literature.



Appendix A

Classical Information

Information is a widely used word in everyday’s vocabulary. It is, however, a vague concept
in common sense. We associate information to so many events of different nature that is hard
to find a way to define it in all its generality. We can point someone who explored information
concept in a specially productive way. His name was Claude Shannon, a former IBM engineer
who searched a mathematical approach to communication problem. Communication problem
can be expressed as the problem of reproducing in one point exactly or approximately a message
selected in other point. Shannon’s conclusions are expressed in his major paper [52].

Communication phenomenon gets possible with instruments that compose a communication
system. It consists of five essential parts.

1. The information source, which produces a sequence of messages to be communicated.
The message may be of many sorts, a sequence of letters in a telegraph, a time function
f(t) of air pressure as in telephone or three functions r(x,y,t), g(x,y,t) and b(x,y,t) of
intensity of each color of RGB color system for each pixel at each time as in a color tv
transmission.

2. The transmitter or codifier translates the message to signal code suitable for transmission
over the channel. In telegraphy we use an encoding operation which relates letters to
a sequence of dots, dashes and spaces which will be translated again to long, short or
non electrical pulses in a electrical cable. In telephony sound pressure is encoded into
proportional electrical current and in digital television transmission it’s about transform
r(x,y,t), g(x,y,t) and b(x,y,t) in a sequence of 0 and 1.

3. The channel is the physical medium used to transmit the signal. For telegraphs it used
to be a copper wire, for telephony it used to be a coaxial cable and for digital television
transmission it’s a band of frequency of electromagnetic waves.

4. The receiver or decodifier makes the inverse operation of the codifier and reconstruct the
message from the signal.
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5. The destination is the one for whom the message is intended.

When there is noise (that’s true for any real channel) the received message is partially dif-
ferent from the emitted one. We shall not worry with systems with noise in this study.

Message

Noise 
Source

Information
Source

Tramitter
(Codifier) Channel

Receiver
(Decodifier) Destination

Emitted
Signal

Received
Signal

Received
Message

Figure A.1 ||| Scheme of a communication system.

Now, going back to communication problem, we saw that the message may be entities of
very different nature. If you look in our communication system for a role of the content of
the message, you will find none. The message itself is not important for the communication
problem. The message can be chosen from a list of possible messages. In the telegraph example
it is the alphabet plus space (pause), in the telephone example it is the possible variations of
sound pressure, in television example it is the combinations of all values of r(x,y,t), g(x,y,t)

and b(x,y,t) in a scale from 0 to 255, at each time interval. Since we are able to distinguish
between all possible messages the selected one, we do not have to worry about the meaning
of it. The ability to make a distinction between different messages is the important issue for
communication problem. Shannon got to this conclusion and called the ability to distinguish
different messages information.

The fundamental issue of communication is not, then, about transmit messages, but about
transmit information. A natural question that arises, then, is “what is the smallest possible
amount of information?”. Naturally the simplest distinction is made between two different
things. A yes-no answer or a true-false message. There is a very convenient way to express
mathematically such sort of message. If we use binary numerical base, the available symbols
are 0 and 1, which are called in this context binary digits, or briefly bits. One bit is one blank
space that can be filled with one 0 or one 1. Mathematically, it is a variable that can assume 0 or
1. If we endow a probability to each digit, we can understand a bit as a discrete random variable
defined over {0,1} (see definitions in appendix E). A bit is a unit of information.

Understanding what is a unit of information provides a first step to quantify information.
To associate a number to information amount, we need to model mathematically communica-
tion. In order to do so we will interpret the message as a sequence of identical independent
distributed (i.i.d., see appendix E for definition) random variables X1, · · · , Xn (definitions in
appendix E). Each random variable will be defined over a probability space (X ,A,Pr) where
X is the elemental events set, in our examples, the alphabet, the possible sounds or the r(x,y,t),
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g(x,y,t) and b(x,y,t) functions. The σ-algebra A is the possible events that consists of the pos-
sible combinations of elemental events: the possible combinations of letters, voices speaking or
images of tv in r, g and b function forms. Finally, the probability measure Pr will express the
probability of the information source emitting the elemental event. This approach provides the
generality needed to model communication.

Now we have a mathematical model to communication, we can go on pursuing the task to
quantify information. One possible way to know how much we have of something is knowing
how much we do not have of it. That’s the case for information. To be able to distinguish a
message between all possible messages you should be able to determine how much “choice”
there is in the signal we are receiving, this is equivalent to determine how random the received
signal is. We quantify information by quantifying uncertainty. That is how much information
we do not have about a process.

If we are going to define a function of uncertainty H , we demand some properties from
it. The properties we choose are a matter of taste, but there is an agreement that the choices
reproduced in this study are very reasonable assumptions.

1. H depends on events’ probabilities: X is an abstract set. We can think X is finite
{x1, · · · ,xn} with probabilities p1, · · · ,pn, pi ≥ 0∀i ∈ {1, · · · ,n},

∑
i pi = 1, so ar-

guments are clearer. If we are going to quantify how random is a message with elements
taken fromX , we should look for the probabilities values pi. A random message will have
an approximately equal probabilities pi ≈ pj∀i,j ∈ {1, · · · , n}, however, a chosen mes-
sage will have one or some values of i ∈ I ⊂ {1, · · · ,n} for which pi � pj, i ∈ I, j /∈ I .
So, we expect that H = H(p1, · · · ,pn).

2. H is continuous in p1, · · · ,pn: It is natural to expect that small changes in the probabilities
to measure outcomes results in small changes in uncertainty of the message.

3. If X = {x1, · · · ,xn} and Y = {y1, · · · ,ym} such that all xi ∈ X have equal proba-

bility 1/n and all yj ∈ Y have equal probability 1/m, m > n, H(1/m, · · · ,1/m) >

H(1/n, · · · ,1/n): if we have a completely random message with equally probable out-
comes, the message will be more uncertain the larger the set of possible choices.

4. H(p1, · · · ,pn) = H(
∑s

i=1 pi,ps+1, · · · ,pn) +

(
∑s

i=1 pi)H(p1/(
∑s

i=1 pi), · · · ,ps/(
∑s

i=1 pi),ps+1, · · · ,pn): if a choice is broken into
two successive choices, original H should be the uncertainty of the last choice weighted
by the probabilities of the first choice. As an example, we discuss the situation il-
lustrated in Fig. ( A.2). If we decompose a three-options, one-step choice, options
with probabilities 1/4, 1/4, 1/2, into a two-step choice: first, a two-options choice
with probabilities 1/2, 1/2. Then, if first option is chosen, there is another choice
step with two-options of probabilities 1/2, 1/2, then we should have H(1/4,1/4,1/2) =

H(1/2,1/2) + 1/2H(1/2,1/2).
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1/2
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1/4

1/4

Figure A.2 ||| Example of decomposition of choices.

Now we made our assumptions we naturally ask ourselves if there is such a function that
satisfies above properties. It happens there is and is unique up to a constant [52].

Theorem A.0.1. The H satisfying specified assumptions is of the form:

H = −K
n∑
i=1

pi logb pi, (A.1)

where K and b are positive constants.

Definition A.0.1. When K = 1 we call H Shannon entropy.

The constant b denotes the basis of the logarithm. Changing b means we are changing the
unit of information (uncertainty) we adopt. If b = 2 we are quantifying information in units
of bits. We assume from here on b = 2 unless specified otherwise. Note that, if we have
X = {x1,x2} with probabilities p and 1− p, respectively, as shown in Fig.( A.3), the maximum
of the entropy is reached in the maximum of randomness of choice (p = 0.5), and the minimum
when the message is completely certain (p = 1 or p = 0), as shown in Fig. ( A.3).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

H

Figure A.3 ||| Shannon entropy with X = {x1,x2} with probabilities p and 1− p respectively.

