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Abstract

A uniformly accelerated detector perceives the Minkowski vacuum as a thermal state. In

particular, for a massless scalar field, one cannot distinguish these two scenarios -accelerated

detector in the vacuum and an inertial detector in contact with a thermal reservoir- just

by using a point-like detector. In this work we show that one can probe the existence of

acceleration by using an extended detector with dimension perpendicular to the acceleration

direction. Also, we verify that the internal degrees of freedom of the detector may get entangled

by a process of spontaneous emission, and as such is dependent on the initial state of the

detector. It is found that the entropy production and entropy fluxes from out the detector

also allow one to tell the two scenarios apart: more internal entangled detectors produce less

entropy and vice-versa; the wavelength of the sought particle is the critical length at which

the behavior of the two system is inverted.

Keywords: Quantum information. The Unruh effect. Thermodynamics. Entanglement.

Quantum Field Theory.
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Resumo

Um detector uniformemente acelerado percebe o vácuo de Minkowski como um estado

térmico. Em particular, para um campo escalar sem massa, os dois cenários -detector acel-

erado no vácuo e detector inercial em contato com um reservatório térmico- não podem ser

diferenciados utilizando-se apenas um detector adimensional. Neste trabalho mostramos que

os dois cenários podem ser diferenciados com o uso de um detector estendido de dimensão

perpendicular à direção de aceleração. Verificamos também que os graus de liberdade internos

do detector podem se correlacionar por meio de emissão espontânea, e portanto, dependem

do estado inicial do detector. Foi observado que a produção e fluxos de entropia do detector

também permitem distinguir os dois cenários: detectores com graus de liberdade mais emaran-

hados produzem menos entropia e vice-versa; o comprimento de onda da part́ıcula buscada é

uma distância cŕıtica para a qual o comportamento dos dois sistemas se inverte.

Palavras-chave: Informação Quântica. O efeito Unruh. Termodinâmica. Emaranhamento.

Teoria Quântica de Campos.
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Introduction

In 1905, and perhaps in a much more profound way, in 1915, Albert Einstein came up

with an astounding idea concerning the structure of what we used to call space and time. Up

to that point, it was taken for granted that there existed a three-dimensional space at each

instant of time; further, this whole pile of space parameterized by an absolute and universal

parameter called time, was but a stage where physics were to take place. Things were getting

completely different; with more and more facts supporting the predictions of the General

Theory of Relativity [1][2][3], it became clear that, whether we liked it or not, the universe

behaves in a mind-bending way. As time goes on, physicists grow more and more used to

these newly introduced ideas, to the point that they become natural. Eventually, however,

one realizes that the otherwise almost completely accepted scenario implies some phenomena

that seems to defies the current understanding of physics -for instance, particle creation by a

non-stationary background, and the Unruh effect, which is the subject of this work.

Perhaps it was L. Parker [4] one of the first to dedicate a great deal to the study of

particle creation by an expanding universe. Certainly heavily influenced by his work, a new

entity, if it can be called this way, entered the set of things physics could study and try to

understand: the stage itself, a now dynamical stage. When mixed with quantum mechanics,

a mix that must be made with care, this dynamical behavior of spacetime gives rise to some

truly fruitful results: some of them quite challenging to the mind, one of these being the so

called Unruh effect [11]. However, we would like to look at it in a slightly different manner

than is usually done. Given the current paradigm in science, some authors find it hard to

accept that a phenomenon such as the Unruh effect should be considered physical, some of

1
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them even pointing to mathematical inconsistencies in the derivation.

Thus, contrary to saying that an uniformly accelerated observer would measure temper-

ature in a otherwise empty space -a quite vague statement, since a lot of thing are not well

specified there- we found it more interesting to start from the most basic possible structure

and grow it little by little by endowing it with more and more properties, thus putting upon

it more restrictions, but in a way that unnecessary concepts would not arise -and were one

given concept to appear here or there, it should be clear the specific conditions under which

this happens. The line of work is then try to formulate, following R. Wald [12], in the most

general and natural possible way, a theory that would reduce to the known results in very

specific regimes where symmetries that are not strictly necessary to the construction might be

available, and then, if that is the case, new concepts introduced -such as the concept of parti-

cle, that appears due to the existence of a symmetry that is not at all necessary. With this in

mind, even though the primary objective of this dissertation might be to study information-

theoretical and thermodynamic properties of the Unruh effect, the elegance of the concepts

involved were too big not to give them much of the attention. So in chapter one, the presen-

tation is quite general, and much attention is given to the appearance of the aforementioned

phenomenon from a purely mathematical point of view. Thus, in the first chapter, we are

not talking about the Unruh effect particularly, but rather, about the formulation of quantum

field theory in curved manifolds.

Being quantum field theory in curved spacetimes one of our only semiclassical description of

gravity, it calls our attention that more prospects can be made towards a better understanding

of quantum gravity by further analyzing properties of phenomena that arise due to attempts

in trying to mix quantum mechanics and general relativity together in the same framework.

In particular, since the Unruh effect predicts that a uniformly accelerated observer perceives

the Minkowski vacuum as a thermal state, connection with thermodynamics seems natural.

It is worth noting that it was shown [5] already that, in the case of a massless scalar field,

one cannot tell apart if a system is moving with uniform acceleration a, or if it is inertial
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but in contact with a heat bath in thermal equilibrium with temperature T = a/2π, that is,

there is no difference in the correlation functions derived in both case, and thus there is no

difference in dynamics as well -since we will be referring to these two systems very often, we

call the first one the Unruh setting, and the second one, with equivalent temperatures, the

Heat bath setting. So it seems that in studying the Unruh effect by means of a massless scalar

field, we are basically analysing the dynamics of a system in contact with a heat reservoir,

which is not the desire. However, it was later found that if our system is composed of two

parties, then correlations between these two parties do provide ways of differentiating these

two settings [7][8][9]. In Ref. [8], the authors shows that the concurrence between these parties

shows a behavior that allows us to distinguished the Unruh effect from a ordinary heat bath,

in particular, there are suitable conditions under which those two detectors get entangled by

spontaneous emission [25] in one setting while no entanglement is verified in the other. This

is why we work with a system composed of two parties rather than just one.

In Ref. [10], the authors point to the role of coherence in the study of nonequilibrium

thermodynamics. Since the loss of coherence implies the loss of quantum correlation between

two quantum systems, a question arise: can one tell the difference between a Unruh and a

Heat bath setting just by looking at thermodynamical properties of the system, in particular,

if the answers is positive, how does this difference in behavior in the irreversibility of the

system relates to the quantum correlation among its parties? By studying how this behavior

in the Unruh setting differs from that of a static heat bath setting, we hope some light can be

shed about semiclassical properties of entropy and entanglement, since a description of both

quantities in a relativistic regime is still lacking.

The outline of this work is as follows. The first chapter is primarily concerned with the

causal structure of a general manifold, and what is needed in order for one to formulate an

initial value problem, also known as Cauchy problem. In the second chapter, the Unruh effect

is derived, and how it is related to a static thermal bath is discussed. The third chapter is the

one that ultimately justifies all the need of the previous ones, even though one might say that
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chapters one and two stand on their own, being much more fundamental in nature. In this

chapter we introduce an operational definition of particle by introducing a particle detector

model, we then present our set up, and follow on with the query for distinct behavior in the

irreversibility of a uniformly accelerated system in contact with the Minkowski vacuum of

a massless scalar field theory; when compared to an inertial system in contact with a heat

reservoir, as mentioned.



Chapter 1

Quantum Field Theory on Manifolds

In this chapter we develop the main ideas concerning Quantum Field Theory in curved

manifolds and explore the difficulties related to the usual decomposition of field operators in

positive and negative frequency in this more general scenario. It is worth noting again that

unlike many treatments of this subject, we are not going to start from a Minkowski spacetime

- assuming all its symmetries - and try to generalize the ideas to curved manifolds by means

of some naive substitutions, rather, we will construct the theory directly from a more general

metric so to speak, be its curvature zero or not - of course, we do so in close analogy with

flat spacetime physics. From this perspective, we believe, many misconceptions will not show

up and we can later derive Minkowski physics as a special case where the metric is a rather

symmetric object; although we might not even work with nonzero Ricci scalar, the machinery

will not be wasted; it is, in fact, of paramount importance to the subject. So, from here on,

we ask our readers to give up on the idea of a privileged/global inertial frame of reference -

and therefore, as we shall soon see, to a privileged notion of particle - since such a thing does

not exist according to Einstein’s General Theory of Relativity.

1.1 Future, Past and Global Hyperbolicity

The first problem with this approach appears right at the beginning, where we try to

define a notion of time direction, which is crucial to state an initial value problem - and also

5



CHAPTER 1. QUANTUM FIELD THEORY ON MANIFOLDS 6

an “instant of time” as to make sense of the “initial” in initial value - and there is no obvious

way, at first glance, on how to achieve such a goal in our scenario: it might not even be possible

to do so.

Figure 1.1: Illustration of a light cone

To proceed, let (M, gαβ) be a manifold with Lorentzian metric gαβ
1 and p ∈ M , then,

by the very definition of manifold A.1 the tangent vector space Vp at p is isomorphic to

Minkowski space; we can thus consider a light cone -the path taken by a light signal travelling

in all directions and emanating from a single event- passing through the origin of Vp, as in

Fig. 1.1, where half of this light cone is the “future” and the other half the “past” of the

event p. Timelike vectors lying on each side will be correspondingly called “future” or “past”

directed just as in ordinary flat spacetime. Note, however, that in general this can be done

only at the point p as there is no a priori reason to believe that the light cones defined at p

and q, with p 6= q, will have a common notion of future and past. If one varies p throughout

the manifold M and a continuous choice of such light cones can be made, (M, gαβ) is said

to be time-orientable and, from here on, we consider only time-orientable manifolds. This

basically implies that all observers on the manifold agree on the causal connection of timelike

separeted events, a smooth timelike vector field can be defined over (M, gαβ) [13] and we have

thus succeed in defining some sort of time direction common to all p ∈M .

