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Abstract

Many connections between physics and information theory have been revealed since
the development of classical information theory by Shannon. A key concept in this
connection is entropy, which represents the amount of information transferred to the
observer who performs measurements in an experiment. Statistical mechanics is a
physical theory deeply connected to information by Jaynes’ Maximum Entropy principle,
which defines equilibrium probability distributions as the ones that maximizes entropy
under some physical constraints. In this way, these distributions are the less unbiased
probabilities that can be assignment to an event. Following this path, the dissipated
energy in a classical Hamiltonian process (also known as the thermodynamic entropy
production) was connected to the relative entropy between the forward and backward
probability densities. A recent work by Still et al. has revealed that energetic inefficiency
and model inefficiency are equivalent concepts in Markovian processes, where the latter
is defined as the difference in mutual information that the system’s state shares with
the future and past environmental variables. This raises the question whether model
unpredictability and energetic inefficiency are connected in the framework of classical
physics. The aim of this study is to connect the concepts of random behavior of a
classical Hamiltonian system with its energetic inefficiency. The random behavior of
a classical system is quantified by the Kolmogorov-Sinai entropy associated with its
dynamics, an information-theoretic approach to chaos, whereas energetic inefficiency is
measured by the dissipated work.





Resumo

Diversas relações entre física e teoria de informação foram estabelecidas desde o
trabalho de Shannon. Entropia é um elemento essencial nesta conexão, quantificando
a informação transferida em um experimento. Mecânica estatística está conectada à
teoria de informação através do princípio de máxima entropia, definindo as distribuições
de probabilidade de estados de equilíbrio como aquelas que maximizam a entropia
sujeita as condições físicas apropriadas. A energia dissipada em um processo clássico
está conectada a divergência de Kullback-Leibler. Recentemente, Still e colaboradores
mostraram que a ineficiência energética em um processo estocástico Markoviano é
equivalente a ineficiência do modelo, definida como a diferença em informação que o
estado do sistema compartilha com as variáveis externas no futuro e passado. Isto sugere
que imprevisibilidade e ineficiência energética estejam relacionadas no âmbito da física
clássica. O objetivo deste trabalho é estabelecer uma relação entre o comportamento
randômico de sistemas clássicos, quantificado pela entropia de Kolmogorov-Sinai, com
a ineficiência energética.
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Chapter 1

Introduction

Since the development of classical information theory by Shannon in 1948 [1], which is
a framework for describing communication, several links with engineer and sciences
has been discovered [2]. Of special interest for this study are the connections between
physics and information theory which are discussed here. Originally, Shannon proposed
a general scheme of communication system consisting of a source emitting messages to
a receiver [1]. The amount of information transferred to the receiver in the communi-
cation process denoted as entropy is defined as the of uncertainty that the receiver had
about the source before the measurement [1, 3, 2], and it is the key concept behind the
connection between physics and information theory. Statistical mechanics has been
connected to information theory by the Jaynes Maximum Entropy principle. According
to this principle the equilibrium probability distribution maximizes information trans-
ference in the measurement process subjected to the available physical constraints[4].
Dissipation is a fundamental matter in physics, since it is related to reversibility of
physical processes. In 2007 Kawai et al. first established a relation for the dissipated
energy in a classical Hamiltonian process, usually called as the fluctuation dissipation
theorem [5]. There, the dissipated work in a classical Hamiltonian process is proved to
be equivalent to the Kullback-Leibler divergence between the probability densities in the
forward and backward protocols, where in the both scenarios the system is assumed to
be initially in thermal equilibrium with a heat reservoir. A great contribution to physics
is the proof of second law of thermodynamics admitting thermodynamic equilibrium:
it follows immediately from the fluctuation dissipation theorem, since Kullback-Leibler
divergence is a non-negative quantity . The connection with information information
theory could not be different in mathematics, mostly in dynamical systems theory
[6, 7]. Using the mathematical formulation of entropy provided by Shannon in [1],
Kolmogorov constructed a theoretical tool allowing to analyze the random behavior
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of dynamical systems, nowadays called Kolmogorov-Sinai entropy. It is a parameter
of the dynamical system which allows a criterion for defining chaos, since positive
Kolmogorov-Sinai entropy is a feature of chaotic behavior [8].

A recent work by Still et al. has revealed that energetic inefficiency and model
inefficiency are equivalent concepts in Markovian processes, where the latter is defined
as the difference in mutual information that the system’s state shares with the future
and past environmental variables [9]. This raises the question whether model unpre-
dictability and energetic inefficiency are connected in the framework of classical physics.
The purpose of the present work is to connect the concept of random behavior of a
classical Hamiltonian system, measured by the Kolmogorov-Sinai entropy associated
with its dynamics, with its energetic inefficiency, measured by dissipated energy in
accordance with the fluctuation dissipation theorem.

This work is organized as follows. In chapter 2 the necessary concepts regarding
information measures are presented as a consequence of Shannon’s axioms. Information
measures concerning several random variables are also presented, for instance, joint
entropy, conditional entropy and Kullback-Leibler divergence. An information-theoretic
approach to dynamical systems is discussed and Kolmogorov-Sinai entropy is defined.
In chapter 3 the necessary concepts about statistical mechanics are presented and
discussed. The first section deals with stochastic thermodynamics and the result
presented in [9]. The second section deals with classical statistical mechanics, and the
fluctuation dissipation theorem [5] is presented. The Maximum Entropy principle is
considered. Ultimately, the results are presented in chapter 4.



Chapter 2

Information Theory and Dynamical
Systems

2.1 Classical Information Measures
The communication process becomes much more clear since the development of the
Mathematical Theory of Communication by C. E. Shannon [1], which is often called
by the community as Classical Information Theory.

A communication system is defined as a collection of a source, a channel, and a
receiver, see Figure 2.1. The source generates messages, hence it is characterized by an
alphabet X , which is a collection of symbols emitted by it, and its statistical structure,
i.e., the probability p(xt) of the source emitting any symbol from the alphabet X
at each instant of time t. In this study it is only considered finite alphabets. The
channel is any physical medium in which the symbols xt ∈ X can be transmitted to the
receiver, the entity which acquires the symbols emitted from the source. This definition
shows complete analogy with the measurement process in a physical experiment, the
source playing the role of the physical system that generates the states transmitted to
the physicist, which plays the role of the physical receiver, while the channel is the
measurement apparatus. In what follows, the concepts concerning probability theory
are defined and discussed in appendix A. The purpose of this chapter is to describe
some connections between information theory and dynamical systems theory.

2.1.1 Shannon Entropy

The concept of information is closely related to the concept of uncertainty [1]. In an
actual experiment one is usually not sure about the result before the measurement, for
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Source Receiver

Channel

Figure 2.1 Representation of a communication process.

example one is not sure about what face will come up in the experiment of tossing a
dice, and therefore there is uncertainty as to what result the measurement will produce.
After the measurement process one learns the result of the experiment and information
is transferred from the physical system (source) to the physicist (receiver) [10]. The
informational content of some possible outcome x of a random variable X is defined as
[3]:

inf(x) := − log[p(x)]. (2.1)

It is a continuous monotonic decreasing function of the probability of the event p(X = x)
and it is additive, i.e., if two events, with outcomes x and x′, are independent their
information is the sum of the information of each individual event 1:

inf(x, x′) = − log[p(x, x′)]
= − log[p(x)p(x′)]
= − log[p(x)] − log[p(x′)]
= inf(x) + inf(x′)

From the definition in Equation (2.1) it is clear that information is not a concept
regarding the meaning of a message, but it is a concept concerning all the possible
outcomes of the experiment, since there is uncertainty as to the event x only due to
the possibility of X taking another value from its alphabet X . It is desirable therefore
to define the amount of information contained in the random variable X. Hence,
the average information of events works as a measure of uncertainty concerning the
experiment [2],

1The logarithm is the only continuous function which transforms the product of real numbers into
the sum of real numbers, log(a.b) = log(a) + log(b).
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Ep inf(X) = −
∑

x

p(x) log p(x), (2.2)

where one set p(x) log p(x) := 0 if p(x) = 0 to Ep inf(X) be a continuous function, since
lim

p(x)→0
p(x) log p(x) = 0.