Now that we have already introduced Shannon entropy, there are other relevant information
measures that we should present. In appendix E we define a probability density of a continuous
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random variable X . The analogue of the probability density for a discrete random variable we
call a probability mass function. We present in this study only the treatment for discrete random
variables because this is enough for our purposes. The reader must assume random variables
are discrete unless specified otherwise. We denote H(X) the Shannon entropy relative to a
probability distribution of a random variable X . Let X and Y be two random variables. We
difine the duplet (X,Y ), we are making a measurement of two different quantities that we
consider together. We can define in this scenario a join probability pXY which gives us the
probability of the possibles outcomes (xi,yj), xi ∈ X , yj ∈ Y . We define:

Definition A.0.2. The join entropy H(X,Y ) is defined by:

H(X,Y ) =
∑
ij

pXY (xi,yj) log2 pXY (xi,yj).

Join probability is a measure of the uncertainty of the join distribution pXY .
We also define the relative entropy or Kullback Leibler distance:

Definition A.0.3. Let X and Y be random variables over the same probability space and pX
and qY it’s respective probability mass function. The relative entropy or Kullback Leibler
distance is defined by:

D(pX ‖ qY ) =
∑
i

pX(xi) log2

pX(xi)

qY (xi)
.

Relative entropy is an analogue of the distance between probability distributions, and here
is important to emphasize that it’s an analogy because it’s not a distance in the mathematical
sense. It’s a measure of how different are two probability mass functions.

The relative entropy satisfies the property [53]

D(pX ‖ qY ) ≥ 0. (A.2)

The equality holds if and only if pX = qY . The reason relative entropy is not a distance in
mathematical sense is that it fails to satisfy triangle inequality and also is not symmetric i.e.

D(pX ‖ qY ) 6= D(qY ‖ pX).
From Eq. ( A.2) we can show that the constant probability mass function is the greater

uncertainty there is. Let X = {xi, · · · ,xn} and qY (xi) = 1/n∀xi ∈ X . Then

D(pX ‖ qY ) = −H(X)−
∑
i

pX(xi) log2

(
1

n

)
= −H(X) + log2 n ≥ 0. (A.3)

This implies that
0 ≤ H(X) ≤ log2 n. (A.4)
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Other important property we find through Eq. ( A.2) is H(X,Y ) ≤ H(X) + H(Y ), where
X and Y are any discrete random variables. To prove that we should remember pX(xi) =∑

j pXY (xi,yj) and pY (yj) =
∑

i pXY (xi,yj). We have:

H(X) +H(Y ) =
∑
i

−pX(xi) log2 pX(xi) +
∑
j

−pY (yj) log2 pY (yj) =

=
∑
ij

−pXY (xi,yj) log2 pX(xi) +
∑
ij

−pXY (xi,yj) log2 pY (yj) =

=
∑
ij

−pXY (xi,yj) log2 pX(xi)pY (yj). (A.5)

Since

D(pXY ‖ pXpY ) =
∑
ij

[pXY (xi,yj) log2 pXY (xi,yj)− pXY (xi,yj) log2 pX(xi)pY (yj)] ≥ 0,

(A.6)
we find ∑

ij

pXY (xi,yj) log2 pXY (xi,yj) ≥ pXY (xi,yj) log2 pX(xi)pY (yj). (A.7)

From Eq. ( A.5) and definition A.0.2, the above equation is equivalent to:

H(X,Y ) ≤ H(X) +H(Y ). (A.8)

The equality holds if and only if pXY (xi,yj) = pX(xi)pY (yj)∀xi ∈ X ,yj ∈ Y , i.e. if random
variables are independent. Equation ( A.8) has an important meaning. The uncertainty of
the whole system is smaller than the sum of the uncertainty of the parts if the variables are
not independent i.e. if there are correlations. In order to explore correlations we will define
conditional entropy to get to mutual information.

Definition A.0.4. Let X and Y discrete random variables. The conditional entropy H(X|Y )

is defined:

H(X|Y ) =
∑
j

pY (yj)H(X|yj) =
∑
j

pY (yj)
∑
i

−pX(xi|yj) log2 pX(xi|yj) =

=
∑
ij

−pXY (xi,yj) log2 pX(xi|yj).

Here pX(xi|yj) is the conditional probability to observe xi given that we already observed yj .
The conditional entropy H(X|Y ) is the uncertainty that remains over X after the measurement
of Y is performed. From straightforward calculations we obtain H(X|Y ) = H(X,Y )−H(Y ).
Now we have all we need to define mutual information

Definition A.0.5. Let x and Y be discrete random variables. The mutual information I(X :
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Y ) between X and Y is given by:

I(X : Y ) = H(X)−H(X|Y ).

Since The conditional entropy H(X|Y ) is the uncertainty that remains over X after the
measurement of Y , the mutual information is the uncertainty common to X and Y , or equiva-
lently, the information we gain of X by measuring Y . There is a pictorial representation of the
concepts above we call the Venn diagram we present in Fig. ( A.4).

Figure A.4 ||| Venn Diagram.

An even more useful and enlightening expression for mutual information if we combine
definition A.0.5 with the expression obtained above H(X|Y ) = H(X,Y )−H(Y ):

I(X : Y ) = H(X) +H(Y )−H(X,Y ). (A.9)

Note here that mutual information is symmetric. Now, Eq. ( A.8) with Eq. ( A.9) implies that

I(X : Y ) ≥ 0, (A.10)

the equality holds when X and Y are independent. This shows that mutual information can be
associated to a measure of correlation between random variables X and Y . This fact is going
to be of central importance in quantum context, when we are going to define entanglement.





Appendix B

Quantum mechanics

We presented the basic concept of information in its classical context. We defined channel
as a physical medium without specifying what physics theory rules it. It’s natural to assume
we are talking about classical physics. However, it is possible to employ physical media ruled
by quantum mechanics. We need a transmitter that codifies messages to quantum states and the
quantum medium to transmit it. In this case we have a whole new set of phenomenons associated
to information. Such that we call information in quantum context quantum information.

We are interested in analyzing precision in measurements of quantum accelerated systems.
So, we are interested in information in quantum context. We shall present and discuss some
points of quantum mechanics which are going to be important for us. For a complete discussion
about the subject see [54–58]. Quantum mechanics can be derived from a set of postulates.
How many postulates or which postulates are them is an open debate [59,60] and even a matter
of taste [45, 58, 61–63], but the postulates presented bellow are good enough for our purposes.

Postulate 1: A quantum system is described as a vector of projective space of Hilbert space

H.

The spaceH is called state space and the vector that describes the quantum system is called
state vector or, simply, state of the system. We adopt Dirac’s notation and denote a state vector
as a ket |ψ〉. Note that the above postulate does not tell us what is a quantum system, but how
it is described. The way to describe a particular system is a difficult task and, for each system
there is a specific theory ( QED for interaction light-atoms, quantum optics for light, molecular
physics for molecules...).

Postulate 2: Evolution of a closed quantum system |ψ(t0)〉 is described by a unitary oper-

ator U(t) (or an one parameter family of unitary transformations) such that |ψ(t)〉 = U(t −
t0)|ψ(t0)〉 and limt→t0U(t− t0)|ψ(t0)〉 = |ψ(t0)〉.

Note that, again, the postulate just tells us that dynamics is described by unitary operators
but do not tells us what operator describes evolution. The operator depends on each system
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and calculate it can be challenging. Postulate 2 refers to relation between a quantum system
state at two different times, the generator of U(t) is given by the differential equation that rules
evolution called Schrödinger equation:

i~
∂

∂t
|ψ〉 = H|ψ〉, (B.1)

where ~ is a fundamental constant which, in natural units, we set ~ = 1 and H is the Hamil-
tonian operator which will be a different operator to each system [56]. Eq. ( B.1) leads to
U(t) = e−iHt/~ [56–58]. Note that Postulate 2 refers to closed systems. However, it’s possible
to define a time dependent Hamiltonian which varies to parameters controlled by an external
agent, as a physicist running an experiment. Such a system is therefore, an open system. This
will still, in good approximation, evolve according to Schrödinger equation and satisfy postulate
2 [56, 63]. This will be the case of our study.