To address the issue of time direction, we need some definitions. We will call causal curve

1The signature choosen here is the conventional one used in General Relativity, i.e, there is a basis, not
necessarily a coordinate basis, in which the metric takes the form g = diag(−1,+1,+1,+1, ...)
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any curve that is either timelike or null everywhere, that is, a non spacelike curve. Now, let

S ⊂ M be a subset of M . For each p ∈ S we define a subset J+(p)|S ⊂ M called the causal

future of p, composed of all point that can be connected to p by a future-directed causal

curve; the chronological future, similarly, is defined as the set of points connected to p by a

future-directed timelike curve and is denoted by I+(p)|S. The causal and chronological past

is defined analogously and denoted as J−(p)|S and I−(p)|S, respectively2. Subsets S with no

points connected by timelike curves, S ∩ J+(p)|S = ∅, are called achronal sets. Note that any

event q ∈ J+(p)|S can be influenced by a causal signal from p, what we cannot yet say is that

an inextendible, past-directed causal curve starting from any event in J+(p)|S will intersect

S, that is, even though we can reach any event in J+(p)|S starting from an event in S, there

might be events in J+(p)|S that is influenced by different events other than those in S, and as

such, cannot have the dynamics completely characterized by information given on S only.

To fix this we consider an achronal, closed3 subset S ⊂M and construct its future domain

of dependence D+(S) to be composed of all events p ∈ D+(S) such that any inextendible, i.e,

that goes on to infinity rather than ending in some finite point, past-directed causal curves from

p must intersect S. By definition, all events in the future domain of dependence is completely

determined by data given on the set S. Using the same protocol we define the past domain of

dependence denoted D−(S) and, likewise, all points on S, and only points on S, are reached by

some future-directed timelike curve emanating from p ∈ D−(S). Therefore the whole domain

of dependence, or simply domain of dependence, is given by D(S) = D+(S) ∪D−(S). When

D(S) = M we say that S is a Cauchy surface; the manifold M is, in turn, said to be Globally

Hyperbolic and all events on M can be completely determined by the events on the surface S;

this last being the closest we have of a “instant of time” in general, curved manifolds where

we can define “initial” value problem, since from data on S all, say, matter fields evolution

are uniquely determined.

We have started our analysis with an arbitrary Lorentzian manifold which, after some more

2It is an immediate fact that Ia ⊂ Ja, a = +,−.
3whose complement is an open set
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than reasonable requirements, was constrained to fulfill some conditions in order to serve as a

background for a well-posed initial value formulation of matter fields; namely, (M, gαβ) must

be globally hyperbolic, or equivalently have a Cauchy surface, a property we hereafter assume

it to attain.

1.2 Flow of Time and Hilbert Space Construction

Now that we have a way to characterize a well behaved background in the sense of being

possible to formulate physical laws on it, we are still left with the problem of finding a real-

ization of the concepts described in the last section. To start, we seek a derivative operator,

which we will denote ∇µ, that can be used unambiguously at any point of M and thus must

be independent of any coordinates. It turns out that the operator ∇µ is highly non unique,

requiring us to impose some condition on it to pick one, and only one, of them. Since we are

working with a manifold with a metric tensor defined everywhere, there is a natural choice:

we can impose the condition of metric compatibility, namely, by requiring that ∇µgαβ = 0, a

theorem [13] states that we are able to filter out all possibilities of such derivative operator

being left with a unique option. This is the one we choose to work with.

As already mentioned, a globally hyperbolic spacetime (M, gαβ) with Cauchy surface Σ

has some resemblance to the idea of a space at a fix instant of time, in fact the topology of

M is R × Σ, allowing us to “slice”, or “foliate” the whole manifold with spacelike surfaces

Σt parameterized by some continuous parameter t ∈ R; by running t throughout the real

numbers, and being each Σt Cauchy, we can reconstruct M. Given a smooth scalar field

t̂ :M−→ R, we have

Σt =
{
p ∈M|t̂(p) = t

}
. (1.1)

Since if M is n-dimensional, for each t ∈ R, Σt ⊂ M is an embedded manifold of dimension

(n − 1), the tangent bundle4 Tp(Σt) is a subspace of Tp(M), and there will be a 1-form 5

4Collection of all tangent vector spaces.
5Unique up to scaling
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dt̂ ∈ T ∗p (M)6, the gradient of t̂, that maps all vectors tangent to Σt to 0. The vector gµν(dt̂)ν

is said to be normal to the surface Σt.

Consider, then, a “time-direction” vector field tµ on M satisfying tµ(dt̂)µ = 1. We can

decompose tµ as

tµ = Nnµ + T µ, (1.2)

where N is a function on M , nµ is a unit timelike vector normal to Σt, and in the same sense,

T µ is tangential to Σt.

From (1.2) we can define a projector operator P µ
ν whose action is to remove components

parallel to nµ from any vector it acts upon, i.e., P µ
ν projects vectors into Σt. It can easily be

written as

P µ
ν = δµν + nµnν

⇒ gµσPσν = gµσgσν + gµσnσnν

⇒ Pµν = gµν + nµnν ;

(1.3)

and since

Pµν V
µV ν = gµνV

µV ν (1.4)

if V µ,W µ are already tangent to Σt, Pµν is also called the spatial metric, even though it still

is a 2-form acting on the tangent spaces of M. It is worth noting that gµν can, in fact, be

thought as a true metric acting on Tp(Σt) if we use a map φt : M −→ Σt to pull it back to

the sub manifold Σt; the result is called induced metric, γij, and we will refer to it later [15];

details can be found in A. We now have the basic ingredients to start our formulation.

In what follow, we work in close analogy to Ashtekar and Magnon [14], as their formulation

does not rely on the concept of particles -which seems to be present only in very specific cases,

and our aim is to be as general as possible. For simplicity, we will work with a real scalar

6This is the cotangent bundle, the collection of all cotangent vector spaces.
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matter field7, more specifically, an action of the form

S = −1

2

∫
M

(
gµν∇µφ∇νφ+m2φ2

)
ε, (1.5)

where ε is the n-form volume element associated with (M, gµν). The equation of motion

obtained from extremization of (1.5) is the coordinate independent Klein-Gordon equation [19]

∇µ∇µφ−m2φ = 0. (1.6)

Note that up to this point everything was done truly coordinate independently -in the

sense that all of the above formulae are valid regardless of the coordinate system defined on

the manifold. We need to be more specific now. Let us define local coordinates (x1, x2, x3)8

on the hypersurface Σt. If the just mentioned set of coordinates changes smoothly from

surface to surface, this implies that (t, x1, x2, x3), with t = t̂(p), is a coordinate system at

each p ∈ M with associated basis vectors (∂(t), ∂(1), ∂(2), ∂(3))
9. Considering the vector field

discussed before, and requiring tµ(dx(α))µ = 0 for α = 1, 2, 3, it follows that tµ = (∂(t))
µ,

i.e, tµ is a coordinate basis in this system and orthogonal to all other axis. To see explicitly

that the basis coordinate 1-form dt maps vectors in Σt to 0, note that given a family of maps

Φt : Σt −→M, t ∈ R, and v ∈ Tp(Σt), it is immediate that

dt((Φt)∗(v)) = 0, (1.7)

where (Φt)∗ : Tp(Σt) −→ Tp(M) is the pushforward map, and the unfamiliar reader is again

advised to read Appendix A

Finally, rewriting (1.5) in terms of our newly defined coordinate system (t, x1, x2, x3)

S =
1

2

∫
M

[
(nµ∇µφ)2 − P µν∇µφ∇νφ−m2φ2

]
ε, (1.8)

7In fact, there seems to be no natural generalization of arbitrary spin fields to curved spacetimes [13]
8We restrict ourselves to 4 dimensions as well. The generalization to higher dimension is straightforward.
9The parenthesis on the indices indicate we are talking about vectors, and not their components; so

∂(α) = δσα∂(σ) and dx(α) = δασdx
(σ)
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with ε = N
√
γ dt∧dx1∧dx2∧dx3 -being ∧ the wedge product- where γ > 0 is the determinant of

the induced Riemannian metric γij on Σt, and P µν the projector discussed above. To put (1.8)

in a more “conventional” form for the eye of one who works with flat spacetime physics, we

write

S =

∫
R
L(t)dt, (1.9)

with the Lagrangian given by

L(t) =
1

2

∫
Σt

[
(nµ∇µφ)2 − P µν∇µφ∇νφ−m2φ2

]
N
√
γ d3x. (1.10)

Expressing nµ in terms of tµ and T µ by use of (1.2) one gets, from the definition of conjugate

momentum π,

π =
δS

δφ̇
=
√
γ(nµ∇µφ) (1.11)

is the momentum density [6]. At this point we are almost in position to canonically quantize

our theory since we already have a phase space M defined by a given pair [φ, π] of smooth

functions specified on a Cauchy surface, say Σt=0
10, both mapping Σ0 to the real numbers11.

M ≡ {[φ, π]|φ : Σ0 −→ R, π : Σ0 −→ R;φ, π ∈ C∞0 (Σ0)} . (1.12)

Let S be the vector-space of real-valued solutions to the Klein-Gordon equation (1.6). One

can prove that given a pair of smooth functions [φ0, π0] specified on a Cauchy surface Σ, then

there is a unique solution φ ∈ S such that φ = φ0 and
√
γnµ∇µφ = π0 on Σ. Due to this fact

we can identify both spaces, and work with the space of solution S, also independent of Σ, as

an alternative to the phase space M [12].

Keeping in mind our theory is still a classical one, and taking into account the sympletic

nature of the space of solution of Hamiltonian systems [16], we define, by analogy, a non

10In fact, the space of solutions will be independent of this Cauchy surface, as long as it is Cauchy [13]
11C∞0 is a function that can be differentiated infinitely many times, with all derivatives being continuous.
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degenerate 2-form: a bilinear map12 Ω : S × S −→ R

Ω (φ1, φ2) =

∫
Σ0

(π1φ2 − π2φ1)d3x

=

∫
Σ0

(φ2n
µ∇µφ1 − φ1n

µ∇µφ2)
√
γd3x,

(1.13)

with φ1, φ2 ∈ S, where in the last line we have used the definition (1.11). Using Stoke’s

theorem it is easy to check that the above statement is independent of the chosen slice Σ0.