The expected value of inf(x) in equation (2.2) is called entropy of the random
variable X and denoted as H(X). Since it is a functional of the probability p it is also
denoted as H[p] or H[p(x)].

In information theory, uncertainty is a concept properly defined by the following
properties [1, 4]:

S1. The uncertainty measure H is a continuous function of the probability dis-
tribution p, since a small variation of p do not lead to great uncertainty concerning
experiment.

S2. In an experiment with equally likely outcomes, more choice implies more
uncertainty. Therefore, the quantity

H
[ 1
n
, . . . ,

1
n

]
is a monotonic increasing function of the number n of possible outcomes.

S3.The Composition Law. The entropy H must be additive:

H[p(a), p(b), p(c)] = H(p(a), q) + qH

[
p(b)
q
,
p(c)
q

]

where q = p(b) + p(c).
The following theorem assures that the only information measure of a random

experiment satisfying the reasonable axioms above is the Shannon entropy defined as
Ep inf(X).

Theorem 1. The only function satisfying the properties S1,S2 and S3 is

H(X) = k
∑
x∈X

zc[p(x)], (2.3)

where

zc[a] =

−a logc a, a > 0
0, a = 0

,

where the constant k and the logarithm base c are arbitrary.
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The proof of Theorem 1 can be found in [4] and [11], and the proof of the next
theorems and propositions may be found in [2].

Information theorists usually set k := 1 and c := 2, and entropy is measured in
bits. The reason is that entropy measured in bits is equal to the average number of
binary questions necessary to learn the outcome of a random variable (see Chapter 5
in [2]). However, in this study entropy is measured in nats, i.e., one set k := 1 and
c := e (ze := z) due to mathematical convenience.

Definition 1. The entropy of a probability density ϱ : Γ → R+ is

H[ϱ] = −
∫
ϱ(x) ln ϱ(x)dx,

where the integration is performed over the support set of the probability density,
supp(ϱ) := {x ∈ Γ|ϱ(x) ̸= 0}.

Quite often more than one quantity is observed in an experiment and therefore it
is worth defining information measures of several random variables, since a random
vector is also a random variable.

Definition 2. Let X and Y be random variables with finite alphabets X and Y,
respectively. The joint entropy of X and Y is

H(X, Y ) =
∑
x∈X

∑
y∈Y

z[p(x, y)],

and if (X, Y ) is a continuous random vector drawn according to ϱ its entropy is defined
as

H(X, Y ) =
∫
ϱ(x, y) ln ϱ(x, y)dxdy.

The joint entropy of several random variables is the uncertainty about an experiment
where measurements of those random variables are performed simultaneously [2].

Definition 3. Let X and Y be discrete random variables with joint probability p, the
entropy of X conditional to Y is defined as

H(X|Y ) =
∑
y∈Y

p(y)
∑
x∈X

z[p(x|y)],

and if (X, Y ) is a continuous with density ϱ : Γ → R+ it is defined as

H(X|Y ) =
∫
ϱ(x, y) ln ϱ(x|y)dxdy.



2.1 Classical Information Measures 7

The entropy of X conditional to Y is the uncertainty about the result of X in an
experiment that the result of Y is available [2]. The next proposition validate this
interpretation of conditional entropy.

Proposition 1. H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

The definition of information measures in the case of several random variables
is analogous to the one presented here, and an important result concerning it is the
proposition below generalizing Proposition 1.

Proposition 2 (Chain Rule). Let (X1, . . . , Xn) be a n-dimensional random vector
with probability p. Then

H(X1, . . . , Xn) =
n∑

i=1
H(Xi|X1, . . . , Xi−1), n ∈ N.

Definition 4. The Kullback-Leibler divergence between a probability measure p and q
of a random variable X with finite alphabet X is defined as

D[p||q] =
∑
x∈X

p(x) ln p(x)
q(x)

and the divergence between the probability densities ϱ : Γ → R+ and σ : Γ → R+ is

D[ϱ||σ] =
∫
Γ

ϱ(x) ln ϱ(x)
σ(x)dx.

The Kullback-Leibler divergence D[p||q] is a measure of distinguishability of the
probabilities distributions p and q in the following sense [3]: suppose that in an
experiment the actual probability is p, but one believes that it is q, then the difference
in the information of a single outcome x is ln[p(x)] − ln[q(x)] and the Kullback-Leibler
divergence is the average of this difference. The continuous version has the same
interpretation and it is also related to irreversibility in Hamiltonian processes [5], as
discussed in Chapter 3.

Theorem 2. The Kullback-Leibler divergence is nonnegative.

Proof.
ln a ≥ 1 − 1

a
⇒ D[p||q] ≥

∑
x

[p(x) − q(x)] = 0. (2.4)

The proof for continuous random variables is analogous, and it follows replacing ∑x by∫
dxρ(x) in (2.4).
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H(X|Y ) H(Y |X)I(X;Y )

H(X, Y )

H(X) H(Y )

Figure 2.2 In the case of two random variables, X and Y , there is an analogy between
information measures and set operations. Replacing information measures by sets, sum
plays the role of set union, subtraction plays the role of set intersection, and the Venn
diagrams representation still holds. Figure adapted from [2].

Definition 5. The mutual information of X and Y is defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) ln p(x, y)
p(x)p(y)

if (X, Y ) is discrete and distributed according to p. If (X, Y ) is continuous and
distributed by ϱ, then their mutual information is defined as

I(X;Y ) =
∫
ϱ(x, y) ln ϱ(x, y)

ϱ(x)ϱ(y)dxdy.

As the mutual information of two random variables is equal two the divergence
between their joint probability and the distribution for independent variables, the
mutual information is a measure of independence of two random variables. The Figure
2.2 shows a relation between two random variables.

2.1.2 Generalized Shannon Entropy

Entropy - the amount of information transferred in a measurement - is the unique
information measure of a random variable in agreement with suitable properties. In
an actual experiment the physicist collects a lot of data. Suppose that in a simple
experiment the physicist learns the outcome of a random variable X performing
successive measurements of such quantity, and as a result a sequence of outcomes (xt)
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is gathered, where xt is the outcome of X at time t. One may be interested in the
amount of uncertainty about the hole measurement process, i.e., the process in which
(xt) is acquired. This information measure is called as Generalized Shannon Entropy
in agreement with [8], and its definition is discussed in the following.

Before the measurement performed at time t the sequence (xn)t−1
n=1 is known and

it may affect the ignorance about the next result. Hence, we need to change our
definition of uncertainty about an outcome. Considering the previous results (xn)t−1

n=1

the uncertainty about the next result is

H[p(xt|x0, . . . , xt−1)] =
∑
xt

z[p(xt|x0, . . . , xt−1)],

where p(xt|x0, . . . , xt−1) is the conditional probability of xt with respect to (x0, . . . , xt−1).
Therefore, the uncertainty of an outcome averaged over the previous results is defined
as

Ht(X) := Ep(x0,...,xt−1)H[p(xt|x0, . . . , xt−1)] (2.5)

=
∑
x0

· · ·
∑
xt−1

p(x0, . . . , xt−1)
n∑
xt

z[p(xt|x0, . . . , xt−1)] (2.6)

Since there is not an outcome more privileged then other, the uncertainty of a
sequence of t results is a simple average of the uncertainty of each result [8]

H0(X) + · · · +Ht(X)
t+ 1

and the Generalized Shannon Entropy is defined as the uncertainty of a infinite time
sequence [8]

HG(X) := lim
t→∞

1
t

t−1∑
n=0

Hn(X) (2.7)

The nonnegative quantity HG(X) is the degree of randomness concerning the
information process generated by the source. If HG(X) > 0 it means that the knowledge
of all previous results is not sufficient to predict the next one.
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2.2 Entropy of Dynamical Systems
A dynamical system is a mathematical description of a scientific model, and it is
therefore essential to understand the main properties of it. This study focuses on
chaos, a feature of dynamical systems related to unpredictability of time evolution.
The physical systems considered in this study are characterized as probability spaces
and their time evolution functions must satisfy the conditions bellow.