Postulate 3: Quantum measurements are described by measurements operators {Mλ},
Mλ : H → H,

∑
λM

†
λMλ = 1. The index λ refers to possible measurements outcomes,

λ ∈ I ⊂ R. Given the state vector |ψ〉 that describes the system the probability to get a result

λ is given by

p(λ) = 〈ψ|M †
λMλ|ψ〉,

and the state vector after the event of measurement |ψ′〉 is given by:

|ψ′〉 =
Mλ|ψ〉√
〈ψ|M †

λMλ|ψ〉
.

There are two fundamental aspects about quantum measurement that distinguish classical
from quantum physics. First, the outcomes has a probabilistic nature. Quantum mechanics
give us probabilities of the possible outcomes. Second, the measurement alters the state of the
system. This characteristics are in the core of the nature of quantum world.

If measurement operators are also Hermitian and satisfy additional condition MλMλ′ =

δλλ′Mλ i.e. if measurements operators are orthogonal projectors, then the measurement is
called projective. In this case we denote Mλ = Pλ. This class of measurements is associ-
ated to observables measurements as energy and it’s straightforward to calculate average value
of measurements. If an observable is expressed as O =

∑
λ λPλ, then:

〈O〉 =
∑
λ

p(λ)λ =
∑
λ

〈ψ|Pλ|ψ〉λ = 〈ψ|

(∑
λ

λPλ

)
|ψ〉 = 〈ψ|O|ψ〉. (B.2)

However, sometimes we are interested in performing a measurement just once, or we simply
can not perform measurement more than once, as in case we use a silvered screen to measure
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the position of a photon. In order to perform the measurement, we destroy the state. We can
just use the statistics of outcomes. To handle this cases there is a very suitable formalism called
Positive Operator-Value Measurement:

Definition B.0.1. Let {Mλ} be a measurement operator set. The set {Πλ} where Πλ = M †
λMλ

is called a Positive Operator-Valued Measure (POVM).

Alternatively, given a set of positive operators {Πλ} such that
∑

λ Πλ = 1, the operators
Mλ ≡

√
Πλ satisfy Πλ = M †

λMλ and
∑

λM
†
λMλ = 1 such that Mλ ≡

√
Πλ define a set

of measurement operators. Therefore any set of positive operators which satisfy completeness
relation is called POVM.

POVM formalism is also used to distinguish quantum states. A set of quantum states
{|ψ1〉, · · · ,|ψn〉} is distinguishable if there is a measurement which aloud us to determine with
probability 1 the measured state. This is equivalent to define a POVM {Π1, · · · ,Πm}, m ≥ n,
such that 〈ψi|Πj|ψi〉 = δij ∀i ∈ {i, · · · ,n}, j ∈ {1, · · · ,m}. That’s only possible when the
states are orthogonal to each other. When two states are not orthogonal, there is no way to
determine for sure which one we are measuring [45, 63].

It is also common to have an ensemble where we can just tell the probability pi of the state
being |ψi〉. This happens for example if we measure electrons spin in a given direction coming
from a hot oven. We can not say for sure if the state is up or down, we just assume a random
distribution of electron spin coming from a thermal source and describe the state as up with
probability 0.5 and down with same probability. The set {pi,|ψi〉} is called a mixture. When for
a given j, pi = δij i.e. we are certain that the state is |ψj〉, we call the ensemble a pure state. It’s
not possible to describe a mixture state with the formalism we have seen so far. From postulate
3 we can obtain probabilities of results of a measurement in superposition states. But in this
case we are certain about the state of the system and we get different possible outcomes from
the same state. It’s a different situation from a mixture state, which we don’t know for sure
the state of the system. In order to describe mixture states we need the formalism of density
operators:

Definition B.0.2. A Density Operator ρ : H → H is a positive operator such that Tr(ρ) = 1.

Here Tr means the trace operation over a representation of the operator ρ in matrix space.
There are infinite matrices which represent such an operator (for each basis of Hilbert space
will get a possibly different matrix) and all of them are physically equivalent. However there
is a very suitable basis to work with which defines uniquely the density matrix ρ. The spectral
theorem [45] states that any self-adjoint operator admits a spectral decomposition

∑
i λiPλi ,

where λi are operator’s eigenvalues and Pλi are projectors in subspace associated to λi. Density
matrix is positive (so, also self-adjoint) and Tr(ρ) = 1 which implies it can be written in the
form

ρ =
∑
i

λi|ei〉〈ei|. (B.3)
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where λi ≥ 0,
∑

i λi = 1 and {|ei〉} are orthonormal. Eq. ( B.3) is called the spectral decom-

position of the mixture state {pi,|ψi〉}. Of course if {|ψi〉} forms a orthonormal basis of the
Hilbert space associated to the system of interest then pi = λi and |ei〉 = |ψi〉, but this is not
always the case.

Alternatively, it’s possible to define density operator as

ρ =
∑
i

pi|ψi〉〈ψi|. (B.4)

Note that, given an orthonormal basis {|ei〉}:

Trρ =
∑
j

〈ej|ρ|ej〉 =
∑
ji

pi|〈ej|ψi〉|2 =
∑
i

pi = 1. (B.5)

Also note that, for any state vector |ψ〉:

〈ψ|ρ|ψ〉 =
∑
i

pi|〈ψi|ψ〉|2 ≥ 0. (B.6)

Therefore, ρ is a positive operator. The density operator can describe pure or mixture states,
so it’s a more general representation of a quantum system. We will sometimes refer to density
operator simply as the state of the system. We denote the space of density operators over a
Hilbert spaceH as D(H).

Given a state ρ, the probability to obtain a result λ from a measurement described by the
POVM {Πλ} is:

p(λ) = Tr(ρΠλ). (B.7)

The evolution of the density equation will be given by a unitary transformation as described in
Postulate 2:

ρ(t) =
∑
i

piU(t− t0)|ψi〉〈ψi|U †(t− t0) = U(t− t0)ρ(t0)U †(t− t0). (B.8)

Now we shall enunciate the last postulate of quantum mechanics.

Postulate 4: If a quantum system with associated Hilbert spaceH consists of n component

physical systems, each subsystem with associated Hilbert space Hi, i ∈ {1, · · · ,n}, then the

composite total system is described by the tensor product space of the partsH = H1⊗· · ·⊗Hn.

Postulate 4 tells us the way to describe quantum composite systems. This last postulate
is the origin of one of the most remarking and puzzling phenomenons of quantum mechanics
which we will explain in next sections: Entanglement. Next sections we will present some
concepts that arise in information theory in quantum context.



Appendix C

Quantum Information

Now we have pointed some quantum mechanic’s concepts we are going to use, we shall
go on and apply such concepts in information theory to present what is new from information
theory in quantum context. First entity we present is the information unit of a quantum system,
the qubit.

As we have discussed in section A, the bit is the unit of classical information. It can
admit two values which correspond to two states of a physical system (as it is transmitted by a
channel). We denote it mathematically by 0 and 1. Now, if we are in a quantum context, the
equivalent to a bit is a quantum bit (qubit). Formally, the qubit is defined as:

Definition C.0.1. A qubit is a quantum system represented by the projective space of a two

dimensional Hilbert space.

As a classical bit can admit the states 0 or 1, the qubit can take the orthogonal states |0〉
or |1〉 usually called unexcited and excited state. However, as a quantum system, the qubit can
take any superposition state α|0〉 + β|1〉, α,β ∈ C, |α|2 + |β|2 = 1. So, a qubit can admit
an infinite number of states. While a bit carries one unit of information, we could use a qubit
to encode, in principle, an infinite amount of information, however not all this information
would be accessible since we have to measure the state and not all the qubit states would be
distinguishable. There is an upper limit to the amount of information one can extract from a
quantum system, it is called Holevo limit [63].