We will follow a somewhat inverted approach where we first define the operators and then

construct the space of quantum solutions. With this goal in mind, to each element φ ∈ S

we associate an operator F (φ) that generates a ∗-algebra, the algebra of quantum mechanical

observables. Besides the properties of a ∗-algebra, we further require these operators to satisfy

self-adjointness: F (φ) = F ∗(φ) (1.14a)

linearity: F (φ1 + rφ2) = F (φ1) + rF (φ2) (1.14b)

commutation relations: [F (φ1), F (φ2)] = −iΩ(φ1, φ2)1 (1.14c)

with φ, φ1, φ2 ∈ S, and r ∈ R. Note how we are essentially creating a map from operations

done on the classical solutions to operations on the operators that generates the ∗-algebra,

which if identified with the quantum observables position and momentum, respectively, then

condition (1.14c) is nothing but the usual canonical quantization scheme, {·, ·} → −i[·, ·],

where one relates the commutator to the Poisson bracket. Indeed, let Φ ∈ S be a solution

to the classical Klein-Gordon equation, choose any Cauchy hypersurface, say Σt, with fixed t,

and let φ1, φ2 ∈ S be such that the point (φ2, π2) = (f, 0) and (φ1, π1) = (0, g), with f = Φ|Σt ,

and g =
√
γnµ∇µΦ|Σt just as discussed below (1.12). Denoting F (φ2) by Π(f) and F (φ1) by

12To be precise, this operator acts onM×M. Thus, for a given point [x, y] ∈M, Ω ([x, y], ·) is an arbitrary
linear combination of the dynamical variables.
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Φ(g) equation (1.14c) yields

[Φ(g),Π(f)] = iΩ(φ1, φ2) = i

∫
Σt

f(~x)g(~x)d3x. (1.15)

Here f, g are just test functions13. This is just the mathematically well-defined distribution

version of the more familiar equal-time commutation relation to which it gives meaning:

[Φ(t, ~x1),Π(t, ~x2)] = iδ3(~x1 − ~x2). (1.16)

To see why, note that Φ(t, ~x) is just a shorthand notation to Φ(g) =
∫

Σt
Φ(t, ~x)g(~x)d3x, the

same goes with Π(t, ~x), that is, Φ(g) as well as Π(f) are true operators, while the former

ones are operator-valued distribution and must, as such, be integrated against appropriate

test functions. Thus

[Φ(g),Π(f)] =

∫
Σt

[Φ(t, ~x),Π(t, ~y)]f(~y)g(~x)d3xd3y

=

∫
Σt

(
iδ3(~x− ~y)

)
f(~y)g(~x)d3xd3y

= i

∫
Σt

f(~x)g(~x)d3x,

(1.17)

where in the second step we have plugged in equation (1.16). It is worth emphasizing that the

above is not a derivation, but rather a justification of why equation (1.16) is used in place of

the more formal (1.15). The other commutators is similarly written as

[Φ(g),Φ(g′)] = 0 and [Π(f),Π(f ′)] = 0, (1.18)

or yet

[Φ(t, x1),Φ(t, x2)] = 0 and [Π(t, x1),Π(t, x2)] = 0. (1.19)

We have constructed what really looks like a set of observables out of some very formal

procedure starting from the classical theory. We now construct the so awaited Hilbert space H

of states, and we do so by equipping the space of classical solutions with some extra structures.

13See equation (1.12)
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Even though we do not talk about particles, being that concept ill-defined, we will consider, as

it is standard, that our field-operators are a sum of creating and annihilation operators acting

on some Fock space; what they create or annihilate is not of interest right now, these are just

names we give them. This Fock space, in turn, is build out of some first Hilbert space, on

which we focus now.

To begin with, we demand SC, the complexification of S, as a real vector space, to be an

identical copy of S. Not forgetting that S is a space with real scalar multiplication only, we

must first introduce in it a complex structure; let this structure be named J : S −→ S. For J

to be a complex structure means that J2 = −1. Note how this allows us to add complex scalar

multiplication to our otherwise real vector space. If x ∈ R then, since the scalar multiplication

by a real number is defined, Φ ∈ S ⇒ xΦ ∈ S. Now, let i be the imaginary unit, y ∈ R and

consider the vector space endowed with our complex structure (S, J). We define multiplication

by a complex scalar through

(x+ iy)Φ 7−→ xΦ + yJ(Φ) ∈ (S, J). (1.20)

It is consistent for if we multiply the above by the conjugate of x+ iy we get

(x− iy)(x+ iy)Φ 7−→ (x− iy)(xΦ + yJ(Φ))

7−→ x2Φ + xyJ(Φ)− xyJ(Φ)− y2J2(Φ)

7−→ (x2 + y2)Φ ∈ (S, J),

(1.21)

and we see that J is some sort of imaginary unit in our vector space. By further endowing

this space with a Hermitian inner product 〈·|·〉 and Cauchy completing it, i.e, for any sequence

{an}n∈N with elements in (S, J, 〈·|·〉) if

∀ε > 0 ∃` ∈ N; m,n > `⇒ 〈am − an|am − an〉 < ε (1.22)

then an → a converges and we demand that a ∈
(
SC, J, 〈·|·〉

)
. One can check that this space

now enjoys all the properties of a Hilbert space. As we will see later, J† = −J , implying
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iJ : SC −→ SC is self-adjoint with eigenvalues ±i. We can thus decompose SC into two

orthogonal eigensubspaces, one associated with the eigenvalue +i and the other with −i.

Finally, the Hilbert space H is identified with the eigensubspace of eigenvalue +i. And a

natural linear map K : SC −→ H that is the orthogonal projector of SC into its eigensubspace

H ⊂ SC, is naturally defined. One might also say this is the “one-particle space”; to whom

we ask: what is it that you call “particle”? A Fock-space F(H) can be constructed from this

first Hilbert space H; it is given by

F(H) =
∞⊕
k=0

SH⊗k, (1.23)

where H⊗0 = C is understood, SH⊗k is the symmetrised tensor product taken of H with itself

k times, and the overbar indicates Cauchy completion just as discussed around (1.22).

As with general relativity we will use the index notation, with indices summation running

from 0 to dim(H)−1 following the usual Einstein notation, as it turns out to be clearer. Hence,

the components of elements belonging to H and to the dual H∗ will be denoted with one upper

and one lower index, respectively, and the components of a map from tensor products of these

to the complex numbers will be denoted correspondingly by a mix of upper and lower indices.

An arbitrary element of the Fock space F is some object with finite nonzero entries and is thus

expressed as Ψ = (ξ0, ξ1, ξ2, ..., ξk, ...), with ξk ∈ SH⊗k, i.e, ξ0 ∈ C, ξ1 ∈ H, ξ2 ∈ H ⊗S H14

and so on; the j in ξj is not a component index, but rather a label telling us to which SH⊗j

it belongs - as such, its placement is not important, and we shall change its location at will

not to coincide with component indices whose placement are of great importance. Define the

operators Aσ,Bσ : F −→ F , for each σ ∈ H, whose actions on elements Ψ ∈ F is demanded

to satisfy

AσΨ = (σaξ
a
1 ,
√

2σaξ
ab
2 ,
√

3σaξ
abc
3 , ...). (1.24)

Just as a side note, an element of η ∈ H∗ can be contracted with an element ω ∈ H using

the Hilbert metric by means of η∗aω
a ∈ C which is just the inner product, so we can use the

14⊗S is just the symmetrised tensor product.
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metric to lower or rise indices15. In the same fashion, the action of Bσ on Ψ is to obey

BσΨ = (0, ξ0σ,
√

2σ ⊗S ξ1,
√

3σ ⊗S ξ2,
√

4σ ⊗S ξ3, ...). (1.25)

It is clear now why this operators receive the names they do; Bσ maps a state from
⊕j

k=0 SH⊗k

to another state in
⊕j+1

k=0 SH⊗k, and the action of Aσ is the other way around. This is what

they create or annihilate: the number of H’s necessary to describe the state. From the very

own definitions it follows that the operators are adjoint of one another, i.e Aσ = B†σ, or yet

〈Bσ · |·〉 = 〈·|Aσ·〉; also

[Aσ,Aτ ] = 0, [Bσ,Bτ ] = 0, and [Aσ,Bτ ] = 〈σ|τ〉1. (1.26)

To see that the above definition does indeed recover the notion of creation and annihilation

operators on the Fock space of a single harmonic oscillator, let a† be the creation operator

associated with the state Ψ1 ∈ H, and 1 ∈ C the vacuum state of the system, i.e, Ψ0 =

(1, 0, 0, ...) in F . From ordinary quantum mechanics we have that Ψn = (a†)n√
n!

Ψ0, which

from (1.25) results in

Ψ0 = (1, 0, 0, ...) := |0〉;

Ψ1 = BΨ1Ψ0 = (0,Ψ1, 0, 0, ...) := |1〉;

Ψ2 =
1√
2!

(BΨ1)2Ψ0 = 2−1/2BΨ1Ψ1 = (0, 0,Ψ1 ⊗Ψ1, 0, 0, ...) := |2〉;

Ψ3 =
1√
3!

(BΨ1)3Ψ0 = 3−1/2BΨ1Ψ2 = (0, 0, 0,Ψ1 ⊗Ψ1 ⊗Ψ1, 0, 0, ...) := |3〉

(1.27)

and so on. Of course, in this case we have only one type of state in H so the construction is

trivially symmetric, although one can show that it generalizes in an immediate manner to the

case where H is more generally populated, as it were.

Having defined these operators, we now make the last demand upon the whole structure

we are building, namely, that the field-operators F (φ) associated with the classical solution

15This action will obviously also complex conjugate the object it acts upon, so that ηaω
a = (ηaωa)∗ holds,

as it must.
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φ ∈ S must be a sum of the operators A and B just discussed, specifically, we demand that

F (φ) = Aφ̂ + Bϕ̂, being φ̂ ∈ H the element associated with the classical counterpart φ. This

seemingly soft requirement impose severe restrictions on the relation between the complex

structure J and the 2-form Ω defined by (1.13). From the commutation relation satisfied by

F (φ), equation (1.14c), we have

[F (φ), F (ϕ)] = [Aφ̂ + Bφ̂,Aϕ̂ + Bϕ̂]

= [Aφ̂,Bϕ̂] + [Bφ̂,Aϕ̂]

= (〈φ̂|ϕ̂〉 − 〈ϕ̂|φ̂〉)1

= 2iIm{〈φ̂|ϕ̂〉} = −iΩ(φ, ϕ).

(1.28)

here Im{·} indicates the imaginary part. This allows us to decompose the inner product

〈α̂|β̂〉 =
1

2
ω(α, β)− 1

2
iΩ(α, β) ∀α, β ∈ S (1.29)

where ω(·, ·) is a yet undefined real peace, and the multiplicative 1/2 is just because “why

not?”. Interestingly enough, the result (1.28) -together with the fact that (1.29) is to satisfy

the axioms of a Hilbert space inner product- completely fixes the inner product, and hence

the real part can be determined. Just to remember, Ω is antisymmetric and ω is real, linear,

and symmetric by definition. Linearity in the second slot of 〈·|·〉 yields

ω(α, J(β))− iΩ(α, J(β)) = iω(α, β) + Ω(α, β), (1.30)

since ω is real, by comparing real and imaginary parts we find

ω(α, β) = −Ω(α, J(β))− Ω(β, J(α)) (1.31)

The last equality is due to the symmetry of ω. Finally

〈α̂|β̂〉 = −1

2
Ω(α, J(β))− 1

2
iΩ(α, β) ∀α, β ∈ S (1.32)
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In terms of the map K, with α̂ = Kα ∈ H, and similarly for β, one defines

〈Kα|Kβ〉 = −Ω((Kα)∗, Kβ) ∀α, β ∈ S, (1.33)

where the restriction on J is incorporated in the definition of K itself.