Definition 6. Let (Γ,Σ, pt) be a probability space. An automorphism Φτ : Γ → Γ is a
bijective map such that Φτ and its inverse Φ−1

τ are measurable functions,

Φτ (A),Φ−1
τ (A) ∈ Σ, ∀A ∈ Σ,

and probability preserving maps,

pt(A) = pt+τ [Φτ (A)] = pt−τ [Φ−1
τ (A)], ∀A ∈ Σ.

Definition 7. A Dynamical System (Γ,Σ, p, ϕt) is a probability space (Γ,Σ, p) with a
one-parameter group of automorphisms ϕt depending measurably on t.

In Definitions 6 and 7 the set Γ is the state space, called as phase space. The
parameter t ∈ R represents time and Φτ represents time evolution of τ units. The
automorphisms depends measurably on time, i.e.,

ϕt(A) ∩B ∈ Σ, ∀t ∀A,B ∈ Σ.

In this study time is considered to be discrete, t ∈ Z, and therefore the time
evolution is generated by a unique automorphism ϕ (see figure 2.3). Dynamical
systems are denoted by (Γ,Σ, pt, ϕ) and the last condition in definition 6 is written as
pt(A) = pt+n[ϕn(A)] = pt−n[ϕ−n(A)], ∀t, n ∈ N, ∀A ∈ Σ.

In actual experiments one usually measures average physical quantities such as
internal energy, dissipated work etc, and properly defined as follows.

Definition 8. The time average of an observable f : Γ → Γ with respect to the initial
state x ∈ Γ is

f̄(x) = lim
t→∞

1
t

t−1∑
n=0

f [ϕn(x)], t ∈ Z

in the discrete time case, and
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Γ

x0

x1

x2

xt

. .
.

•
•

•

•

Figure 2.3 Let (Γ,Σ, pt, ϕt) be a dynamical system. It is possible to generate a discrete
time evolution as represented in the picture defining a suitable time unit τ := 1. This
discrete time dynamical system is denoted as (Γ,Σ, pt, ϕ), t ∈ Z.

f̄(x) = lim
t→∞

1
t

∫ t

0
f [ϕt′(x)]dt′, t ∈ R

in the continuous time case.

Definition 9. The phase space average of an observable f : Γ → Γ with respect to a
probability measure p is

⟨f⟩p =
∫
fdp.

2.2.1 Kolmogorov-Sinai Entropy

The Kolmogorov-Sinai entropy is a quantity of dynamical systems quantifying chaos
intensity, and its definition consider a coarse-grained analysis of the phase space.

Definition 10. A finite partition A of the phase-space Γ is a finite collection of
measurable subsets satisfying

⋃
α∈A

α = Γ, (2.8)

and
α ̸= α′ ⇒ α ∩ α′ = 0, ∀α, α′ ∈ A. (2.9)

A finite partition of a phase space generates a collection of discrete symbols, and at
each instant of time t the probability vector [pt(α)]α∈A is well-defined. The entropy
of a partition, as defined bellow, quantifies the uncertainty about the element of
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the partition the state of the system belongs, i.e., the information contained in the
probability vector [pt(α)]α∈A.

Definition 11. The entropy of a finite partition A with respect to a probability measure
pt is

H(A) := H(A, pt) =
∑
α∈A

z[pt(α)].

It is possible in some cases to define infinite partitions, for example if the phase
space is the real line R one may define a finite partition {(−∞, 0), [0,+∞)}, and define
an infinite countable partition {[n, n+ 1)|n ∈ N} as well. In this study nevertheless one
only consider finite partitions, and therefore the terms "finite partition" and "partition"
are used interchangeably.

Proposition 3. If the partition A has |A| elements, then

H(A) ≤ ln |A|.

Proof. Since partition A has |A| elements, follows

H(A) =
∑
α∈A

z[pt(α)] (2.10)

= |A|
∑

α

1
|A|

z[pt(α)] (2.11)

≤ |A|z
[

1
|A|

∑
α

pt(α)
]

(2.12)

= ln(|A|) (2.13)

where the inequality 2.12 is a consequence of the convexity of z, as assured by Jensen’s
theorem (see Appendix A).

The next definition is also in complete analogy to the information-theoretical
conditional entropy.

Definition 12 (Conditional entropy). The entropy of the finite partition A with respect
to the finite partition B is

H(A|B) =
∑
β∈B

pt(β)
∑
α∈A

z[pt(α|β)]. (2.14)
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Definition 13. Let A and B be finite partitions. Their refinement, denoted as A ∨ B,
is the partition

A ∨ B = {α ∩ β|α ∈ A, β ∈ B}.

Defining the partition2 ϕ(A) := {ϕ(α)|α ∈ A} it is possible to study the time
evolution of the partition A, and it is possible to calculate the entropy of the partition
A ∨ ϕ(A), as explained in the figure 2.4. The lemma 1 is analogous to the chain rule
presented in Proposition 2.

Lemma 1. Let A be a finite partition. Then,

H[A ∨ · · · ∨ ϕt(A)] = H[A] +
t∑

j=1
H

A
∣∣∣∣∣

j∨
i=1

ϕi(A)
 ,∀t ∈ Z.

Proof. The first step is to observe that

H[A ∨ ϕ(A)] = H[ϕ(A) ∨ A]
= H[ϕ(A)] +H[A|ϕ(A)]
= H[A] +H[A|ϕ(A)],

and that

H[A ∨ · · · ∨ ϕt+1(A)] = H[ϕ(A) ∨ · · · ∨ ϕt+1(A) ∨ A]
= H[ϕ(A) ∨ · · · ∨ ϕt+1(A)] +H[A|ϕ(A) ∨ · · · ∨ ϕt+1(A)]
= H[A ∨ · · · ∨ ϕt(A)] +H[A|ϕ(A) ∨ · · · ∨ ϕt+1(A)],

since ϕ is measure preserving and preserves set intersection.
From this, it follows the relation:

2Since ϕ is an automorphism,
ϕ(α) ∈ Σ, ∀α ∈ A, (2.15)

and

α ̸= α′ ⇒ ϕ(α) ̸= ϕ(α′) ⇒ ϕ(α) ∩ ϕ(α′) = ϕ(α ∩ α′) = ϕ(∅) = ∅, α, α′ ∈ A. (2.16)
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(a)

(b)

Γ

α

α′

Γ

ϕ(α) ϕ(α′)
ϕ

Γ

α ∩ ϕ(α)

α′ ∩ ϕ(α)

α ∩ ϕ(α′)

α′ ∩ ϕ(α′)

Figure 2.4 Time evolution in the coarse-grained phase space scenario: (a) considering a
partition A = {α, α′} of the phase space Γ, the partition ϕ(A) = {ϕ(α), ϕ(α′)} shows
how the partition α behaves under time evolution; (b) It is possible to determine the
transitions between cells taking the refinement A ∨ ϕ(A), for example α′ ∩ ϕ(α) is the
set of states which transitioned from α to α′ . It is always possible to calculate the
entropy of A ∨ ϕ(A) since ϕ depends measurably in time. Figure adapted from [8].

H[A ∨ · · · ∨ ϕt(A)] = H[A]+

+
t∑

j=1
H

A
∣∣∣∣∣

j∨
i=1

ϕi(A)
 ⇒ H[A ∨ · · · ∨ ϕt+1(A)] = H[A] +

t+1∑
j=1

H

A
∣∣∣∣∣

j∨
i=1

ϕi(A)
 .

Definition 14. The entropy rate of a finite partition A with respect to an automorphism
ϕ is

h(A, ϕ) = lim
t→∞

H(A ∨ ϕ(A) ∨ · · · ∨ ϕt−1(A), pt)
t

. (2.17)

Definition 15. The entropy of an automorphism ϕ is [6, 7]

h(ϕ) = sup
A∈F

h(A, ϕ) (2.18)
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where F is the set of all finite partitions of the phase space.