There is a nice geometrical representation of the qubit as a Bloch sphere. If we denote our
qubit |ψ〉, we can represent it as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉. (C.1)

Here, θ is usually called the weight parameter and ϕ the phase parameter. As the qubit will
depend on these two parameters of compact domain, we can represent them as the zenith and
azimuthal coordinates of a sphere respectively. As a result we get the geometrical scheme of
Fig. ( C.1). Note that a qubit is a mathematical representation, it can describe many different
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systems as a two different photon polarization , an electron with spin aligned to an external
magnetic field or an atom with nuclear spin aligned to an external magnetic field.

Figure C.1 ||| Bloch Sphere.

Another central concept in quantum information theory is Von Neumann entropy.

Definition C.0.2. Let H a Hilbert space and ρ ∈ D(H). The Von Neumann entropy of ρ,

denoted by S(ρ) is defined as

S(ρ) = −Tr(ρ log2(ρ))

To understand the physical meaning of Von Neumann entropy, it’s convenient to write ρ in
its spectral decomposition ρ =

∑
i pi|ei〉〈ei|, where {|ei〉} is an orthonormal basis. If we apply

spectral decomposition to definition C.0.2 we get:

S(ρ) = −
∑
i

pi log2 pi, (C.2)

which is just the definition of Shannon entropy A.0.1. Von Neumann entropy is the quantum
analogous to Shannon entropy H . It measures the uncertainty about the state ρ. The unit of Von
Neumann entropy is not the bit, but the qubit.

We are interested in composite systems which we are going to realize measurements in just
one subsystem. If we have a composite system AB with subsystems A and B and we are
interested just in quantities of subsystem A, the observable of interest needs to be in the form
OA ⊗ 1B, where OA is the observable in subspace A and 1B is the identity of subspace B. We
look for a procedure that aloud us to ignore subsystem B instead of carrying on in calculations
quantities of it. The procedure that gives the correct statistics for observable quantities is the
partial trace.

Definition C.0.3. Let ρAB =
∑

ij cij|a1ib1j〉〈a2ib2j| =
∑

ij cij|a1i〉〈a2i|⊗|b1j〉〈b2j|. The partial
trace over the subsystem B is defined as

TrB(ρAB) =
∑
ij

cij|a1i〉〈a2i|Tr(|b1j〉〈b2j|)
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and the reduced density operator for system A is defined as

ρA = TrB(ρAB).

Now, we should note that, if {ei} is an orthonormal basis of Hilbert space of subsystem B,
we have:

Tr(|b1j〉〈b2j|) =
∑
i

〈ei|b1j〉〈b2j|ei〉 =
∑
i

〈b2j|ei〉〈ei|b1j〉 = 〈b2j|

(∑
i

|ei〉〈ei|

)
|b1j〉 = 〈b2j|b1j〉.

(C.3)
And the most important property of the reduced density matrix is that we get the correct aver-
ages of the measurements made in the subsystem:

Tr((OA ⊗ 1B)ρAB) = Tr(OAρA). (C.4)

In order to see that, let {fi} an orthonormal basis of Hilbert space of subsystem A and {ej} an
orthonormal basis of Hilbert space of subsystem B. We get:

Tr((OA ⊗ 1B)ρAB) =
∑
ij

〈fiej|(OA ⊗ 1B)

(∑
nm

cnm|a1nb1m〉〈a2nb2m|

)
|fiej〉

=
∑
ij

〈fiej|

(∑
nm

cnmOA|a1n〉〈a2n| ⊗ 1B|b1m〉〈b2m|

)
|fiej〉

=
∑
ij

∑
nm

cnm〈fi|OA|a1n〉〈a2n|fi〉〈ej|b1m〉〈b2m|ej〉

=
∑
i

∑
nm

cnm〈fi|OA|a1n〉〈a2n|fi〉

(∑
j

〈ej|b1m〉〈b2m|ej〉

)
=
∑
i

∑
nm

cnm〈fi|OA|a1n〉〈a2n|fi〉Tr(|b1m〉〈b2m|)

=
∑
i

〈fi|OA

(∑
nm

cnm|a1n〉〈a2n|Tr(|b1m〉〈b2m|)

)
|fi〉

=
∑
i

〈fi|OAρA|fi〉 = Tr(OAρA). (C.5)

The partial trace turns out to be the unique operation over the density matrix that satisfy the
above condition [63].

Now, lets define the relative entropy in the quantum context:

Definition C.0.4. Let ρ1 and ρ2 two density matrix over the same Hilbert space. The quantum
relative entropy is defined as:

S(ρ1 ‖ ρ2) = Tr (ρ1(log2 ρ1 − log2 ρ2)) .
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As in classical case the relative entropy is a measure of how different can two density op-
erators be. It expresses the statistical distinguishability between ρ1 and ρ2. Analogous to its
classical version, quantum relative entropy satisfies [63]:

S(ρ1 ‖ ρ2) ≥ 0. (C.6)

With Eq. ( C.6) we obtain important results analogous to classical information theory. Let ρ a
density matrix and ρn = (1/n)1 where 1 is the identity in Hilbert space of interest. This is the
density matrix with spectral form of constant probability. We obtain:

S(ρ ‖ ρn) = −S(ρ) + Tr(ρ log2 n) = −S(ρ) + log2 n ≥ 0. (C.7)

Then, as in the classical context, we have

S(ρ) ≤ log2 n. (C.8)

Equality holds if ρ = (1/n)1. This implies that also in quantum information theory the uniform
probability state is the state with greater uncertainty.

Another important result is that the entropy of a bipartite state is less than or equal to the
entropy of its individual parts. To put this precisely, lets fix some notation until the end of this
section. Let AB be a composite system with subsystems A and B. Let HA and HB the Hilbert
space of the subsystems and ρAB ∈ D(HA ⊗HB). Let ρA = TrB(ρAB) and ρB = TrA(ρAB).
Now let us calculate:

S(ρAB ‖ ρA ⊗ ρB) = −S(ρAB)− Tr(ρAB log2(ρA ⊗ ρB)))

= −S(ρAB)− Tr(ρAB((log2 ρA)⊗ 1B))− Tr(ρAB(1A ⊗ (log2 ρB)))

= −S(ρAB)− Tr(ρA log2 ρA)− Tr(ρB log2 ρB) = −S(ρAB) + S(ρA) + S(ρB) ≥ 0. (C.9)

So we find
S(ρAB) ≤ S(ρA) + S(ρB). (C.10)

The equality holds if ρAB = ρA ⊗ ρB i.e. if ρAB is separable. Now, the fact that the uncertainty
of the whole system is smaller then the uncertainty of the individual if the state is not separable
suggests that we can find correlations in non-separable states. Still looking for the relation
between non-separable states and correlations, we will define the quantum mutual information.
Before that we will show the analogue of the conditional information in quantum context:

Definition C.0.5. Let ρAB ∈ D(HA ⊗HB). The conditional information between A and B is

defined as:

S(A|B) = S(ρAB)− S(ρB).

And we also define the quantum mutual information:
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Definition C.0.6. Let ρAB ∈ D(HA ⊗ HB). The quantum mutual information between A

and B is defined as:

I(A : B) = S(ρA) + S(ρB)− S(ρAB).

From Eq. ( C.10) we conclude that:

I(A : B) ≥ 0. (C.11)

The equality holds if ρAB = ρA⊗ρB. Equation ( C.10) tells us that the uncertainty of the whole
system is less than or equal to the sum of the uncertainty of the individual parts. The equality
holds when the systems are separable, i.e. completely independent. As in classical context, this
suggests that the mutual information is a measure of total correlations of the subsystems A and
B. This will be important to the study of entanglement.