The above result is of great importance. For one it shows that the Hermitian inner product

defined on H is completely determined by the complex structure defined on S. Secondly, since

Ω(·, J(·)) must be real, symmetric and positive definite, the complex structure itself is tied up

to the 2-form Ω as to satisfy these conditions. Therefore, our freedom in choosing a Hilbert

space related to the space of classical solutions and to the ∗-algebra we have constructed is

the freedom we have upon the choice of J , and there is no reasons whatsoever to believe

such a choice is unique. Looking carefully at the whole construction we can also see that

the definition of the operators A and B are also somewhat fixed by J via the last equation

in (1.26). In the next section we look at a specific case where the choice of a J can be said to

be natural, of course, given our definition of “natural”.

We emphasize that we have not considered our manifold to have any symmetry at all besides

the existence of the smooth vector field (1.2) - indeed, the conserved map (1.13) arose due to

symmetries of the Lagrangian and not of the spacetime itself, since it is valid on-shell only16.

In special cases where the manifold enjoys the privilege of a specific family of isometries,

the subspace H just mentioned may acquire a well known meaning: the space of positive

frequency solutions. Enough of our digression. Now that we have clarified the irrelevance

of the particle concept for the construction of the theory, we will turn to a more practical

discussion: that concerning stationary spacetimes, where, ironically, a particle concept is

available - even though not all observers will agree upon the definition.

16On-shell just means where the equation of motion (1.6) are satisfied.
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1.3 Stationary Spacetimes and Positive-frequency Solu-

tions

Well, in the last section a rather obscure formulation of quantum field theory was said to

be well posed even in the absence of the simplest of all possible symmetries: time translation.

That was done to clarify what is really fundamental in the construction, and therefore neces-

sary and unambiguous, and what might be interpreted in one way or another given different

procedures of observation. In this section we discuss how the concept of particle may arise

if the spacetime possess some sort of time translation symmetry, and more importantly, even

when this is the case, the concept is not unique and, as such, not fundamental. The so called

Unruh effect, named after W. Unruh(1976) is a realization of the aforementioned fact, i.e., the

arisen of the concept of particle.

Our starting point is now to assume that our spacetime has a somewhat more symmetrical

structure, specifically, we require (M, gµν) to be endowed with a timelike Killing vector field

χµ,

Lχg = 0, (1.34)

where Lχ stands for the Lie derivative along χµ. If this is the case, then, by its very own

definition, the metric tensor will not change if we move along orbits of the vector field χµ, that

is to say that if we identify a parameter, say t, of the family of isometries Υt : M −→ M,

t ∈ R, generated by χµ to be our time coordinate, then one cannot tell the difference between

“moments” of time, and time evolution will only depend on the interval ∆t = t−t′, independent

of t, t′. What a symmetrical spacetime!

Related to internal symmetries of the action (1.8), and to the aforementioned Killing

symmetry, there is a symmetric conserved tensor that goes by the name of stress-energy-

momentum tensor, or simply energy-momentum tensor Tµν = Tνµ,

Tµν = ∇µφ∇νφ−
1

2
gµν
(
∇σφ∇σφ+m2φ2

)
∀φ ∈ S, (1.35)
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with ∇µTµν = 0. Given this quantity we can calculate the energy of a given classical solution

by means of

E(φ) =

∫
Σ

χµTµνn
ν√γd3x, (1.36)

where the coordinate setup is as discussed in the previous section, nν is a unit timelike vector

orthogonal to the hypersurface Σ as before, and Tµν carries all dependence on the space S.

From the symmetry of Tµν , and the fact that χµ is Killing, it follows, by means of Stoke’s

theorem, that (1.36) is independent of the Cauchy surface Σ as it should be.

We go on and follow the whole process outlined in the last section in order to construct the

Hilbert space H by endowing S with a complex structure J and an inner product 〈·|·〉. The

difference now is that we can use the new existent symmetry to try and choose some physical

relevant J , some structure that, as pointed in the last paragraph of the previous section, can

be regarded as a “natural” choice. Note that, related to the any classical solution φ there is

an element φ̂ ∈ H, and thus, related to the Lie derivative Lχφ ∈ S along χµ, by the Stone’s

theorem on representation of one-parameter groups [12]

Hφ̂ = −Ĵ(Lχφ) (1.37)

where H : H −→ H is the generator of t translation along orbits of χµ, and Ĵ(Lχφ) is the

Hilbert space version of i times Lχφ. The above equation is just like Schrödinger equation,

since they arise in the same context of time translation, in fact, it is precisely the same

equation, so it seems quite natural to call our time translation generator H the energy of

the system, just as is the case in ordinary quantum mechanics. With this identification, we

can regard 〈φ̂|Hφ̂〉 as the energy of the state φ̂ ∈ H. This is still very ambiguous since 〈·|·〉

depends on Ω and J . To fix this ambiguity we require further the very “natural” condition

E(φ) = 〈φ̂|Hφ̂〉 ∀φ ∈ S, (1.38)

i.e, we want the expectation value of our “energy operator” in the state φ̂ to always equals the
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energy of the classical field E(φ). To see how this imposes a complex structure, let us define

the inner product on S by

(φ1, φ2) =

∫
Σ

χµT(µν)(φ1, φ2)nν
√
γd3x. (1.39)

This is just a generalization of the energy-momentum tensor (1.35) that can be evaluated in

two different solutions, it is a good candidate for a conserved inner product and is defined

for the sole reason of yielding us a complex structure fulfilling all our demands; that is why

we symmetrise it, the first term in the original expression might fail to be symmetric since

in general ∇µφ1∇νφ2 6= ∇µφ2∇νφ1, and we need T to be symmetric for the integral to be

independent of the chosen hypersurface and conserved. Since only the first term in (1.35) has

a potentially nonsymmetrical part, we write

(φ1, φ2) =
1

2

∫
Σ

[
∇µφ1∇νφ2 +∇µφ2∇νφ1 − gµν

(
∇σφ1∇σφ2 +m2φ1φ2

)]
χµnν

√
γd3x, (1.40)

where we have symmetrised the first term of the integrand.

Let us take a closer look at the first term only, and see how it behaves if we apply the Lie

derivative to one of its arguments. Remembering that Lχ = χµ∇µ we obtain

[∇µφ1∇ν(Lχφ2)]χµ = (χµ∇µφ1)∇ν(Lχφ2)

= (Lχφ1)∇ν(Lχφ2)

= −(Lχφ2)∇ν(Lχφ1) +∇ν [(Lχφ1)(Lχφ2)],

(1.41)

and upon integration

∫
Σ

[∇µφ1∇ν(Lχφ2)]χµnν
√
γd3x =

∫
Σ

[∇µφ2∇ν(Lχφ1)]χµnν
√
γd3x, (1.42)

the last term vanishing because the derivatives fall-off at spatial infinity; we literally integrated

by parts and discarded the surface terms. If we repeat a similar calculation to the other terms

in (1.40) we find

(φ1,Lχφ2) = − (Lχφ1, φ2) . (1.43)
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This means Lχ is an antisymmetrical operator with respect to the inner product (·, ·) and

therefore Θ = −LχLχ is self-adjoint by immediate use of equation (1.43) twice. At last, by

Cauchy completing the space (S, (·, ·)) we have a natural complex structure defined on it,

namely,

J = −Θ−1/2Lχ (1.44)

The above can be show to be the only complex structure compatible with Ω in the sense

of (1.32) and with equation (1.44) [14]. To see it is indeed a complex structure, note that

[Θ,Lχ] = 0 and therefore [Θ−1/2,Lχ] = 0 also holds, then

J2 = Θ−1/2LχΘ−1/2Lχ = Θ−1/2Θ−1/2LχLχ

= Θ−1LχLχ = −1,
(1.45)

in the last line we just employed the definition of Θ. The final observation we make is the

obvious dependence of J on the Killing vector field χµ, therefore, if more than one option of

such symmetries are available, more than one J can be chosen, and a different creation and

annihilation operators defined. Anyway, given one vector field, the choice is unique and the

vacuum expectation value stable, i.e, it will not evolve under evolution along orbits of the

chosen Killing timelike vector, even though it might disagree with different choices. Moreover,

if (M, gµν , χ
µ) is static in addition to stationary 17, then there is a decomposition of any

classical solution in positive and negative-frequency parts, i.e, φ = φ+ +φ−, with φ− = (φ+)
∗
,

where

Lχφ+ = −iωφ+, (1.46)

is a positive-frequency solution of frequency ω. Back to the definition (1.44), we see that φ± are

eigenfunctions of J , thus Jφ+ = −(−iω)/[−(−iω)2]1/2φ+ = iφ+ and Jφ− = −(iω/|ω|)φ− =

17Static meaning the metric is independent of the time variable.
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−iφ−. Denoting Kφ = φ̂+ ∈ H,

〈α̂|β̂〉 = −1

2
Ω(α, J(β+ + β−))− 1

2
iΩ(α, β+ + β−)

= −1

2
Ω(α, iβ+ − iβ−)− 1

2
iΩ(α, β+ + β−)

= −iΩ(α,Kβ) = −iΩ((Kα)∗, Kβ),

(1.47)

we have dropped the term −iΩ(Kα,Kβ) because of the property 〈α̂|β̂〉 = 〈β̂|α̂〉∗. Finally, in

a static spacetime

〈α̂|β̂〉 = 〈Kα|Kβ〉 = −iΩ((Kα)∗, Kβ) (1.48)

is just the usual Klein-Gordon inner product. If α = β is a mode whose positive-frequency is

given by σ > 0, then

〈α̂|α̂〉 = −iΩ((Kα)∗, Kα) = −iΩ(α−, α+)

=

∫
Σ

[
σ|α+|2

]√
γd3x ≥ 0

(1.49)

Note that 〈α̂|α̂〉 = 0⇔ α = 0.