The entropy of an automorphism h(ϕ) is usually called the Kolmogorov-Sinai
entropy of the dynamical system (Γ,Σ, pt, ϕ). As discussed before, h(ϕ) is a parameter
of chaos intensity, from which follows the definition 16 that will be justified by the
Frigg’s equivalence theorem.

Definition 16. The dynamical system (Γ,Σ, pt, ϕ) is chaotic if and only if

h(ϕ) > 0.

2.2.2 Generalized Shannon Entropy of Dynamical Systems

Unpredictability is a concept in dynamical systems theory quantified by Kolmogorov-
Sinai entropy. This is the statement of Frigg’s Equivalence Theorem [8]: Kolmogorov-
Sinai entropy is a measure of randomness in the sense that it is equal to the Generalized
Shannon Entropy, a result presented in detail here.

Outcomes of a source have been defined as elements of an alphabet, which is a
finite collection of symbols. The equivalent concept to alphabets in dynamical systems
theory are the partitions, since the phase space may be a continuous space, as example
the phase space of classical systems presented in Chapter 3. The trajectory of an initial
state generates a sequence of elements of the partition, as explained in Figure 2.5(a).
The sequence (αt) is equivalent to a sequence of outcomes of a source (xt).

The entropy of a partition H(A, pt) is the amount of information transferred as a
consequence of a measurement with precision defined by A at time t. As before, one
needs to consider the past measurements, since it affects the ignorance about the result.
The procedure is exactly the same as done in the last section, and therefore one needs
to calculate the probabilities of sequences (αt). It is discussed in Figure 2.5(b).

The probability of finding the state in αt, at time t, conditional to the sequence
(α0, . . . , αt−1) is

p(αt|α0, . . . , αt−1) := p(α0, . . . , αt−1, αt)
p(α0, . . . , αt−1)

= pt[ϕt(α0) ∩ · · · ∩ ϕ(αt−1) ∩ αt]
pt−1[ϕt−1(α0) ∩ · · · ∩ αt−1]

. (2.19)

Following the same ideas as before one can calculate the averaged uncertainty over
the previous results of a result, defined as
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Γ

α(3)

α(2)

α(4)

α(1)

• •

• •
x0x1

x2 x3

(b)(a) Γ

A ϕ(A) B

ϕ

Figure 2.5 The sequence (xt) defines the path in the coarse-grained phase space: (a)
considering the partition A = {α(1), α(2), α(3), α(4)} and a initial state x0 ∈ α(1), at time
t = 1 the state of the system is x1 ∈ α(2), at time t = 2 it is x2 ∈ α(3), and at time t = 3
it is x3 ∈ α(4). The sequence (x0, x1, x2, x3) generates the path (α(1), α(2), α(3), α(4)) in
the coarse-grained phase space. (b) The probability of a path (A,B) in the coarse-
grained phase space, p(A,B), is equal to the probability measure of the intersection of
ϕ(A) and B at time t = 1, pt[B ∩ ϕ(A)]. Figure adapted from [8].

Ht(A) :=
∑
α0

· · ·
∑
αt−1

p(α0, . . . , αt−1)
∑
αt

z[p(αt|α0, . . . , αt−1)]

=
∑
α0

· · ·
∑
αt−1

pt−1[ϕt−1(α0) ∩ · · · ∩ αt−1]
∑
αt

z

[
pt[ϕt(α0) ∩ · · · ∩ ϕ(αt−1) ∩ αt]
pt−1[ϕt−1(α0) ∩ · · · ∩ αt−1]

]
.

Lemma 2.
Ht(A) = H[A|ϕ(A) ∨ · · · ∨ ϕt(A)].

Proof. Since the map ϕ is measure preserving and a one-to-one map preserves intersec-
tion, i.e., ϕ(A ∩B) = ϕ(A) ∩ ϕ(B) (A,B ⊂ Γ), it follows that

pt−1[ϕt−1(α0) ∩ · · · ∩ αt−1] = pt[ϕt(α0) ∩ · · · ∩ ϕ(αt−1)],

and therefore

Ht(A) =
∑
α0

· · ·
∑
αt−1

pt[ϕt(α0) ∩ · · · ∩ ϕ(αt−1)]
∑
αt

z

[
pt[ϕt(α0) ∩ · · · ∩ ϕ(αt−1) ∩ αt]
pt[ϕt(α0) ∩ · · · ∩ ϕ(αt−1)]

]
.

The sets ϕt(α0) ∩ · · · ∩ ϕ(αt−1) are the elements of the partition ϕ(A) ∨ · · · ∨ ϕt(A),
and considering the definition of conditional entropy finishes the demonstration.
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The uncertainty of a sequence (α0, . . . , αt−1) is defined as

H0(A) + · · · +Ht−1(A)
t

,

and the Generalized Shannon entropy of the dynamical system with respect to the
partition A is

HG(ϕ,A) := lim
t→∞

1
t

t−1∑
n=0

Hn(A). (2.20)

Definition 17. The Generalized Shannon entropy of the dynamical system is defined
as

HG(ϕ) = sup
α∈F

HG(ϕ,A) (2.21)

where F is the set of all finite partitions of the phase space.

The Frigg’s equivalence theorem follows directly from lemmas 1 and 2.

Theorem 3 (Frigg’s equivalence theorem [8]). The Kolmogorov-Sinai entropy of a
dynamical system is equal to its Generalized Shannon Entropy:

h(ϕ) = HG(ϕ).





Chapter 3

Information theory and
thermodynamics

3.1 Stochastic processes
Systems that time evolution drives randomly initial states to final states are called
stochastic systems. Stochastic processes are ubiquitous in nature (see [9] and references
therein), hence, its study is crucial. Chapter 2 highlighted an example: partitioning
the phase space of a dynamical system generates a stochastic system, since starting
from a particular α0, time evolution could drives it to several possible final regions αt.
Therefore, the states of the system must be represented as random variables.

Definition 18. Let (Γ,Σ, p) be a probability space. A stochastic process is a sequence
of random variables defined on the sample space Γ, and denoted as (Xt)t∈T .

In definition 18, the index t represents time. The process is called continuous time
stochastic process if the set T , representing the duration of the process, is a interval of
R, and it is called discrete time stochastic process if T is a subset of Z. The random
variable Xt represents the state of the system at time t.

Given a stochastic process (Xt)t∈Z+ , and denoting the alphabet of its random
variables as X , one call it a Markov process if the probability of the immediate future
state Xt+1 depends conditionally only on the current state Xt, i.e.,

(Xt)t∈N is a Markov process . = . p(xt+1|x0, . . . , xt) = p(xt+1|xt), ∀t, ∀xt.
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Yt Yt+1

Xt Xt+1

Figure 3.1 During the work step Yt → Yt+1 the system is enclosed by adiabatic walls,
and the difference in energy is equal to the work done by the external agent. The
system is then allowed to a relaxation step, enclosed by diathermal walls, and remaining
the external parameter fixed. Figure adapted from [9].

Stochastic thermodynamics is the branch of physics dealing with thermodynamic
properties of stochastic processes such as fluctuation relations and entropy production
(see [12] and references therein). It is the study of stochastic systems with well-defined
physical quantities such as energy, and therefore physical laws are usually considered,
for example the conservation of energy in closed systems.

This section discusses the connection between unpredictability and thermodynamic
inefficiency presented by Still et al. [9], and the considered stochastic process is
described as follows.

A stochastic system with state-space X and a heat reservoir with inverse temperature
β := 1/kBT are initially in equilibrium. The system’s state at time t is a random
variable Xt taking values in X . An external agent drives the system stochastically
and represented at each instant of time t by a random variable Yt, called external
variable, taking values in the alphabet Y . Energy, which is also a random variable, is a
well-defined quantity of the model expressed as E(Xt, Yt).