Appendix D

Entanglement

One of the most highlighted quantum phenomenons is the entanglement. This property
was used by Einstein, Podolski and Rosen to, assuming locality and realism, try to prove the
incompleteness of quantum theory [64]. However, Bell proved later that those same entangled
quantum systems couldn’t satisfy locality and realism simultaneously [65]. Entanglement,
therefore, is one of the phenomenons which distinguishes quantum theory from classical theory.
The origin of entanglement lies in postulate 4 presented in section B. Since we postulate that we
shall describe composite systems through tensor products of the states of the individual parts,
the properties of tensor product shall describe physical phenomena.

In order to understand the phenomenon of entanglement we shall point an remarkable prop-
erty of tensor algebra. Let V andW be vector spaces and {vi}, {wj} two orthonormal basis. We
can think of tensor space V ⊗W as all the vectors of the form l =

∑
ij lijvi ⊗wj [66]. Not all

vectors l ∈ V ⊗W can be written in the form l = v⊗w, v ∈ V w ∈ W . For example, take the
vector l = vi⊗wj +vj⊗wi, i 6= j. Suppose there is a v ∈ V and a w ∈ W such that l = v⊗w.
We have v =

∑
n cnvn and w =

∑
m dmwm, where cn, dm are coefficients that belong to the

field of the vector space. Then v ⊗ w =
∑

nm cndmvn ⊗ wm such that l = v ⊗ w implies
cidj = djci = 1 and cidi = cjdj = 0 what is just impossible. Therefore l is not separable.

As stated by postulate 4, a composite quantum system is described by a tensor product of
its constituent parts. Let L be a system which consists of component systems V1, · · · ,Vn. If
the state of the whole system |l〉 can be written as a tensor product of prepared states of the
subsystems |l〉 = |v1〉 ⊗ · · · ⊗ |vn〉, |vi〉 ∈ Vi, then |l〉 is called a separable state. The state that
is not separable is an entangled state.

The definitions above refer to pure states, but the generalization of the concept to mixture
states is just a consequence of above definitions:

Definition D.0.1. Let a composite system with n subsystems, each one with associated Hilbert

spaceHi. A given state ρ ∈ D(
⊗n

i=1Hi) is a separable state if it can be written as

ρ =
m∑
j=1

pjρ
j
1 ⊗ · · · ⊗ ρjn,
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where ρji ∈ D(Hi)∀i ∈ {1, · · · ,n}, j ∈ {1, · · · ,m}, pj ≥ 0,
∑m

j=1 pj = 1. If a state is not

separable it’s entangled.

A natural question that arises is if we can quantify entanglement. As a matter of fact we can.
We shall present just entanglement measures of composite systems with two parts (or bipartite
system) which will be enough for our purposes. For pure states there is a natural and unique
way to quantify entanglement. For mixture states there is not such a natural way and there are
some different ways to quantify it.

We begin with pure states. Consider a bipartite system AB with Hilbert space HA ⊗ HB.
Let |ψAB〉 ∈ HA ⊗HB and ρAB = |ψAB〉〈ψAB| ∈ D(HA ⊗HB). Note that ρAB is the density
matrix associated to a pure state and there is no uncertainty about it, i.e. S(ρAB) = 0. However,
denoting ρA = TrB(ρAB) and ρB = TrA(ρAB), we have that S(ρA) and S(ρB) vanish just in
the case where ρAB = ρA ⊗ ρB, otherwise the entropy of the subsystems differs from zero.

We have already discussed that mutual information can be regarded as a measure of cor-
relation. From definition C.0.6, I(A : B) = S(ρA) + S(ρB) − S(ρAB), we notice that the
greater the uncertainty about the subsystems, the greater the correlation between the two sub-
systems. Then the uncertainty of the subsystems presents itself as a good candidate to quantify
entanglement.

Before defining definitively the entanglement of a pure state, we need to show a remarkable
property of the uncertainty of the subsystems of a pure state. In order to accomplish that we
have to enunciate the Schmidt decomposition theorem:

Theorem D.0.1. Let |ψAB〉 ∈ HA ⊗ HB. There exist orthonormal states {|eiA〉} of HA and

{|eiB〉} ofHB, i ∈ {1, · · · ,n}, n ≤ min{dim(HA),dim(HB)} such that

|ψAB〉 =
n∑
i=1

λi|eiAeiB〉,

where |eiAeiB〉 = |eiA〉 ⊗ |eiB〉, λi ≥ 0 and
∑n

i=1 λ
2
i = 1. The basis {|eiA〉} and {|eiB〉} are called

Schmidt basis and λi are called Schmidt numbers.

Proof of this theorem is found in [63].
Now, suppose we write ρAB using the form of theorem D.0.1:

ρAB =
∑
ij

λiλj|eiAeiB〉〈e
j
Ae

j
B|. (D.1)

Then we have:

S(ρA) = S(TrB(ρAB)) = S(
∑
ij

λiλj|eiA〉〈e
j
A|〈e

j
B|e

i
B〉)

= S(
∑
ij

λiλj|eiA〉〈e
j
A|δij) = S(

∑
i

λ2
i |eiA〉〈eiA|) =

∑
i

λ2
i log2(λ2

i ). (D.2)



77

On the other hand

S(ρB) = S(TrA(ρAB)) = S(
∑
ij

λiλj|eiB〉〈e
j
B|〈e

j
A|e

i
A〉)

= S(
∑
ij

λiλj|eiB〉〈e
j
B|δij) = S(

∑
i

λ2
i |eiB〉〈eiB|) =

∑
i

λ2
i log2(λ2

i ). (D.3)

So, we obtain the result:
S(ρA) = S(ρB). (D.4)

As for a pure state of a bipartite system the uncertainty of the individual subsystems are equal,
then, instead of using the sum of the entropies we can just define:

Definition D.0.2. Let ρAB ∈ D(HA⊗HB) the density operator associated to a pure state. The

entanglement of pure state E(ρAB) is defined as:

E(ρAB) = S(ρA) = S(ρB).

Entanglement’s unit is the qubit and for separable states E(ρAB) = 0 while the maximum
entanglement is, from Eq. ( C.8), log2 n where n is the dimension of the system. From the
definition above we note that the maximum entanglement of a two qubit system is obtained in
the state of Eq. ( ??).

Now, we already discussed that the for mixture states there is no natural definition of entan-
glement and there are some definitions that are useful in specific contexts. However there are
some properties that any measure of entanglement should satisfy. We list three properties for
which there is a consensus that any measure of entanglement should satisfy:

1. The entanglement of a separable state ρ should vanish

E(ρ) = 0

2. Changes in local basis representation, i.e. unitary transformations of the form UA ⊗ UB
does not change the entanglement of the state. Let ρ ∈ D(HA ⊗HB)

E(ρ) = E(UA ⊗ UBρU †A ⊗ U †B)

3. Local operations and classical communication (LOCC) and subselection should not in-
crease the state entanglement. Let OA and OB denote LOCC in the subsystems A and B
respectively and ρ ∈ D(HA ⊗HB). This means that

E(ρ) ≥ E(OA ⊗OBρO
†
A ⊗ O†B),
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where the form OA ⊗ OB denotes the fact that operations OA and OB are performed
locally.

Condition 1 above guarantees that a composite state with two independent subsystemsA and
B should not have entanglement since there is no correlations between them. Condition 2 states
that two density operators that are physically equivalent, since they differ only by a change of
basis representation, should have the same entanglement. The last condition states that LOCC
can not increase quantum entanglement, otherwise entanglement would not be considered a
quantum resource.

One of the entanglement measures which satisfies all the conditions presented above is the
entanglement of formation. That’s the measure we’ll use in this study. For other possible
measures see [67].

Definition D.0.3. Let {pi,|ψi〉} a mixture ensemble, where |ψi〉 ∈ HA ⊗ HB, and ρAB ∈
D(HA ⊗HB) the state associated to the ensemble. The entanglement of formation is defined

as

Ef (ρAB) = inf

{∑
i

piE(|ψi〉〈ψi|)

}
,

where the infimum is taken over all the mixtures {pi,|ψi〉} which state is ρAB.