We end this section, and the chapter, with a disclaimer: the theory developed up to

this point is a mathematical view on why such phenomena as the Unruh effect arises. It is,

therefore, not obliged in anyway to match experimental data. What we have done were just to

construct quantum mechanics in the most general way possible, without relying on any specific

symmetry that might be present in special cases alone, and in a way that would recover that

formulation in the correspondingly limiting cases we already have a good grasp of, since we

must recover from ours any description already known to be in consistent agreement with

experiments. By doing so we avoid unnecessary assumptions that in general lead to great

misconceptions, such as the notion that the particle concept is absolute, and can be more

certain of the final result, even though the whole concept might, in the future, be shown to

lack physical meaning, i.e, we are, at this point, given the absence of a good theory to work

in the regimes we are proposing to work, worried with mathematical consistency, since in a

sense, due to the technological difficulty of getting measurement data from some predicted
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phenomena, it is our sole guide in this journey.



Chapter 2

The Unruh Effect

Given all the very carefully constructed theory of the last chapter to outline the fundamen-

tal quantities in a possible descriptions of matter fields in curved spacetimes, we now turn to a

case where a slightly different situation occurs: we are given a time-orientable globally hyper-

bolic spacetime (M, gµν , t
µ) where not only different choices of Killing fields tµ are available,

but different choices might lead to different spacetimes via Killing horizon. No pragmatical

concept of particle, such as something detected by a “particle detector”, will be introduced

here. We will just analyze the observables behavior under different choices of a everywhere

timelike Killing vector field, and as a consequence, we restrict ourselves to the study of matter

field whose background is stationary, in fact, static. In those cases there is a natural choice of

inner product, as discussed in the previous section, and to avoid redundant information, 〈·|·〉

in this chapter stands for

〈φ1|φ2〉 = −i
∫

Σ0

(π1φ2 − π2φ1)d3x (2.1)

for any two solutions φ1, φ2 : F −→ F , where F is the Fock space being discussed, and

π =
√
γnµ∇µφ the conjugate momentum.

25
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2.1 Minkowski Observers

Consider then the spacetime (M, g, t), with coordinates (t, x, y, z), such that the metric is

given by

g = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz. (2.2)

Note that tµ = (∂(t))
µ is an everywhere timelike1 Killing vector field; simply due to the fact

the above metric has no dependence on t. We can thus write the equation of motion for the

theory (1.5), [
−∂2

t + ∂2
x + ∂2

y + ∂2
z −m2

]
φ = 0, (2.3)

choose an orthonormal basis of positive-frequency solutions {F`}, i.e,

LtF` = ∂tF` = −iω`F`, (2.4)

satisfying

〈Fi|Fj〉 = −〈f ∗i |f ∗j 〉 = δij

〈fi|f ∗j 〉 = 0
(2.5)

where ω` > 0 is the frequency with which F` oscillates in time, and finally, expand any solution

to the equation (2.3) as

φ =
∑
i

[
FiaM(Fi) + F ∗i a

†
M(Fi)

]
. (2.6)

Here the coefficients aM(Fi) and a†M(Fi) are the well known annihilation and creation operators

associated with the mode Fi, respectively. From equation (2.5) one gets

aM(Fi) = 〈Fi|φ〉

a†M(Fi) = −〈F ∗i |φ〉.
(2.7)

1Indeed g(∂(t), ∂(t)) = −1 < 0.
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One example of normalized positive-frequency solution is given by [19]

Fi =
1√

(2π)32ωi
e−iωit+i~k.~x (2.8)

with ~k.~x = xkx + yky + zkz.

It is worth noting that φ(t, ~x) is a Heisenberg operator-valued distribution, and its corre-

sponding Schrödinger picture operator is obtained by integration against a test function as in

the last chapter. This is pretty standard and nothing alarming has yet appeared.

2.2 Rindler Observers

We now consider the very same spacetime as in the last section but choose a different chart

of coordinates. Set local coordinates (η, ξ, x, y) so that

g = −e2aξ(a−2dη ⊗ dη − dξ ⊗ dξ) + dx⊗ dy + dz ⊗ dy, (2.9)

with a > 0 constant, −∞ < η, ξ, x, y <∞. In terms of the previous coordinates we have

t = a−1eaξ sinh(η) z = a−1eaξ cosh(η) x = x and y = y. (2.10)

This set of coordinates only cover one-quarter of the whole M, the so called right Rindler

wedge I = {z ∈ M; z > |t|}. We can use very similar coordinates, with t → −t, z → −z,

and identical ranges to cover the left Rindler wedge II = {z ∈M; z < |t|}2. The proper time

2The only difference being the Killing field direction, which is opposite in the regions I and II.
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along a trajectory of constant ξ, x and y, say, γ(λ′) = (λ′, ξ0, x0, y0), is just

τ =

∫ η

0

(
−gµν

dxµ

dλ′
dxν

dλ′

)1/2

dλ′

=

∫ η

0

(
−gηη

dη

dλ′
dη

dλ′

)1/2

dλ′

=

∫ η

0

(
e2aξ0

a2

)1/2

dλ′

= eaξ0
η

a

⇒ η(τ) = τae−aξ0 ,

(2.11)

that is, η is the proper time along the trajectory γ up to a linear factor. Tangent to this

trajectory is the vector

dγ(λ′)

dλ′
= (1, 0, 0, 0) = ∂η, (2.12)

that is, γ are orbits of the field b = ∂η, which is also a Killing vector by the immediate absence

of η in the metric (2.9)3. Its squared norm is4

g(b, b) = −a−2e2aξ

(
dη

(
∂

∂η

))2

+ gii

(
dxi
(
∂

∂η

))(
dxi
(
∂

∂η

))
= −a−2e2aξ < 0,

(2.13)

i.e, bµ is a everywhere timelike Killing vector field in our manifold, meaning our spacetime is

static and we can we use bµ as the tµ of the last section. Trajectories like the ones in (2.12)

are orbits of the vector bµ, thus, we can think of an acceleration related to the orbits, whose

only non vanishing component reads

Aξ = uν∇νu = (ae−aξ)bν∇ν [(ae
−aξ)bξ]

= (a2e−2aξ)(∂ηb
ξ + Γξηµb

µ)

= a2e−2aξΓξηη = ae−2aξ

⇒ |A(ξ)| =
√
g(A,A) = ae−2aξ.

(2.14)

3It is important not to mix things up; ∂(η) is a vector, not its components, and were it to be expanded in
the coordinate basis of the tangent space at some point of our manifold we would write ∂(η) = δµν∂(ν).

4As is standard, Greek indices run from 0 to 3 and Latin indices from 1 to 3.
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here Γξηµ = a−1 is the Christoffel symbol associated with the metric (2.9), and u = (ae−aξ)b

is the four-velocity, g(u, u) = −1. This very simple result tell us that every observer with

constant ξ experiment constant acceleration, moreover, were ξ to equal 0 then a is but the

magnitude of the proper acceleration, and the convenience of the coordinates chosen is re-

vealed. We are then led to work with trajectories like γ(τ) = (τa, 0, x0, y0), parameterized

by the proper time τ , which describe the motion of a uniformly accelerated observer with

proper acceleration of magnitude a, and as before, a, x0 and y0 are constants. Note also that

g(a, u) = 0, meaning the acceleration vector is orthogonal to the velocity.

Interestingly enough, even though the right Rindler wedge is just one-fourth of the Mink-

owski spacetime, it is a static, globally hyperbolic spacetime, and as such, (1.5) is well defined

here as well. Let us quantize the Klein-Gordon field (1.6) in this portion of M; it is worth

noting that the metric (2.9) has no curvature whatsoever, with the Ricci scalar R = 0 van-

ishing: we are, as we should, in flat spacetime. Equation (1.6) in the coordinates (η, ξ, x, y)

reads

a2∂2
ηφ =

[
∂2
ξ + e2aξ

(
∂2
x + ∂2

y

)
+ e2aξm2

]
φ (2.15)

or yet, in terms of τ

∂2
τφ =

[
∂2
ξ + e2aξ

(
∂2
x + ∂2

y +m2
)]
φ. (2.16)

From now on we use the rescaled coordinates (τ, ξ, x, y) whose convenience was already clari-

fied. The metric is just

g = −e2aξ(dτ ⊗ dτ − dξ ⊗ dξ) + dx⊗ dy + dz ⊗ dy. (2.17)

Note that (2.16) is separable, meaning the complete solution can be expressed as a product of a

spatial only and time only dependent parts, we make use of this feature below. To decompose

the field in terms of positive and negative frequencies in the right Rindler wedge, we use the
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coordinate independent definition of positive-frequency along a Killing field to be given by

LbfIω = bµ∇µfIω = −iωfIω. (2.18)

In our coordinates, since b = (1, 0, 0, 0), bµ∇µ = ∂τ . Thus

∂τfIω = −iωfIω, (2.19)

{fIω} represents our basis of positive-frequency solution in region I5. This basically defines

how the solution will generally depend on time; we go further and guess the dependence on

x, y to be of the same type, namely, eix⊥.k⊥ , where k⊥ = (kx, ky) and x⊥ = (x, y). The general

positive frequency solution is then

fIωk⊥ =
1

2π
√

2ω
gωk⊥(ξ)e−iωτ+ik⊥.x⊥ , (2.20)

where the ξ dependence is yet to be determined. The subscript I indicates the above solution

has support only on the right Rindler wedge. Plugging the solution (2.20) back in (2.16) result

in the following condition on the function gωk⊥(ξ)

[
−∂2

ξ + e2aξ
(
k2
⊥ +m2

)]
gωk⊥(ξ) =

[
−∂2

ξ + Veff
]
gωk⊥(ξ) = ω2gωk⊥(ξ), (2.21)

which is but a Schrödinger equation with effective potential Veff = e2aξ
(
k2
⊥ +m2

)
. This is

interesting because we can analyze (2.21) in light of our knowledge from wave mechanics.