At each moment of the discrete time stochastic process (Xt, Yt)t∈Z+ there is two
relevant steps called work step and relaxation step. In the work step, denoted as
Yt → Yt+1, the action of the external agent transfers an amount of energy to the
system equals to W [yt 7→ yt+1|xt] := E(xt, yt+1) − E(xt, yt), where E(xt, yt) represents
the energy of the system with state Xt taking the value xt and external variable Yt

taking the value yt. The external parameter change, yt 7→ yt+1, drives the system
to a new state in a relaxation step, denoted as Xt → Xt+1, in which an amount of
energy Q[xit 7→ xit+1 |yt+1] := E(xt+1, yt+1) − E(xt, yt+1) is transferred to the reservoir.
See figure 3.1 for a representation of (Xt, Yt)t∈Z+ . The dynamics is assumed to be
Markovian, i.e.,

p(xt+1|y0, x0, . . . , yt, xt, yt+1) = p(xt+1|xt, yt+1), ∀t ∈ Z+, ∀xt ∈ X , ∀yt ∈ Y .
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There is no physical law which determines the initial probability distribution of
a stochastic process, it depends on the problem to be solved. Information theory
nevertheless establishes a criterion for assigning a probability to a random variable X
called Maximum-Entropy method [4], and described as follows. The probability pX|Y =y

must be consistent with the normalization condition,

∑
x∈X

p(x|y) = 1, ∀y ∈ Y , (3.1)

and since the system and the reservoir are in equilibrium with internal energy U , the
probability distribution must be consistent with

∑
x∈X

p(x|y)E(x, y) = U, ∀y ∈ Y , (3.2)

Conditions (3.1) and (3.2) generally do not determine a unique probability dis-
tribution. The Maximum-Entropy method is concerned with the maximization of
information theory entropy H constrained to all prior information [4]; conditions (3.1)
and (3.2) must be considered in this case as the system is in equilibrium with the heat
reservoir. Let λ − 1 and β be Lagrangian multipliers. Necessary conditions to this
variational problem can be stated as

d

dp(x|y)

{
H[pX|y] − (λ− 1)

∑
x′∈X

p(x′|y) − 1
− β

∑
x′∈X

p(x′|y)E(x′, y) − U

} = 0.

Taking the derivatives, it follows that

peq(x|y) = e−λ−βE(x,y). (3.3)

Substituting (3.3) into (3.1) we find the value of the Lagrange multiplier λ,

∑
x

peq(x|y) = e−λ
∑

x

e−βE(x,y) = 1.

Defining the partition function as Z(β, y) := ∑
x e

−βE(x,y), it follows that

λ = lnZ. (3.4)

From (3.3) and (3.2) follows the equation which allows to find β,
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⟨E(X, y)⟩ = 1
Z

∑
x

E(x, y)e−βE(x,y) = − ∂

∂β
lnZ. (3.5)

Proposition 4. The equilibrium distribution (3.3) is the unique distribution which
maximizes information theory entropy constrained to (3.1) and (3.2) [4].

Proof. Let p and peq be probability distributions of the random variable X. It follows,

D[p||peq] = −H[p] −
∑

x

p(x|y) ln peq(x|y) ≥ 0, (3.6)

∴ H[p] ≤ lnZ + β⟨E(X, y)⟩p (3.7)

The equality holds iff p = peq.

Defining the thermodynamic entropy as S(U) := kBH[peq], it follows from inequality
(3.7) that the Lagrange multiplier β is identified as the inverse temperature,

β = ∂S

∂U
:= 1

kBT
. (3.8)

Therefore, equilibrium probability distributions are the less unbiased assignments to
random variables, since it is the probability which maximizes uncertainty.

Describing the system by an equilibrium distribution at time t = 0 implies that it
has well defined thermodynamic quantities, such as thermodynamic potentials. The
free energy is defined as a function of an equilibrium probability distribution,

F (y) := ⟨E(x, y)⟩peq(x|y) + kBTH[peq(y|x)]. (3.9)

In general the system is driven out of equilibrium by the external agent, and it is
worthy to define a mathematical quantity characterizing non-equilibrium probability
distributions. In this spirit, the generalized free energy is defined as a function of
general probability distributions remaining fixed the mathematical form of free energy.

Definition 19. The generalized free energy is

FG[p(x|y)] = ⟨E(x, y)⟩p(x|y) + kBTH[p(x|y)]. (3.10)

Note that F (y) = FG[peq(x|y)]. A feature of definition 19 is the proposition bellow.

Proposition 5. The generalized free energy is equal to the free energy plus an additional
term proportional to the Kullback-Leibler divergence between the actual probability
distribution and the equilibrium probability distribution,
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FG[p(xt|yt)] = F (yt) + F add
t [p(xt|yt)],

where βF add
t [p(xt|yt)] = D[p(xt|yt)||peq(xt|yt)].

Proof.

D[p(xt|yt)||peq(xt|yt)] =
∑

xt∈X
p(xt|yt) ln p(xt|yt) −

∑
xt∈X

p(xt|yt) ln peq(xt|yt)

= −H[p(xt|yt)] + β⟨E(xt, yt)⟩p(xt|yt) − βF [yt]
= βFG[p(xt|yt)] − βF [yt].

Energetic inefficiency of a process is defined as the amount of work performed on the
system in excess to the difference in generalized free energy, Wdiss := W − ∆FG, and
called as generalized dissipated work [9]. This is not a usual definition, since it is more
common defining it as the amount of work performed on the system in excess to the
difference in equilibrium free energy [13, 5]. The instantaneous memory kept by system’s
states about the driving signal at time t is Imem

t := I(St;Xt), and its instantaneous
predictive information is Ipred

t := I(St;Xt+1). Hence, the amount of instantaneous
non-predictive information Inp

t := Imem
t − Ipred

t , is defined as model inefficiency. The
lemma 3 is a statement of the equivalence between energetic inefficiency and model
inefficiency during a work step.

Lemma 3. The average dissipated work is proportional to the instantaneous non-
predictive information in each work step Yt → Yt+1,

β⟨Wdiss[xt 7→ xt+1|st]⟩ = Inp
t .

Proof.

Inp
t := Imem

t − Ipred
t

= I(St;Xt) − I(St;Xt+1)
= H(St|Xt+1) −H(St|Xt)
= β[⟨E(st, xt+1)⟩p(st,xt+1) − ⟨FG[p(s|xt+1)]⟩p(xt+1)]
− β[⟨E(st, xt)⟩p(st,xt) − ⟨FG[p(s|xt)]⟩p(xt)]
= β⟨W [xt 7→ xt+1|st]⟩ − β⟨∆FG[xt 7→ xt+1]⟩
= β⟨Wdiss[xt 7→ xt+1|st]⟩.
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Theorem 4. The total nostalgia defined as the total non-predictive information, Inp =∑
t I

np
t , is a lower bound for the total average dissipation,

β⟨Wdiss⟩ ≥ Inp.

The proof of theorem 4 can be found in [9].

3.2 Classical statistical mechanics
The physical state of a classical system at time t is well-defined by its generalized
coordinates, q1

t , . . . , q
f
t , and conjugated momenta, p1

t , . . . , p
f
1 [14], the vector

xt = (q1
t , . . . , q

f
t , p

1
t , . . . , p

f
1), (3.11)

where f ∈ N is the number of degrees of freedom of the system.
As the generalized coordinates and conjugated momenta are real valued functions

of the time,

qi, pi : R → R, i = 1, . . . , f,

the phase space of a classical system is a subset of the 2f dimensional euclidean space,
Γ ⊂ R2f .