The calculation of the infimum is, in general a very hard task. However, there is an analytical
expression for the case dim(HA) = dim(HB) = 2 [69]. Let σ1, σ2 and σ3 the usual Pauli
matrices. Let’s denote by {|0〉,|1〉} an eigenbasis of the single qubit related to σ3 and let ρAB ∈
D(HA ⊗ HB) be written in the basis {|ab〉} where |ab〉 = |a〉 ⊗ |b〉, |a〉 ∈ HA, |b〉 ∈ HB,
a,b ∈ {0,1}. We define the operator ζAB = ρAB(σ2 ⊗ σ2)(ρAB)∗(σ2 ⊗ σ2) where the first Pauli
matrix of σ2 ⊗ σ2 acts on qubit A and the second acts in qubit B. (ρAB)∗ is the matrix obtained
by taking the complex conjugate of all elements of ρAB. Now we define the concurrence of
ρAB:

Definition D.0.4. Let λi, i ∈ {1,2,3,4}, the eigenvalues of ζAB such that λ1 ≥ λ2 ≥ λ3 ≥ λ4.

The concurrence of ρAB is defined as:

C(ρAB) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}.

Concurrence is such that 0 ≤ C(ρAB) ≤ 1. Now, we can obtain the expression of entangle-
ment of formation. Let us define:

g(ρAB) =
1 +

√
1− C2(ρAB)

2
, (D.5)

the entanglement of formation in the case dim(HA) = dim(HB) = 2 is given by:

Ef (ρAB) = −g(ρAB) log2 g(ρAB)− (1− g(ρAB)) log2(1− g(ρAB)). (D.6)
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As the entanglement of formation is a monotonic increasing function of concurrence, the
last quantity is usually used as the entanglement measure. This will be our case in this study.





Appendix E

Probability Space

In this appendix we define probability spaces and related concepts. Let X be a nonempty
set and A ⊂ 2X where 2X denotes the set of all subsets of X . Then

Definition E.0.1. A is a σ-algebra if satisfies:

1. X ∈ A.

2. A is closed under complements.

3. A is closed under countable unions.

We define a measurable space as:

Definition E.0.2. Let X be a nonempty set and A its σ-algebra. the pair (X ,A) is called a

measurable space.

Now, let A ⊂ 2X . If µ : A → [0,∞) we define:

Definition E.0.3. µ is σ-additive if µ(
⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai) for any set {Ai} of countably

many disjoin sets Ai ∈ A such that
⋃∞
i=1Ai = A.

Now we can define a measure and a probability measure.

Definition E.0.4. Let A be a σ-algebra. µ : A → [0,∞) is a measure if µ is σ-additive and

µ(∅) = 0.

Definition E.0.5. Let µ : A → [0,1] a measure. µ is a probability measure if µ(X ) = 1.

We can finally define a probability space:

Definition E.0.6. Let X be a nonempty set, A its σ-algebra and Pr : A → [0,1] a probability

measure. The triple (X ,A,Pr) is called a probability space.

Now we have established a probability space we can move on to define a random variable.
First we have to talk about measurable maps:
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Definition E.0.7. Let (X ,A) and (X ′,A′) be measurable spaces. We call X : X → X ′ a

measurable map if X−1(A′) ∈ A ∀A′ ∈ A′.

Definition E.0.8. Let (X ,A) and (X ′,A′) be measurable spaces. We call X : X → X ′ a

random variable with values in (X ′,A′) if X is measurable. We also denote X : (X ,A) →
(X ′,A′).

For our purposes, random variables will always be defined over measurable spaces that will
be also probability spaces (X ,A,Pr). We also have (X ′,A′) = (R,B(R)) where B(R) is the
Borel algebra [70] of R i.e. the smallest σ-algebra that contains the open sets of R. It will refer
to observation space the triple (Y ,Ā,P̄r) where Y = X(X ) ⊂ R, Ā is the σ-algebra of Y and
P̄r = Pr ◦ X−1. The random variable X will be discrete if Y is discrete. We will denote the
random variable with values in (R,B(R)) simply by a random variable.

Definition E.0.9. Let X be a random variable. The probability measure PX ≡ Pr ◦ X−1

is called the distribution of X . If we denote PX(X ≤ x) ≡ Pr ◦ X−1((−∞,x]), we call the

cumulative distribution function of the random variableX the function FX(x) : x 7→ P (X ≤
x).

Now we are able to define the probability density function of a random variable X:

Definition E.0.10. LetX be a random variable and FX(x) it’s cumulative distribution function.

If FX(x) is continuous X is said to be continuous. If the derivative of FX(x) exists, pX(x) =

F ′X(x) is called the probability density function of the continuous random variable X .

For simplicity of notation we’ll denote the probability density as p(x).

Definition E.0.11. Let (Xi,Ai) be a measurable space for all i ∈ I . Let Xi : (X ,A)→ (Xi,Ai)
be a family of random variables with σ-algebra generated by X−1

i (Ai) i.e. the smallest σ-

algebra of X which contains X−1
i (Ai) [70]. If for any finite set J ⊂ I

PXj

(⋂
j∈J

Aj

)
=
∏
j∈J

PXj(Aj)

∀Aj ∈ Aj, j ∈ J we call (Xi)i∈I a family of independent random variables. Additionally,

if (Xi,Ai) are all the same measurable space and PXi = PX`∀i,` ∈ I then we call (Xi)i∈I a

family of independent and identically distributed random variables.

for shorthand we will write “i.i.d.” for independent and identically distributed.

Definition E.0.12. An indexed family of probability densities is a family {p(x,θ)}, θ ∈ Θ. Θ

is called the set of parameters.

As an example of indexed family of probability densities we can point out the family of
normal distributions with unit standard deviation {N(θ,1)}.



Appendix F

Cramér-Rao Theorem Demonstration

Here we present the proof of Cramér-Rao theorem presented in section 3.1. We enunciate
it again:

Theorem F.0.1 (Cramér-Rao Theorem). The mean squared error of an unbiased estimator of

the parameter θ, E(X), is lower bounded by the inverse of the Fisher information

V ar(E) ≥ 1

F (θ)

Proof
Let V : X → R a score function. By Cauchy-Schwarz inequality we obtain:

(Eθ[(V − Eθ(V ))(E − Eθ(E))])2 ≤ Eθ[(V − Eθ(V ))2]Eθ[(E − Eθ(E))2]. (F.1)

Remembering Eq. ( 3.1), we have Eθ(V ) = 0 and V ar(V ) = Eθ(V
2) = F (θ). Remember-

ing that the E is unbiased, we obtain:

Eθ[(V − Eθ(V ))(E − Eθ(E))] = Eθ[V E ]. (F.2)

Then, Eq. ( F.1) turns to:
(Eθ[V E ])2 ≤ F (θ)V ar(E). (F.3)

Now we calculate:

Eθ[V E ] =

∫
X

∂θp(x,θ)

p(x,θ)
E(x)p(x,θ) =

∫
X

[∂θp(x,θ)] E(x)

= ∂θ

[∫
X
p(x,θ)E(x)

]
−
∫
X
p(x,θ)

=0︷ ︸︸ ︷
[∂θE(x)]

= ∂θEθ(E) = ∂θθ = 1. (F.4)
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Here the interchange between the derivation and integration operators can be justified by the
bounded convergence theorem for well behaved probability distribution p(x,θ). Equation ( F.4)
implies the result of the theorem:

V ar(E) ≥ 1

F (θ)
. (F.5)



Appendix G

Derivation of Quantum Fisher
Information

From definition 3.1.9, the classical Fisher information is given by:

F (ξ) =

∫
X
dx

[∂ξp(x,ξ)]
2

p(x,ξ)
. (G.1)