Indeed, in the limit ξ → −∞, we have Veff → 0, that is, the above equation asymptotically

approach

∂2
ξgωk⊥(ξ) = −ω2gωk⊥(ξ), (2.22)

5We consider only the positive-frequency solutions because the field is actually decomposed in terms of
{fIω} and {f∗Iω}, and from (2.19) above we can see that if fIωis a positive-frequency solution, then f∗Iω is a
negative-frequency solution.
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as ξ → −∞. The solution in this limit is straightforwardly given by [5]

gωk⊥(ξ) ∼ 1√
2π
Ak⊥

(
eiωξ +Rk⊥e

−iωξ) , (2.23)

where Rk⊥ is just the phase shift factor due to reflection; note however that as ξ → +∞,

Veff also goes to infinity, i.e, there is an infinity barrier of potential ahead, and we know from

elementary quantum mechanics that such scenario allows no transmission of wave, everything

being reflected, |Rk⊥| = 1. We choose Ak⊥ as to normalize these solutions, i.e,

〈gωk⊥|gω′k⊥〉 = −〈g∗ωk⊥ |g
∗
ω′k⊥
〉 = δωω′

〈gωk⊥|g∗ω′k⊥〉 = 0.
(2.24)

Therefore

〈fIωk⊥|fIω′k′⊥〉 = −〈f ∗Iωk⊥ |f
∗
Iω′k′⊥

〉 = δωω′δk⊥k′⊥

〈fIωk⊥|f ∗Iω′k′⊥〉 = 0.
(2.25)

It was already mentioned that the Killing fields have opposite orientation in the two Rindler

wedges. To see this, we write ∂(τ) in the basis (∂(t), ∂(x), ∂(y), ∂(z)) in both regions. In region I

∂(τ) =
∂z

∂τ
∂(z) +

∂t

∂τ
∂(t) =

∣∣∣∣∂z∂τ
∣∣∣∣ ∂(z) +

∣∣∣∣ ∂t∂τ
∣∣∣∣ ∂(t) (2.26)

giving

g
(
∂(τ), ∂(t)

)
= −

∣∣∣∣ ∂t∂τ
∣∣∣∣ < 0. (2.27)

By convention, we say that any vector a satisfying g
(
∂(t), a

)
< 0 is future-directed, and as a

consequence, if g
(
∂(t), a

)
> 0, then a is past-directed. Now, the left Rindler wedge is obtained

from the right one by means of t→ −t and z → −z, as already mentioned, then, in region II

g
(
∂(τ), ∂(t)

)
=

∣∣∣∣ ∂t∂τ
∣∣∣∣ > 0, (2.28)

and ∂(τ) is past-directed in this region. Therefore, here we must have positive-frequency
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solutions defined by the Killing field ∂(−τ), then

fIIωk⊥ = f ∗Iωk⊥(t→ −t, z → −z), (2.29)

with support in region II only, is a positive-frequency solution in the left wedge for each ω > 0,

everything else being the same. Since it is already clear, we will just drop the subscript k⊥

from these.

Now we have a completely different, but for all reasons valid, description of the same field

in terms of another set of modes. The Rindler analogue to the expansion (2.5) reads

φ =


∑

`

[
fI` aRI(fI`) + f ∗I` a

†
RI(fI`)

]
Region I∑

`

[
fII` aRII(fII`) + f ∗II` a

†
RII(fI`)

]
Region II

(2.30)

where ` runs over all ω > 0, aRI , a
†
RI are the annihilation and creation operator of Rindler

quanta in region I, and aRII , a
†
RII are analogously defined for region II [18].

For a reason that will become clearer in a second, we would like to find a complete set

of Minkowski positive-frequency solution whose Rindler positive and negative-frequency parts

are known. We accomplish this by analytically extending both fIω and fIIω to the whole

Minkowski spacetime. First, let us introduce null coordinates defined by

U = t− z, V = t+ z

u = τ − ξ v = τ + ξ
(2.31)

Then, by the relation between Rindler and Minkowski coordinates (2.17), we can write

e−au =

a(−U) Region I

a(+U) Region II

eav =

a(+V ) Region I

a(−V ) Region II

(2.32)

the relations for region II follow from those for region I simply by letting t→ −t and z → −z,

as already mentioned.
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Some comments are in order here. Due to the very own definition of U and V it follows that

a solution is positive-frequency with respect to t if, and only if, it is also positive-frequency

solution with respect to U and V ; the same is true if we exchange U → u, V → v and t→ τ .

And, most importantly, it can be shown that any solution to the Klein-Gordon equation in

Minkowski spacetime is completely determined by its restriction to h1 ∪ h2, where h1 is the

hypersuface defined by V = 0, and h2 the one where U = 0. It is only at this point that we

understand why we did not bother to obtain the function gωk⊥(ξ) everywhere, but only its

asymptotic behavior at ξ → −∞. Indeed, from the (2.32) above we see that at h1 and h2 we

have ξ → −∞, bring together the fact that it is enough to know the restriction of a solution

on those surfaces, and we see why the asymptotic form is sufficient. We are then left with

the task of finding the restriction of a positive-frequency solution with respect to the inertial

time, or equivalently, with respect to U or V . From equations (2.20) and (2.23)

fIω =
A√

(2π)32ω
(eiωξ +Re−iωξ)e−iωτ+ik⊥.x⊥

=
1√

(2π)32ω
(e−iωu + αe−iωv)eik⊥.x⊥

=
1√

(2π)32ω
e−iωueik⊥.x⊥ ,

(2.33)

where α is just a phase, i.e, |α| = 1. It is worth noting that just as plane-waves in ordinary

quantum mechanics, the modes discussed so far are not normalizable, and thus, one is to

consider that wave packets will be constructed when needed for some quantities to converge,

and in this scenario e−iωv is to be understood as a wave packet sharply concentrated around

the frequency ω, and as such is ignored, since we are in the regime v → −∞ [11]. Using (2.32)

we can rewrite the above as√
(2π)32ωfIω = e−iωueik⊥.x⊥ =

(
e−au

)iω/a
eik⊥.x⊥

= aiω/a (−U)iω/a eik⊥.x⊥
(2.34)
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And from (2.29) we have√
(2π)32ωf ∗II(−ω) =

√
(2π)32ωfI(−ω)(u→ −u)

= e−iωueik⊥.x⊥

=
(
e−au

)iω/a
eik⊥.x⊥

= (aU)iω/a eik⊥.x⊥

= aiω
(
−e−iπU

)iω/a
eik⊥.x⊥

= eπω/aaiω/a (−U)iω/a eik⊥.x⊥ ,

(2.35)

where in the last line we have just used6 −e−iπ = 1. Therefore, the combination

√
(2π)32ω

(
fIω + e−πω/af ∗II(−ω)

)
= aiω/a (−U)iω/a eik⊥.x⊥ , (2.36)

is the analytic continuation of fIω across U = 0 and is well-defined, i.e, has support in the

whole surface V = 0. We now follow Unruh analytic argument to shows that the mode

F1ω ∝
(
fIω + e−πω/af ∗II(−ω)

)
(2.37)

has no negative-frequency part with respect to the inertial time. A positive-frequency Mink-

owski mode on this surface is written as

Fi(U, V = 0, x, y) =
1√

(2π)32ω
e−iωt+i

~k.~x

=
1√

(2π)32ω
e−i(ω+kz)U/2+ik⊥.x⊥ ,

(2.38)

which basically means that the positive-frequency Minkowski solutions are characterized by

being analytic and bounded in the lower half of the V -U complex plane at V = 0, since we

must have Im(U) < 0 for (2.38) to be bounded; negative-frequency solutions will obviously

be analytic and bounded in the half Im(U) > 0 on V = 0. Now, back to the equations (2.34)

6The reason why we use −e−iπ = 1 instead of −eiπ = 1 is because, as we will see, f(z) = eiz is taken to
be analytic in the lower-half plane Im(U) < 0. Thus we must have, for R 3 x > 0, eix = cos(x) − i| sin(x)|,
which means x ∈ [−π, 0]
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and (2.35), we have that

F1ω ∝ |U |iω/a, (2.39)

which is obviously bounded. Furthermore, if we take the branch cut of the power to lie in the

upper-half of the V -U complex plane, then F1ω is bounded and analytic in the lower-half V -U

plane, i.e, it is positive frequency with respect to the inertial time. If we normalize it, finally

F1ω(U, V = 0, x, y) =
1√

1− e−2πω/a

(
fIω + e−πω/af ∗II(−ω)

)
=

1√
2 sinh(πω/a)

(
eπω/2afIω + e−πω/2af ∗II(−ω)

)
.

(2.40)

If we follow the same procedure and analytically extend the modes fIIω across U = 0 as we

have just done with fIω, we obtain

F2ω(U, V = 0, x, y) =
1√

2 sinh(πω/a)

(
eπω/2afIIω + e−πω/2af ∗I(−ω)

)
, (2.41)

which is also purely positive-frequency with respect to the inertial time. Note that it is

consistent with (2.29), since F2ω(u) = F1ω(−u)

The relation between the Minkowski and Rindler modes are obtained by means of a Bo-

goliubov transformation, and is given by

aM(F1ω) =
1

Nω

[
aRI(fIω)− e−πω/aa†RII(fII(−ω))

]
(2.42)

and since F2ω(u) = F1ω(−u)

aM(F2ω) =
1

Nω

[
aRII(fII(−ω))− e−πω/aa†RI(fIω)

]
. (2.43)

where Nω = (1− e−2πω/a)1/2.

If |0M〉 is such that aM(F1ω)|0M〉 = aM(F2ω)|0M〉 = 0, then one can show that

|0M〉 =
∏
j

Nj

∑
nj

e−πnjωj/a|nj, I〉 ⊗ |nj, II〉

 , (2.44)

where j runs over a complete set of Rindler modes, |nj, I〉 is a state containing nj quanta in
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the mode (fIω)j and similarly for |nj, II〉.

This is a very interesting result. For one it tells us that there is a strong correlation

between the Rindler wedges, but the most surprising fact is that a Rindler observer restricted

to one of the wedges will see the pure state |OM〉 as mixed, just because, due to the causal

structure of the wedges, you cannot have access to the whole state, hence, what one see is but

an incomplete reality. That is, an observer in region I see |0M〉 with region II traced out, and

vice-versa.

Note the main relevance to the phenomenon, one uniformly accelerated observer will see a

Minkowski vacuum as a mixed state due to the causal structure, i.e, due to the geometry, of the

spacetime. This effect will occur whenever the manifold is divided into four parts, by Killing

horizons - as was the case here, where the spacetime was divided by the surfaces U = 0 and

V = 0. The intersection of such surfaces is the two dimensional surface (U = 0, V = 0, x, y),

and, as it turns out, whenever, in a n-dimensional spacetime, there is a (n − 2)-dimensional

surface to which a timelike Killing vector field is normal, this division will happen; the Killing

horizons whose intersection give rise to this surface is called a bifurcate Killing horizon, and

might obviously happen in curved, as well as in flat, spacetimes.



Chapter 3

Nonequilibrium Thermodynamics

Throughout the text we have been extremely careful when talking about particles. Besides

examples, the first appearance of such concept was to describe the Unruh effect, that is,

to show how the concept itself seems to be disputable. This is obviously a problem: we

observe particles, and they seem to be quite real in the sense that everyone agrees on their

properties, for instance, that the vacuum state of a field is devoided of particles. The goal

of the present chapter is to take the concept away from that positive-frequency stuff, which

looks quite abstract, and try and build a more pragmatical way of seeing particles, after all,

independently of what the math might say, a detector will either click or not. After doing so,

we briefly discuss the system whose properties we are going to investigate - and since we are

looking for aspects of the Unruh effect besides those of a simple thermal bath, we constantly

compare them.