The dynamics in the phase space is deterministic, which means that starting from a
initial state, time evolution could only drives it to a unique final state. It is determined
by the Hamiltonian map of the system, a function of the phase space vector x and time.
In this study, the Hamiltonian depends on time only due to an external parameter
y, and it is also restricted to the case of where the Hamiltonian is the energy of the
system, denoting it as E(x, y). The equations of motion take the form [14]

q̇i = ∂E(x, y)
∂pi

, (3.12)

ṗi = −∂E(x, y)
∂qi

. (3.13)

The time evolution of every initial state x0 is determined by the solution of the
Hamilton’s equations (3.13) and (3.13) , ϕ : Γ × R → Γ. The mapping xt = ϕt(x0)
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is called trajectory of the initial state x0, and as the dynamics is deterministic the
trajectory of distinct initial states cannot cross,

x0 ̸= z0 ⇒ xt ̸= zt′ , ∀x0, z0 ∈ Γ, ∀t, t′ ∈ R. (3.14)

This exact description of an initial state x0 of a classical system with Hamiltonian
map E is called classical mechanics. The initial state of a classical system, nevertheless,
may not be available to the physicist, for example as a consequence of experimental
precision of its apparatus. In this cases, it is well worth considering an average
description of the system provided by classical statistical mechanics. The method
consists of consider a large collection of distinct systems with same physical structure
called as ensemble [15], a collection of distinct initial states of a classical system
characterized by a Hamiltonian map and subject to the physical constraints of the
problem. The quantity of points in the ensemble must be so large such that it reaches
the continuum limit with a continuous density of points, n : Γ × R → R. The quantity
of points in the ensemble at each instant of time t must be finite,

N =
∫
Γ

nt(x)dx, (3.15)

where dx is the infinitesimal phase space volume measure, dx = dq1 . . . dqfdp1 . . . dpf .
The ensemble points are distributed in the phase space such that it is possible to

directly relate its density n with a probability density ϱ : Γ × R → R:

ϱt(x) := nt(x)
N

(3.16)

The probability of finding the system’s state in a region A of the phase space can
be calculated from the statistical method,

pt[A] =
∫

A
dxϱt(x), A ⊂ Γ. (3.17)

Definition 20. A classical dynamical system is the collection (Γ,Σ, pt, ϕt), where Γ is
a subset of the 2f -dimensional euclidean space, pt is a probability measure defined by
a continuous density, and ϕt is a one-parameter group defined by the solution of the
Hamilton’s equations.

An important property of classical dynamical systems is announced by the Liouville’s
theorem [15, 5, 13].

Theorem 5. Liouville’s theorem. Classical dynamical systems preserve the volume
measure,
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v[A] = v[ϕt(A)], ∀A ⊂ Γ,∀t ∈ R,

and probability density along any trajectory,

ϱt(xt) = ϱ0(x0).

An important class of states are called equilibrium states, since once reached it the
system never changes its state spontaneously. The theory describing this special feature
of classical systems is called classical statistical mechanics of equilibrium. The ensemble
method as described above equipped with the postulate 1 is the Maximum-Entropy
method applied to classical physics and reproduces the usual description of statistical
mechanics of equilibrium [4].

Postulate 1. The equilibrium probability density ϱeq of a classical statistical system
maximizes its information theory entropy subject to the physical constraints.

The Maximum-Entropy approach to equilibrium statistical mechanics is analogous
to the one described in section 3.1, since it is necessary to maximize the information
theory entropy H[ρ] constrained to all available information; in the case of a system
and a heat reservoir with temperature T in equilibrium, its internal energy U is fixed.
The solution to this variational problem is given by

δ

δϱ(x)

{
H[ϱ] − (λ− 1)

∫
Γ

ϱ(x′)dx′ − 1
− β

∫
Γ

E(x′, y)ϱ(x′)dx′ − U

} = 0, (3.18)

where λ− 1 and β are Lagrangian multipliers.
Taking the functional derivative 1, it follows,

1 Note that δϱ(x′)
δϱ(x) = δ(x − x′), where δ(x − x′) is the Dirac delta distribution. To more detail on

functionals [14] is recommended.
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δ

δϱ(x)

{
H[ϱ] − (λ− 1)

∫
Γ

ϱ(x′)dx′ − 1
− β

∫
Γ

E(x′, y)ϱ(x′)dx′ − U

} =

= δH[ϱ]
δϱ(x) − (λ− 1) δ

δϱ(x)

∫
Γ

ϱ(x′)dx′ − β
δ

δϱ(x)

∫
Γ

E(x′, y)ϱ(x′)dx

= −
∫
Γ

[
δϱ(x′)
δϱ(x) ln ϱ(x′) + δϱ(x′)

δϱ(x)

]
dx′ − (λ− 1)

∫
Γ

δϱ(x′)
δϱ(x) dx

′+

− β
∫
Γ

E(x′, y)δϱ(x
′)

δϱ(x) dx

= − ln ϱ(x) − λ− βE(x, y)
= 0,

∴ ϱeq(x) = e−λ−βE(x,y). (3.19)

The λ parameter is determined by the normalization condition,
∫
Γ

ϱeq(x)dx = e−λ
∫
Γ

e−βE(x,y)dx = 1.

Defining the partition function, Z(β, y) :=
∫

Γ e
−βE(x,y)dx, it follows that

λ = lnZ. (3.20)

The value of β can be determined from the internal energy condition,

U =
∫

Γ
E(x, y)ϱ(x)dx = − ∂

∂β
lnZ(β, y). (3.21)

Proposition 6. The procedure in agreement with postulate 1 determines a unique
solution.

Proof.
D[ϱ||ϱeq] ≥ 0 ⇒ H[ρ] ≤ lnZ + β⟨E(x, y)⟩ρ.

This study deals with chaos in a very specific process on classical systems, in
accordance with [5, 13] and defined in the following. In our model, the system is
initially in canonical thermodynamical equilibrium with a heat reservoir with inverse
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Figure 3.2 The classical system, whose Hamiltonian is E, is allowed to weakly interact
with a heat reservoir at temperature T. This thermal interaction, which only allows a
change of energy of the system due to heat transfer, is maintained a sufficiently long
time such that the system reaches equilibrium with the reservoir. At this time, which is
set as t = 0, the probability density of the system is given by ϱeq

0 = e−βE/Z. After t = 0
the system is isolated and its energy changes only due to work done by performing
a change in the external parameter y. At any instant the probability density evolves
accordingly to Liouville’s theorem, ϱt(st) = ϱeq

0 (s0).

temperature β = 1/kBT . Hence, the initial density of states in the phase space is given
by

ϱ0(x) = ϱeq
0 (x) = exp{−βE(x, y0)}

Z(β, y0)
. (3.22)

All thermodynamic information about the macroscopic system is contained in its
thermodynamic potentials, for example its thermodynamic entropy identified as the
information theory entropy of the equilibrium probability density,

S(⟨E⟩) := kBH[ϱeq
t ] (3.23)

For t > 0 the system is isolated 2 and work is done on the system, represented by a
change in the external parameter y, in such a way that one can drive the system out
of equilibrium. Figure 3.2 represents this process.

2In agreement with [5] a system is called isolated when its internal energy changes only due to
work done by the external agent. It is usually called a adiabatic process in thermodynamics literature.
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Theorem 6 (Kawai-Parrondo-Van den Broeck theorem [5]). The accumulated dissi-
pated work up to time t,

⟨Wdiss⟩t := ⟨W ⟩t − ∆F,

where ⟨W ⟩t is the average work done on the system and ∆F = F (yt) − F (y0) is the
difference in the free energy F = −kBT lnZ is

⟨Wdiss⟩t = kBTD[ϱt||ϱeq
t ].

Proof. Defining a generalized free-energy similarly as done in [9],

FG[ϱt] =
∫
E(x, yt)ϱt(x)dx+ kBT

∫
ϱt(x) ln ϱt(x)dx, (3.24)

consequently the generalized free energy can be written as the equilibrium free-energy
of reference, F (yt) = −kBT lnZ(yt), plus to an additional term F add:

F add[ϱt] := kBTD[ϱt||ϱeq
t ]

= kBT

(∫
ϱt(x) ln ϱt(x)dx−

∫
ϱt(x) ln

[
exp{−βE(x, yt)}

Z(y)

]
dx

)

=
∫
E(x, yt)ϱt(x)dx+ kBT

∫
ϱt(x) ln ϱt(x)dx+ kBT lnZ(yt)

= FG[ϱt] − F (yt)

∴ FG[ϱt] = F (yt) + F add[ϱt] (3.25)

It is clear from its definition that the generalized free-energy of an equilibrium
probability density is equal to the equilibrium free-energy, and F add vanishes in this
case.