As discussed in section B, measurements are described by a POVM {Πx} and the probabilities
are computed applying Born’s rule:

p(x,ξ) = Tr(Πxρξ). (G.2)

combining Eq. ( G.2) and Eq. ( G.1), we get:

F (ξ) =

∫
X
dx

[∂ξTr(Πxρξ)]
2

Tr(Πxρξ)
. (G.3)

As discussed in section 3.2, we define quantum Fisher information (QFI), J(ξ), as the
maximum of F (ξ) over all possible POVM’s. In order to obtain that maximum we introduce
the symmetric logarithm derivative (SLD), Lξ, defined by the Lyapunov equation:

∂ξρξ =
Lξρξ + ρξLξ

2
. (G.4)

From Eq. ( G.4) we obtain:

∂ξp(x,ξ) = ∂ξTr(ρξΠx) = Tr(∂ξρξΠx) = Tr

(
Lξρξ + ρξLξ

2
Πx

)
=

= Tr

(
ρξΠxLξ

2

)
+ Tr

(
ρξΠxLξ

2

)∗
= Re Tr (ρξΠxLξ) , (G.5)
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such that:

F (ξ) =

∫
X
dx

Re [Tr (ρξΠxLξ)]
2

Tr (ρξΠx)
≤
∫
X
dx

∣∣∣∣∣Tr (ρξΠxLξ)√
Tr (ρξΠx)

∣∣∣∣∣
2

. (G.6)

Important to note that the inequality above saturates to equality if

Re [Tr (ρξΠxLξ)] = Tr (ρξΠxLξ) ∀ξ ∈ Ξ, (G.7)

where Ξ is the set of all the parameters ξ. The last term of Eq. ( G.6) equals:

∫
X
dx

∣∣∣∣∣Tr (ρξΠxLξ)√
Tr (ρξΠx)

∣∣∣∣∣
2

=

∫
X
dx

∣∣∣∣∣Tr
[( √

ρξ
√

Πx√
Tr (ρξΠx)

)(√
ΠxLξ

√
ρξ

)]∣∣∣∣∣
2

. (G.8)

Now, since Tr(M †N) is an inner product in space of matrices, we can define such an inner
product in the space of representations of operators over D(H), H the Hilbert space of the
system of interest. This inner product defines a Frobenius norm and we can apply Schwartz
inequality |Tr(M †N)|2 ≤ Tr(M †M)Tr(N †N). Therefore, from the last term of Eq. ( G.8),
we get:

∫
X
dx

∣∣∣∣∣Tr
[( √

ρξ
√

Πx√
Tr (ρξΠx)

)(√
ΠxLξ

√
ρξ

)]∣∣∣∣∣
2

≤

≤
∫
X
dx

=1︷ ︸︸ ︷
Tr

(
ρξΠx

Tr (ρξΠx)

)
Tr (ΠxLξρξLξ) =

Tr


=1︷ ︸︸ ︷(∫

X
dxΠx

)
LξρξLξ

 = Tr(ρξL
2
ξ). (G.9)

So we finally obtain:
J(ξ) = Tr(ρξL

2
ξ) = Tr(∂ξρξLξ). (G.10)

Here we should emphasize that the inequality Eq.( G.9) is Schwartz inequality |Tr(M †N)|2 ≤
Tr(M †M)Tr(N †N) which saturates to equality if the vectors are parallel

M

|M |
=

N

|N |
. (G.11)

This implies that inequality Eq.( G.9) saturates to equality if :

√
Πx
√
ρξ√

Tr(ρξΠx)
=

√
ΠxLξ

√
ρξ

Tr(ΠLξρξLξ)
. (G.12)

The above equality is satisfied if and only if the POVM {Π} consists of projectors over the
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eigenstates of Lξ [73]. So we reach the conditions over the POVM such that the maximization
of Fisher information results in quantum Fisher information:

1. Re [Tr (ρξΠxLξ)] = Tr (ρξΠxLξ) ∀ξ ∈ Ξ.

2. The POVM {Π} should consist of projectors over the eigenstates of Lξ.

But we haven’t presented any solution of Lξ yet. Lyapunov’s equation results in

Lξ = 2

∫ ∞
0

dt e−ρξt∂ξρξe
−ρξt. (G.13)

We consider the spectral decomposition of the probe system ρξ =
∑

j pj|ej〉〈ej|, 0 < pj ≤ 1,∑
j pj = 1. In this basis we have:

e−ρξt =
∑
j

e−pjt|ej〉〈ej|, (G.14)

such that, combining Eq. ( G.13) and Eq. ( G.14) we get:

Lξ = 2

∫ ∞
0

dt
∑
ij

e−(pi+pj)t〈ei|∂ξρξ|ej〉|ei〉〈ej| =

= 2
∑
ij

pi+pj>0

〈ei|∂ξρξ|ej〉
pi + pj

|ei〉〈ej|, (G.15)

where we emphasize that the summation runs only over the indexes i,j such that pi + pj 6= 0.
Now if we combine Eq. ( G.15) with Eq. ( G.10) we get:

J(ξ) = Tr(∂ξρξLξ) = Tr

∂ξρξ
2

∑
ij

pi+pj>0

〈ei|∂ξρξ|ej〉
pi + pj

|ei〉〈ej|


 =

=
∑
n

〈en|

2
∑
ij

pi+pj>0

〈ei|∂ξρξ|ej〉
pi + pj

∂ξρξ|ei〉〈ej|

 |en〉 =

=
∑
n

2
∑
ij

pi+pj>0

〈ei|∂ξρξ|ej〉
pi + pj

〈en|∂ξρξ|ei〉δjn =

= 2
∑
ij

pi+pj>0

〈ei|∂ξρξ|ej〉
pi + pj

〈ej|∂ξρξ|ei〉. (G.16)
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So we obtain the expression:

J(ξ) = 2
∑
ij

|〈ei|∂ξρξ|ej〉|2

pi + pj
, (G.17)

where i,j in summation just includes terms such that pi + pj > 0.
Since ∂ξρξ =

∑
j ∂ξpj|ej〉〈ej|+ pj|∂ξej〉〈ej|+ pj|ej〉〈∂ξej|, we have:

J(ξ) = 2
∑
ij

|〈ei| (
∑

n ∂ξpn|en〉〈en|+ pn|∂ξen〉〈en|+ pn|en〉〈∂ξen|) |ej〉|2

pi + pj

= 2
∑
ij

|
∑

n ∂ξpnδinδnj + pn〈ei|∂ξen〉δnj + pnδni〈∂ξen|ej〉|2

pi + pj

= 2
∑
ij

|∂ξpiδij + pj〈ei|∂ξej〉+ pi〈∂ξei|ej〉|2

pi + pj
. (G.18)

Now, note that, since 〈ei|ej〉 = 〈ej|ei〉 = δij , we have:

∂ξ〈ei|ej〉 = 〈∂ξei|ej〉+ 〈ei|∂ξej〉 = 0, (G.19)

which implies that Re[〈ei|∂ξej〉] = 0 [73]. Taking this equality in consideration, last equality
of Eq. ( G.18) becomes:

J(ξ) =
∑
i

(∂ξpi)
2

pi
+ 2

∑
ij

pi+pj>0

|pj〈ei|∂ξej〉 − pi〈ei|∂ξej〉|2

pi + pj
. (G.20)

So we finally obtain Eq. ( 3.18):

J(ξ) =
∑
i

(∂ξpi)
2

pi
+ 2

∑
i<j

2(pi − pj)2

pi + pj
|〈i|∂ξj〉|2. (G.21)

We refer to the first and second terms as the classical and quantum parts of the Fisher
information.