3.1 Point-like Detector Model and Setup

Since we are much more interested in the event of the detection itself than anything else,

a simple boolean answer is enough, hence we use as detector a two-level fermionic system,

known as the Unruh-Dewitt detector model [18]. Let the basis be {|0〉, |1〉}, where |0〉 is the

ground state of our system. The Hamiltonian of the system is taken to be

HD = ΩA†A, (3.1)

37
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where A†, A are ladder operators satisfying

A|0〉 = A†|1〉 = 0, A†|0〉 = |1〉 and A|1〉 = |0〉, (3.2)

a consequence of the anticommutation relation {A†, A} = 1. The Hamiltonian is understood

to generate time translation along a giving Killing vector field χ, that is, the Schrödinger

equation we are interested in is,

HDϕ = iLχϕ, (3.3)

where ϕ ∈ HD is an arbitrary state of the system, and HD the Hilbert space of states spanned

by {|0〉, |1〉}.

The idea is that this system is immersed in a background scalar field Φ, inasmuch as the

definition of the interaction is basically the definition of the whole detector. The interaction

Hamiltonian is taken in analogy with [18] and is given by

HI(t) = ε(t)

∫
Σt

Φ(t, ~x)[Ψ(~x)A+ Ψ∗(~x)A†]
√
−gd3x, (3.4)

where t is the parametrization of the isometries generated by the Killing vector χ, ε(t) is a

time-dependent coupling constant, and Ψ(~y) is a smooth function defining the spacial profile

of our detector, which must be of compact support for we are going to use it as a test function

to integrate the fields against [18]; later we will see that this function can also be used to give

rise to the iε-prescription of regularization [23]. Note also that
√
−g is the determinant of the

metric itself, as opposed to the induced metric on Σt which is Riemannian, and thus positive.

We need time-dependent coupling to filter out any unwanted excitation of the detector due to

the fact that we are turning it on instantaneously, we will discuss more about this bellow.

Since at this point our sole aim is to model the point-like detector, we will not bother with

the explicit form for the Hamiltonian HF of the Field. Therefore, for the total system, we

have

H = HI +HD +HF , (3.5)
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as the generator of t translation.

Thus, if we take our initial state to be |st→−∞〉, then to first order in ε, the evolved state

is

|st〉 =

{
1− i

∫ t

−∞
HI(`)d`

}
|s,−∞〉, (3.6)

|st〉 is to be understood as a interaction picture operator, as should be clear from (3.6).

There are some problems related to turning on and off the detector, namely, divergences

and unwanted excitation due to sudden switch on [21] [22]. It is of our interest then, to keep

the detector on for a finite amount of proper time and do the switching process adiabatically,

i.e, very slowly. Thus, for time scales much greater than that characteristic of our system,

|t| > T >> Ω−1, ε(t) should vanish and we can extend the upper limit in the integral to +∞

in a good approximation, further, we require ε(t) to be essentially constant for |t| < T , since

it is indeed, just to avoid the aforementioned problems. Let the initial state be |s,−∞〉 =

|n〉 ⊗ |0〉 = |n; 0〉, i.e, the field is in a state with n quanta of some state χ, and the detector

is in its ground state. Basically we slowly turn on the detector, leave it on for an interval of

time T , and then slowly turn it off again. The result is

|st>T 〉 = |n; 0〉 − i
∫
eiΩ`ε(`)Φ(`, ~y)Ψ∗(~y)

√
−gd3x|n; 1〉

= |n; 0〉 − i
∫
fΦ(`, ~y)

√
−gd4x|n; 1〉

= |n; 0〉 − iΦ(f)|n; 1〉

= |n; 0〉+
[
a(Γ∗−)− a†(Γ+)

]
|n; 1〉

(3.7)

with the test function f = eiΩ`ε(`)Ψ∗(~y)1, and Γ+(Γ−) is the positive(negative) part of the

solution to the classical equation associated with the source f . Since ε is almost constant, f

is almost purely negative-frequency, i.e, Γ+ ≈ 0 and γ = Γ− ≈ f :

|st>T 〉 = |n; 0〉 − i|1〉 ⊗ a(γ)|n〉

= |n; 0〉 − i
√
n〈γ|χ〉|1〉 ⊗ |n− 1〉,

(3.8)

1Ψ∗(~y) guarantees that f has compact support.
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in accordance with the definition (1.24). What (3.8) is saying is basically that, to first-order,

there is a probability n|〈γ|χ〉|2 of the detector getting excited by absorbing one quantum, and

thus lowering the energy of the field; it is this phenomenon that one would call “detection of

a particle”, and therefore justify our detector model2.

3.1.1 Two-qubit System; Extended detector

This particle detector concept, known as Unruh-Dewitt detector model, although being able

to probe the existence of excitations for trajectories of constant proper acceleration, it cannot

tell, in the massless, real scalar field case, the difference between an uniformly accelerated

observer and a static one in contact with a heat bath at the corresponding temperature3;

it can be shown that the two-point Wightman correlation functions associated with both

situations are indeed equal [5]. This renders any attempt to study properties related to the

irreversibility of the phenomenon being discussed fruitless. It was pointed out in Ref. [8]

that in the case of two detectors with uniform proper acceleration perpendicular to their

separation, there exists circumstances, i.e, a set of parameters, for which differences in the

Unruh and heat bath cases can be seen, in particular, they observed such variances studying the

amount of entanglement between the two detectors, showing that sometimes the accelerated

detectors would get entangled while the static ones remain uncorrelated; the opposite can also

be achieved.

Inspired by the aforementioned work, our goal in this chapter, and one of the main goals

of the work as a whole, is to verify if any distinction can be made when one is concerned with

nonequilibrium thermodynamic properties such as the total entropy change in the equilibration

process, and how much of this entropy is due to irreversibility. Hence, our system will consist

of two independent Unruh-Dewitt detectors in four-dimensions, separated by a distance L

along the z-axis, both with uniform and identical proper acceleration a along the x-axis. The

2This treatment is due to Wald, of course we could just workout the integral in the usual manner, and we
might do so in the next sections, however, the elegance of this procedure speaks for itself.

3By this we mean that an uniform proper acceleration a has an associated temperature given by T = a/2π.
We use a and T interchangeably.
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Hamiltonian for the two detectors system follows simply by adding the individual ones. As an

example, to expose the notation, the free Hamiltonian of the two independent detectors reads

HD = Ω
(
A† ⊗ 1

)
(A⊗ 1) + Ω

(
1⊗ A†

)
(1⊗ A)

= ΩA†(A)A(A) + ΩA†(B)A(B),
(3.9)

as can be seen we use a subscript to indicate the system upon which the operator acts; we

choose to arbitrarly place the system A at z = 0 and the B system at z = L, since the

distance of separation is perpendicular to the acceleration, in the end what matter is the

difference ∆z = L between the detectors only. In Ref. [29] the authors put forward a model of

extended detector to investigate the inhomogeneous nature of the temperature at equilibrium.

Following their convention, we call this two-qubit system an extended detector with size L

-note this size is perpendicular to the acceleration direction, being the detector dimensionless

in the direction of the acceleration as to avoid the complexity of inhomogeneous temperature.

3.2 Entropy, System Dynamics and Entanglement

At this point we have discussed the Unruh effect and formulated some sort of extended

particle detector. Here the basic ingredients we will be using to study the behavior of our

system are outlined. Our main goal is to study nonequilibrium thermodynamics, i.e, the change

in the entropy of an open system, and what are the contributions from entropy production

and flux. Among some interesting aspects to be investigating is how the quantum correlation

between such detectors relates to the irreversibility of the process.

3.2.1 Degree of Irreversibility

To begin

dS

dt
(t) = Π(t)− Φ(t), (3.10)

is the rate of change of the entropy of the system, Π is the entropy production and Φ is the

flux of entropy from the system to the environment. The second law of thermodynamics is
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thus expressed as Π ≥ 0, being zero only for reversible processes.

The first problem arise right when we try to define entropy quantitatively, since no single

definition is avaible in quantum mechanics; in fact there are even different, inequivalent ways

of obtaining the quantum entropy of a system 4 and, in general, they represent different

quantities. As is usual, we will work with the entropy of a density matrix given by von

Neumann [30].

S(ρ) = tr(ρ ln ρ), (3.11)

where ρ is the density matrix. This definition is nothing but a generalization of the the

Shannon entropy of usual classical information theory, that is, it is a measure of the level

of ignorace about the state of the system; for instance, if the state of the syste is pure, the

above definition vanish. However, for a system in thermal equilibrium the above definition

reaches a maximum, meaning a thermal state is a state where the information held about the

system is minimum. This is interesting, because even though the von Neumann entropy is

not directly related to the thermodynamical entropy, just like the latter, the former is also

maximum for a system in thermodynamic equilibrium [31][27]. Since the density matrix ρ is

time-dependent, so is S(ρ), in contrast with the definition of entropy from thermodynamics,

since thermodynamic potentials are time-independent, being defined for equilibrium states

only. Also, using this form for S we can derive fluctuation theorems [33]. For this reason, we

may call the above definition thermodynamics entropy whenever ρ is a Gibbs state [32].

Back to our problem, to describe its dynamics, we need an evolution map that maps

density matrices into density matrices. The most general map consistent with this require-

ment and also with all the postulates of quantum-mechanics is the generator of a dynamical

semigroup [24], in general, presented as a master equation, which, in the interaction picture

reads

d

dt
ρ(t) = L(ρ(t)), (3.12)

4Rényi entropy and Tsallis entropy are two examples.
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here ρ is the reduced density matrix of the system weakly coupled to an environment5, and L

is a superoperator that satisfy, among other properties, (i) there is an invariant state ρ0 such

that L(ρ0) = 0 and (ii) tr(L(ρ)) = 0, tr(ρ) = 1, where tr(·) stands for the trace in the space of

the system alone - this is much weaker than the unitary condition of closed quantum systems.