The generalized free energy difference in the process is

∆FG = FG[ϱt] − FG[ϱ0] (3.26)
=

∫
E(x, yt)ϱt(x)dx+ kBT

∫
ϱt(x) ln ϱt(x)dx

−
∫
E(x, y0)ϱ0(x)dx− kBT

∫
ϱ0(x) ln ϱ0(x)dx. (3.27)

Therefore, the equation (3.26) may be written as
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H[ϱt] −H[ϱ0] = β [⟨W ⟩t − ∆FG] . (3.28)

At initial time the system and the heat reservoir are in thermodynamic equilibrium,
therefore, according to equation (3.23) the entropy H[ϱ0] is identified as the thermo-
dynamic entropy of the system. The changes in the external parameter may drive
the system out of equilibrium, and the differential entropy H[ϱt] is not necessarily the
thermodynamic entropy of the system, because the equilibrium probability density at
final time is given by ϱeq

t (x) = exp{−βE(x, yt)}/Z(yt), which may be different from
ϱt(x).

The differential entropy of a probability density, due to the Liouville’s theorem, is
invariant under time evolution, i.e., H[ϱt] = H[ϱ0] (see page 5 in [16]). Therefore the
equation (3.28) implies the dissipation theorem [5]:

β⟨Wdiss⟩t = β [⟨W ⟩t − ∆F ] = βF add[ϱt]
= D[ϱt||ϱeq

t ].



Chapter 4

Results

The previous chapters discussed the realm of unpredictability and classical physics. It
has been made clear in chapter 3 the connection between unpredictability, represented by
non-predictive information, and thermodynamic inefficiency, represented by generalized
dissipated work. This raises the question whether model unpredictability and energetic
inefficiency are connected in the framework of classical physics. The goal of this chapter
is to discuss such issue.

It is possible to introduce a discrete time stochastic process from a classical dy-
namical system (Γ,Σ, pt, ϕ). Figure 2.5 demonstrate how a discrete time model, called
discrete time classical dynamical system, emerges from a continuous one. Letting A be
a partition of Γ, then it is possible to define a sequence of state random variables

Xt : Γ → A,
xt ∈ αt ⇔ Xt(xt) = αt. (4.1)

Random variables are usually defined as maps taking values in R, as done in
appendix A. It is always possible to label the partition A according to an index set
I|A| := {1, . . . , |A|}; the element of the partition which the state xt belongs would be
recognized as αit , for some it ∈ I|A|, and the state random variable should be defined
by the rule xt ∈ αit 7→ it. It is indeed a very common notation in dynamical systems
literature [17]. However, letting implicit the element of the partition which xt belongs,
and denoting it as αt, do not make any difference to the aims of this study and implies
a much simpler notation: p(Xt = αt) := pt(αt).

In classical physics, model unpredictability is usually quantified by Kolmogorov-Sinai
entropy. The aim of this chapter is to establish a connection between Kolmogorov-Sinai
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entropy and dissipated work, which is often the energetic inefficiency quantifier. It is
done in two steps: lemma 4 announces a lower bound on chaos and then it is used to
determine a lower bound on energetic inefficiency.

Lemma 4. Let (Γ,Σ, pt, ϕ) be a discrete time classical dynamical system, and A an
arbitrary finite partition of the finite volume phase space Γ. Then,

h(ϕ) ≥ H[ϱt] + ct(A) + dt(A),

where,
ct(A) := 1 −

∑
α0,...,αt∈A

p(αt|α0, . . . , αt−1)ṽ(αt−1, . . . , α0|αt), (4.2)

and
dt(A) := −

∑
αt∈A

p(αt) ln v(αt). (4.3)

Proof. We start by defining a coarse-grained density of states in the phase space
conditional to the path history

ϱcg
t (x|α0, . . . , αt−1) :=

∑
αt

p(αt|α0, . . . , αt−1)
v(αt)

Iαt(x), (4.4)

where the indicator function Iαt : Γ → {0, 1} is defined as

Iαt(x) :=

1, x ∈ αt

0, x /∈ αt

, (4.5)

and the phase space volume is
v[αt] :=

∫
αt

dx. (4.6)

The coarse-grained Shannon entropy, i.e., the entropy of ϱcg
t , then becomes

H[ϱcg
t ] = −

∑
αt

p(αt|α0, . . . , αt−1) ln p(αt|α0, . . . , αt−1)
v(αt)

. (4.7)
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The Shannon entropy of ϱcg
t (x|α0, . . . , αt−1) averaged over all possible paths (α0, . . . , αt−1)

can be compared to the Shannon entropy of ϱt,〈
H[ϱcg

t ]
〉

−H [ϱt] = −
∑

α0,... αt

p(α0, . . . , αt) ln p(αt|α0, . . . , αt−1)
v(αt)

+
∫
dxϱt(x) ln ϱt(x)

=
∑

α0,... αt

∫
αt∩ϕ(αt−1)∩···∩ϕt(α0)

dxϱt(x)
[
ln ϱt(x) − ln p(αt|α0, . . . , αt−1)

v(αt)

]

≥
∑

α0,... αt

∫
αt∩ϕ(αt−1)∩···∩ϕt(α0)

dx

[
ϱt(x) − p(αt|α0, . . . , αt−1)

v(αt)

]

= 1 −
∑

α0,... αt

p(αt|α0, . . . , αt−1)
v[αt ∩ ϕ(αt−1) ∩ · · · ∩ ϕt(α0)]

v[αt]
,

where the inequality follows from the relation a(ln a− ln b) ≥ a− b, a, b ∈ R∗
+ (see page

6 in [16]).
Taking an average in time:

H[ϱcg
t ] = − lim

k→∞

1
k

k∑
t=1

∑
α0,... αt−1

p(α0, . . . , αt−1)
∑
αt

p(αt|α0, . . . , αt−1)×

× ln p(αt|α0, . . . , αt−1) ≥ H[ϱ0] + ct(A) + dt(A) (4.8)

where

ct(A) := 1 −
∑

α0,...,αt

p(αt|α0, . . . , αt−1)
v[αt ∩ ϕ(αt−1) ∩ · · · ∩ ϕt(α0)]

v[αt]

and
dt(A) := −

∑
αt

pt[αt] ln v[αt]. (4.9)

The over-bars means time average, i.e., ft = limk→∞
1
k

∑k
t=1 ft. The quantity ct can

be written considering a reversed-time volume measure. Denoting the time-reversed
evolution function as ψ := ϕ−1, and as ψ preserves volume measure, it follows that

v[αt ∩ . . . ϕt(α0)] = v[ψt(αt) ∩ . . . α0]
= ṽ(αt, . . . , α0).
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Therefore the quantity ct(A) and dt(A) can be written as equations (4.2) and (4.3),
respectively.

Taking the partition that maximizes the left-hand side of inequality (4.8) we obtain
the Kolmogorov-Sinai entropy of ϕ [8], then it follows

h(ϕ) ≥ H[ϱt] + ct(A) + dt(A). (4.10)

Theorem 7. The time average dissipation is lower bounded in a Hamiltonian process
(Γ,Σ, pt, ϕ):

β⟨Wdiss⟩k ≥ β[⟨E⟩ϱk
− Fk] + ct(A) + dt(A) − h(ϕ).

where A is a arbitrary finite partition of Γ and h is the entropy of ϕ.

Proof. From lemma 6 it follows that

⟨Wdiss⟩t = −kBTH[ϱt] − kBT
∫
dxϱt ln ϱeq

t

= −kBTH[ϱt] − kBT
∫
dxϱt ln

[
e−βE

Z

]

= −kBTH[ϱt] +
∫
dxϱtE + kBT lnZ

= −kBTH[ϱt] + ⟨E⟩ϱt − F (yt). (4.11)

The desired result follows from taking time average of equation (4.11) and using
lemma 4.