Appendix H

Derivation of Equation ( 4.9)

Here, we provide a demonstration of Eq. ( 4.9). We keep notation from chapter 2. We
reproduce the equation below:

φ(f) = i
[
a([KEf ∗]∗)− a†(KEf))

]
. (H.1)

Proof

Let’s remember that, from Eq. ( 4.8), we have:

φ(f) ≡
∫
d4x
√
−gφ(x)f. (H.2)

Let’s denote the Klein Gordon inner product as defined in Eq. ( 2.5) as

(g1,g2)KG = −iΩ(g∗1,g2), (H.3)

such that:
Ω(g1,g2) =

∫
Σt

d3x
√
h (g2∇ag1 − g1∇ag2)na. (H.4)

We will first show that: ∫
d4x
√
−gφ(x)f = Ω(Ef,φ). (H.5)

Let’s choose Σt such that it does not contain causal future of supp(f), J+(supp(f)). By the
definition of the Green function GA we have:

[
∇a∇a −m2

] ∫
d4x′
√
−gGA(x,x′)f(x′) = f(x). (H.6)

If we denote:
Af =

∫
d4x′
√
−gGA(x,x′)f(x′), (H.7)
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we have: ∫
d4x
√
−gφ(x)f(x) =

∫
J+(Σt)

d4x
√
−gφ(x)f(x)

=

∫
J+(Σt)

d4x
√
−gφ(x)

[
∇a∇a −m2

]
Af. (H.8)

Integrating by parts twice, we have:∫
J+(Σt)

d4x
√
−gφ

[
∇a∇a −m2

]
Af (H.9)

=

∫
J+(Σt)

d4x
√
−gφ∇a∇aAf −m2

∫
J+(Σt)

d4x
√
−gφAf (H.10)

=

∫
J+(Σt)

d4x
√
−g[∇a(φ∇aAf)−∇aφ∇aAf ]−m2

∫
J+(Σt)

d4x
√
−gφAf (H.11)

=

∫
J+(Σt)

d4x
√
−g∇a(φ∇aAf)

−
(∫

J+(Σt)

d4x
√
−g[∇a(∇aφAf)−∇a∇aφAf ]

)
−m2

∫
J+(Σt)

d4x
√
−gφAf (H.12)

=

∫
J+(Σt)

d4x
√
−g∇a(φ∇aAf − Af∇aφ) +

∫
J+(Σt)

d4x
√
−gAf [∇a∇a −m2]φ. (H.13)

Since φ is solution to Klein-Gordon equation, second integral of Eq. ( H.13) vanishes and we
can apply Stokes’ theorem to the first integral to obtain:∫

J+(Σt)

d4x
√
−g∇a(φ∇aAf − Af∇aφ) =

∫
Σt

d3x
√
h(φ∇aAf − Af∇aφ)na. (H.14)

So, from Eq. ( H.8) to Eq. ( H.14) we conclude that:∫
d4x
√
−gφ(x)f(x) =

∫
Σt

d3x
√
h(φ∇aAf − Af∇aφ)na. (H.15)

But, as Ef |Σt = Af |Σt , we obtain the result:∫
d4x
√
−gφ(x)f(x) = Ω(Ef,φ). (H.16)

Now, since we can decompose a quantum field as Eq. ( 2.13):

φ̂(x) =
∑
i∈I

a(f ∗i )fi + a†(fi)f
∗
i , (H.17)

if we multiply Eq. ( H.17) by a test function f and integrate over the spacetime, using Eqs.
( H.16), ( H.3) and ( 2.14), we would obtain Eq. ( H.1). However Eq. ( H.17) is not well defined
[1]. The most rigorous derivation of Eq. ( H.1) consists in an identification. Since for each
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test function f , the operator over Klein-Gordon solution space, Ω(Ef,·), acts averaging each
solution by f in all spacetime. So, in the quantum case, we identify the quantum field operator
averaged by the test function f , φ̂(f), with the operator over F(HKG), Ω̂(Ef,·), defined by:

Ω̂(Ef,·) ≡ i
[
a([KEf ∗]∗)− a†(KEf))

]
, (H.18)

such that
φ̂(f) = Ω̂(Ef,·) ≡ i

[
a([KEf ∗]∗)− a†(KEf))

]
. (H.19)

This way we obtain Eq. ( H.1). To a complete discussion about the definition of Ω̂(Ef,·) see
chapter 2 and 3 of [1].





Appendix I

Quantum Fisher Information Expression
for the Single Detector

The quantum Fisher information expression for the single detector case is given by:

JT =
A

B+

+
A

B−
+
C1

C2

. (I.1)

We will need to describe term by term. First A.

A = e2ω/Tµ2ω2(a0 + a1 + a2 + a3)2, (I.2)

where

a0 = 24− 24eω/T + 8µ+ 8eω/Tµ+ 2µ2 − 2eω/Tµ2. (I.3)

a1 = −µ(18 + eω/T (−18 + µ) + µ) cos(2η). (I.4)

a2 = 2(4 + 4µ− µ2 + eω/T (−4 + 4µ+ µ2)) cos(4η). (I.5)

a3 = +(2µ− 2eω/Tµ+ µ2 + eω/Tµ2) cos(6η). (I.6)

Now, B−:
B− = 2T 4b3

0Γ(b1 −
√

2Γ), (I.7)

where

b0 = −2 + µ+ eω/T (2 + µ) + (−1 + eω/T )µ cos(2η), (I.8)

b1 = −4 + 4eω/T + 2µ+ 2eω/Tµ− 2µ cos(2η) + 2eω/Tµ cos(2η), (I.9)

and Γ is given by
Γ = e2ω/T (γ1 + γ2 + γ3), (I.10)

where γ1, γ2 and γ3 are defined by Eq. ( 4.32), Eq. ( 4.33) and Eq. ( 4.34) respectively. We
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reproduce it here:

γ1 = e−2ω/T (8 + µ(4 + 3µ))− 2e−ω/T (8 + µ2) + (8 + µ(−4 + 3µ)), (I.11)

γ2 = 4µfω(−2 + µ+ e−ω/T (2 + µ)) cos(2η), (I.12)

γ3 = µ(1 + e−ω/T )(−4 + µ+ e−ω/T (4 + µ)) cos(4η). (I.13)

Now, B+ is given by:
B+ = 2T 4b3

0Γ(b1 +
√

2Γ). (I.14)

The term C1 is given by:

C1 =
65536e2ω/T (−1 + eω/T )2µ2ω2 cos2(2η)

cos4(η) sin4(η)
Γ(c0 +

√
Γ)2, (I.15)

where

c0 =
√

2
(
µ(−1 + eω/T ) + 2 cos(2η)(1− eω/T ) + µ cos(2η)(1 + eω/T )

)
. (I.16)

Finally C2 is given by:
C2 = T 4b2

0D+D
3
−, (I.17)

where
D+ = d0 + d1 + d2 + d3 + d4 + d5

√
Γ, (I.18)

and

d0 =32− 64eω/T + 32e2ω/T , (I.19)

d1 =
(
32− 64eω/T + 32e2ω/T + 32µ− 32e2ω/Tµ

+8µ2 + 16eω/Tµ2 + 8e2ω/Tµ2
)

cot2(2η), (I.20)

d2 =
(
−64µ+ 128eω/Tµ− 64e2ω/Tµ− 32µ2 + 32e2ω/Tµ2

)
cot(2η) csc(2η), (I.21)

d3 =
(
32− 64eω/T + 32e2ω/T + 16µ− 16e2ω/Tµ

+20µ2 − 24eω/Tµ2 + 20e2ω/Tµ2
)

csc2(2η), (I.22)

d4 =
(
4µ− 4e2ω/Tµ+ µ2 + 2eω/Tµ2 + e2ω/Tµ2

)
cos(4η) csc2(η) sec2(η), (I.23)

d5 =
√

2
(
2µ− 2µeω/T − 4 cos(2η) + 4 cos(2η)eω/T

−2µ cos(2η)− 2µ cos(2η)eω/T
)

csc2(η) sec2(η). (I.24)

Finally
D− = d0 + d1 + d2 + d3 + d4 − d5

√
Γ (I.25)
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