The hidden information due to coarse-graining is defined as the difference between
entropy after coarse-graining and entropy before coarse-graining, see for example
equation (1) in [18]. The information hidden in A is lower bounded [16, 18]

H[pt(α)] −H[ϱt] ≥ dt(A). (4.12)

Equation (4.12) can be demonstrated defining the coarse-grained density σcq
t (x) :=

pt(α)
v(α) Iα(x). It follows that,
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H[σcq
t ] −H[ϱt] = −

∑
α

pt(α) ln pt(α)
v(α) +

∫
ϱt(x) ln ϱt(x)dx

=
∑

α

∫
α

ϱt(x)
[
ln ϱt − ln pt(α)

v(α)

]
dx

≥
∑

α

∫
α

[
ln ϱt − ln pt(α)

v(α)

]
dx

= 0. (4.13)

As H[σcq
t ] = H[pt(α)]−dt(A) the result is demonstrated. Following the same procedure

lemma 4 states that the quantity Ih := ct(A) + dt(A) is interpreted as the average
information hidden in the coarse-graining.





Chapter 5

Conclusions and outlook

In this dissertation, we have studied some relations between classical information
theory and statistical mechanics of classical Hamiltonian systems. Our result is a lower
bound for the dissipated energy in a classical Hamiltonian process, connecting it to
the Kolmogorov-Sinai entropy associated with its dynamics.

Results concerning classical physics may work as guides to quantum mechanics
in some very specific situations. For example, the fluctuation dissipation theorem in
classical physics [? ] was extended to the quantum case in [? ], defining entropy
production by replacing probability distributions to density operators and relative
entropy to quantum relative entropy (see equation (4) in [? ]). The connection between
energetic inefficiency and model inefficiency first presented in [9] was extended to a
quantum scenario in [? ]. The concept of Kolmogorov-Sinai entropy was extended to
the case of stochastic quantum system in [? ]. It raises the question whether entropy
production and the “quantum” Kolmogorov-Sinai entropy would be connected in some
specific quantum scenario, for instance, the case of stochastic quantum scenario. Our
result could work as a guide to such task.





Appendix A

Probability spaces

In a random experiment the possible outcomes constitute the sample space Γ. For
instance, in the experiment of tossing a coin the sample space may be written as
Γ = {0, 1}. The sample space may be defined by convenience, the only restriction is
that any outcome must be represented by an element of Γ [19]. An important concept
of random experiments is probability, and there are two ways to understand it [4].

The first is called objective point of view, where the probability is a property of an
event. The probability of an event A ∈ Γ must be empirically calculated by

p(A) := lim
N→∞

n(A)
N

, (A.1)

if it exists, where n(A) is the number of occurrence of the event A in N measurements.
The second is called subjective point of view, and p(A) is understood as an amount

of ignorance of the observer concerning the event A. In this approach probability is a
property of the observer. This point of view needs a consistent mathematical formalism
since there is not a rule of calculation as in A.1. This mathematical formalism of
probability theory is due to A. N. Kolmogorov, and it is defined as follows [19].

Definition 21. A family Σ of subsets of Γ is called σ-algebra if it has the properties

(σ1) Γ ∈ Σ,
(σ2) A ∈ Σ ⇒ Ac ∈ Σ,
(σ3) ∀n ∈ N, An ∈ Σ ⇒

⋃
n∈N

An ∈ Σ,

where the complement of A is Ac := {γ|γ ∈ Γ, γ /∈ A}.
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Definition 22. A probability on a measurable space (Γ,Σ) is normalized, nonnegative
and σ-additive map defined on Σ, i.e, p : Σ → R+ such that

(p1) p(Γ) = 1,

(p2) ∀n ∈ N, An ∈ Σ,∀i ̸= j, Ai ∪ Aj = ∅ ⇒ p

⋃
n∈N

An

 =
∑
n∈N

p (An) .

The triple (Γ,Σ, p) is called probability space.

Definition 23. Let (Γ,Σ, p) be a probability space. The joint probability is defined as

p′ :Σ × Σ → R+

p′(A,B) := p(A,B) = p(A ∩B),

and the conditional probability is defined as

p′′ :Σ × Σ → R+

p′′(A,B) := p(A|B) =


p(A∩B)

p(B) , p(B) > 0
p(A), p(B) = 0

.

Definition 24. A random variable X : Γ → R is a map measurable to Σ, i.e.,
[X = x] ∈ Σ, ∀x ∈ R, where [X = x] := {γ ∈ Γ|X(γ) = x}. The probability of the
random variable X is the map

pX :R → R+

pX(x) := p(X = x) = p(x) = p[X = x].

A very useful relation regarding probability spaces and convex functions is the
Jensen theorem. It is used in chapter 2 to prove some relations in information theory.

Theorem 8. Let (Γ,Σ, p) be a probability space and X a random variable of it. If
f : R → R is a convex function, i.e., f [(1 − t)x+ tx] ≤ (1 − t)f(x) + tf(y), ∀t ∈ [0, 1],
∀x ∈ R, then
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∫
Γ

dpf(X) ≥ f

∫
Γ

dpX

 . (A.2)

The proof of inequality (A.2) can be found in [19].





References

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, 1948.

[2] T. M. Cover and J. A. Thomas, Elements of information theory. Wiley, 2012.

[3] M. M. Wilde, Quantum information theory. Cambridge University Press, 2013.

[4] E. T. Jaynes, “Information theory and statistial mechanics,” Physical Review,
vol. 106, 1957.

[5] R. Kawai, J. Parrondo, and C. V. den Broeck, “Dissipation: the phase-space
perspective,” Physical Review Letters, vol. 98, 2007.

[6] V. I. Arnold and A. Avez, Ergodic problems of classical mechanics. Benjamin,
1968.

[7] I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic theory. Springer-Verlag,
1982.

[8] R. Frigg, “In what sense is the Kolmogorov-Sinai entropy a measure for chaotic
behaviour?-bridging the gap between dynamical systems theory and communica-
tion theory,” The British Journal for the Philosophy of Science, vol. 19, 2004.

[9] S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, “Themodynamics of prediction,”
Physical Review Letters, vol. 109, 2012.

[10] A. I. Khinchin, Mathematical foundations of information theory. Dover Publica-
tions, 1957.

[11] E. T. Jaynes, Probability theory: the logic of science. Cambridge University Press,
2003.

[12] G. E. Crooks, “Nonequilibrium measurements of free energy differences for micro-
scopically reversible markovian systems,” Journal of statistical physics, vol. 90,
1998.

[13] C. Jarzynski, “Nonequilibrium equality for free energy differences,” Physical Review
Letters, vol. 78, 1997.

[14] N. A. Lemos, Mecânica analítica. Editora Livraria da Física, 2007.

[15] R. C. Tolman, The principles of statistical mechanics. Clarendon Press, 1938.



44 References

[16] F. Benatti, Deterministic chaos in infinite quantum systems. Springer, 1993.

[17] Y. Sinai, “Kolmogorov-Sinai entropy,” Scholarpedia, vol. 4(3), 2009.

[18] A. Alonso-Serrano and M. Visser, “Coarse graining Shannon and von Neumann
entropies,” Entropy, vol. 27, 2017.

[19] B. R. James, Probabilidade: um curso em nível intermediário. IMPA, 2015.


	Table of contents
	List of figures
	Nomenclature
	1 Introduction
	2 Information Theory and Dynamical Systems
	2.1 Classical Information Measures
	2.1.1 Shannon Entropy
	2.1.2 Generalized Shannon Entropy

	2.2 Entropy of Dynamical Systems
	2.2.1 Kolmogorov-Sinai Entropy
	2.2.2 Generalized Shannon Entropy of Dynamical Systems


	3 Information theory and thermodynamics
	3.1 Stochastic processes
	3.2 Classical statistical mechanics

	4 Results
	5 Conclusions and outlook
	Appendix A Probability spaces
	References