One can show that [34]

S(L(ρ)||ρ0) ≤ S(ρ||ρ0), (3.13)

where S(ρ||σ) = tr(ρ ln ρ− ρ lnσ) is the relative entropy. Put together the above result with

the fact that Π ≥ 0 and we can define

Π(ρ) = − d

dt
S(ρ||ρ0) ≥ 0, (3.14)

being positive due to (3.13) -to show that this is indeed an entropy production in the sense that

it satisfies fluctuation theorems well known from classical statistical mechanics is a bit more

complicated [33]. Using the above definition we can separate the two contributions shown

in (3.10) that, together with the definition of S(t) given by (3.11), yields

Π(ρ) = tr(−L(ρ) ln ρ+ L(ρ) ln ρ0) (3.15a)

Φ(ρ) = tr(L(ρ) ln ρ0), (3.15b)

where we have used (3.12). Those are rates of change. To obtain the total entropy produced

up to time t we just integrate the first equation in (3.15), let us call this quantity Σ,

Σ(t) =

∫ t

0

Π(t′)dt′. (3.16)

Similarly, for the flux of entropy from the system to the environment

Υ(t) =

∫ t

0

Φ(t′)dt′. (3.17)

Since at equilibrium both the entropy production and flux vanish, so as long as we give

5As in (3.5) of the last section, the system here is described by HD and the environment by HF
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enough time for the system to reach equilibration, we might get the total entropy in such

a process by extending the integration limit to infinity. In those cases we drop the time-

dependence indication and denote the total entropy produced in a equilibration process as

Σ = Σ(t→= +∞), and similarly for total flux.

3.2.2 Lindblad Markovian Master Equation

In this chapter we will be investigating the behavior of the above quantities when the system

in question is two uniformly accelerated atoms interacting with a massless scalar field in its

ground state as seen from an inertial perspective. To chive this goal we need the explicit form

of the generator L for our specific case. The derivation is pretty standard and we just discuss

briefly the physical assumptions we are making -a more thorough derivation can be found in

Appendix B. The starting point is the von Neumann equation written for two independent

systems described by (3.5), as already discussed. In the interaction picture

d

dt
ρD(t) = −

∫ t

0

dstr[HI(t), [HI(s), ρ(s)]], (3.18)

with HI(t) being the interaction picture version of the Hamiltonian HI . In the weak-coupling

limit the system affect the environment only negligibly, allowing us to separate, at all times,

ρ(t) ≈ ρD(t)⊗ ρ0, being ρ0 the state of the bath. Thus

d

dt
ρD(t) = −

∫ t

0

dstr[HI(t), [HI(t− s), ρD(t)⊗ ρ0]], (3.19)

which is local in time, but non-Markovian.

Born-Markov approximation: the time scale at which our system varies, τD, is too long

compared to that of the environment, τF , i.e, τD � τF and we can discard memory effects. We

can thus take the limit t → +∞ in the above equation since the integrand will drop to zero

for s� τF ; because the Wightman function is very concentrated and ε(t) almost constant, we

can also set ε(t) = ε0, given that any possible deviation would be erased by the vanishing of

the Wightman function.
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After the Born-Markov approximation, L is still not guaranteed to generate a semigroup.

To this end we perform a further approximation in which we neglect rapid oscillating terms

in (3.19). The final result is of the form

d

dt
ρD(t) = L(ρD) = −i[Heff , ρD] +D(ρD), (3.20)

with Heff = H†eff being the effective Hamiltonian of the system. The first term is related to

the unitary evolution while the second takes care of dissipation and is the sole responsible for

equilibration; we are only interested in the second one and should disconsider the first. The

explicit form of D(ρ) in the interaction picture 6 reads

D(ρ) = ε2
0

∑
i,j=A,B

{
γij(Ω)

(
A(i)ρA

†
(j) −

1

2

{
A†(j)A(i), ρ

})
+ γij(−Ω)

(
A†(i)ρA(j) −

1

2

{
A(j)A

†
(i), ρ

})}
,

(3.21)

where A,B label the two systems, and γ(Ω) is a positive matrix obtained from the two-point

correlation function of the field. As shown in the Appendix B,

γ(Ω) =
1

2π

Ω

1− e−2πΩ/a

 1
sin( 2Ω

a
sinh−1 aL

Ω
)

ΩL
√

1+a2b2/4

sin( 2Ω
a

sinh−1 aL
Ω

)

ΩL
√

1+a2b2/4
1

 . (3.22)

Looking at the above equation we can see that the off-diagonal terms are the ones respon-

sible for the interaction between the systems A and B; in fact, as the separation L becomes

larger and larger compared to Ω−1, the multiplying matrix above approaches the identity

γ(Ω) =
1

2π

Ω

1− e−2πΩ/a
, (3.23)

and the whole dynamics is reduced to that of two independent detectors, consequently, in the

large separation limit case, no distinction can be made between a bath of Rindler particles

and a heat bath at same temperature since the matrix γ(Ω) is precisely the same for both

cases, again, at least for a real, massless scalar field.

6The form in the Schrödinger picture is the same.
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3.2.3 Entanglement Profile

Going back to the equations (3.15a) and (3.15b) of Subsection 3.2.1, we can now obtain

the sought after quantities by use of the explicit form of L given by (3.21). However, before

looking into those, and since one of our final aims is to compare them with the entanglement

dynamics of the system, we will brifly look into the latter. In [25] Z. Ficek shows that

two inertial subsystems A and B, in the same configuration as ours, can get entangled by

spontaneous emission during equilibration when the correlation functions are those from a

heat bath in a Gibbs state. Because of this, both detectors are taken to be initially in the

uncorrelated, excited state ρ0 = |00〉〈00|. We use the entanglement monotone concurrence,

C[ρ], as a quantifier of the amout of entanglement present in a state; it ranges from 0, for pure,

separable states, to 1, for maximally entangled states. For a two-qubit system it is defined

as [26]

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} , (3.24)

where λi, i ∈ {1, 2, 3, 4}, are the square roots, in descending order, of each eigenvalue of the

non-hermitian matrix ρρ̃, and the matrix

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (3.25)

is known as the spin-flipped version of ρ; σy is the usual Pauli matrix.
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Figure 3.1: Maximum of concurrence attained during time evolution. On the left we have
the profile of concurrence for the Unruh effect, CUN(ρ), and on the right the heat bath case,
CHB(ρ), with temperature T = a/2π.

Obtaining an analytical solution for the general case proved far too tricky and a numerical

analysis was required. With this in mind, it is worth noting that the energy scale of our

system is fixed by the frequency Ω defining the Hamiltonian, thus, when we talk about a large

acceleration a, this is to be understood as measured in units of Ω. Similarly, we measure the

separation distance, or detector size, in units of Ω−1, the characteristic wavelength. Finally,

whenever reference is done to the proper time, we are talking about the dimensionless rescaled

proper time variable t→ (Ωε2
0/2π)t.

Remember that the initial state of our two-qubit system is taken to be ρ0 = |00〉〈00|, an

uncorrelated state, C[ρ0] = 0. Now, our final state is reached at equilibrium with a thermal

bath of particle, after complete decoherence in the energy eigenbasis, that is, the concurrence

of the final state is also zero. Since the concurrence can attain no negative values, we see that

it will certanly reach a maximum value, even if this is zero. Thus, in Fig. 3.1 we have plotted

the maximum value of the concurrence, i.e, the maximum amount of entanglement present

in our density matrix reached during the relaxation process to equilibrium with the given

parameters. One can easily see that indeed, as was found in [26], for certain parameters, the

atoms do get entangled by the process of spontaneous emission, also, the profile for the Unruh
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setting is pretty similar to the heat bath case as one would expect; however it is clear that

some differences do exit. Even though there is sudden birth of entanglement, due to the loss

of coherence the system is undergoing, the concurrence does not reach high values, making it

even harder to quantify the difference just by looking at Fig. 3.1. As a final comment, note

how the properties of the two setups become more and more indistinguishable as L increases;

this holds true for any property of the system.

0.5 1.0 1.5 2.0 2.5
L

0.6

0.8

1.0

1.2

1.4

1 a

0.010

0.005

0.000

0.005

0.010

Figure 3.2: This shows the difference in the maximum concurrence between the Unruh and heat
bath cases, CUN(ρ) − CHB(ρ). Thus, the red (blue), or positive (negative), region, indicates
the set of parameters for which in the Unruh case more (less) entanglement is generated than
the heat bath counterpart. Finally, the green area indicates parameters for which the behavior
of the two setups are identical. The maximum difference happens around the point a ≈ 1.25Ω,
for both cases.

Fig. 3.2 conveys the information of the previous figure in a rather neat way. While in

Fig. 3.1 there seems to be no critical values or alike, we can now clearly see that the ΩL = 1

line sort of divide the image in two. This is the case where the separation of the detectors

precisely match the wavelength of the particle they where designed to detect, meaning the

emission of a quanta by one of the systems is more likely to interact with the other detector

in a coherent manner, rather than dissipatively. If the separation distance is shorter than the

characteristic wavelength of the system, ΩL & 1, then, given any temperature, the accelerated



CHAPTER 3. NONEQUILIBRIUM THERMODYNAMICS 49

system will always attain a higher degree of entanglement than the static case. However, if

ΩL . 1, than the static case will always produce more entanglement than the accelerated

counterpart. When it comes to entanglement, the separation is thus at the heart of the

difference between accelerated and static observers, i.e., given a detector, one cannot move

between the red and blue regions of the figure just by changing the acceleration parameter.

What is more striking about the above is that when ΩL ≈ 1 there is no temperature for which

one can distinguish the two cases under study. So, in general, if a detector interacts with

frequencies lower (higher) than its energy gap, than the accelerated (static) setup will hold

more coherence than its counterpart, or at least as much as, for any value of acceleration.

3.2.4 Entropy Production and Flux Profiles

Now we employ equations (3.15a) and (3.15b) to calculate the production and flux rates.

However, we are interested in studying thermodynamics, and as discussed in subsection 3.2.1,

we cannot say that Equation (3.11) gives us the thermodynamic entropy of the system unless

it is in an equilibrium state, which in our case, will happen only as t → +∞, that is, the

initial state of the system, as well as the evolving state during all times, are not equilibrium

states, so that (3.11) is not a thermodynamical quantity -it is the information entropy. To fix

this, consider for now that both the initial and final states of a given system are equilibrium

states, say ρi and ρf respectively. Then the quantity

S(t) = Σ(t)−Υ(t) (3.26)

where S =
∫
S(t)dt, Υ is the flux of entropy from the system to the reservoir and Σ the entropy

production, is a well defined thermodynamic entropy difference during the process, even if

nonequilibrium states where accessed. This is obtained from Equation (3.10) by integration.

In our case, even though the final state is a equilibrium state, the initial state is not, so

that Equation (3.26) is still not applicable. What is usually done is to consider the relative

entropy between the initial nonequilibrium state ρ0 and the initial equilibrium state ρi defined
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as the Gibbs state with the initial Hamiltonian, which in our case is HD. That is, first we

take into account the entropy produced in the process of taking the system from the state ρi

to the state ρ0, and then we subtract the result from Σ(t)

Σ(t) =

∫ t

0

Π(t′)dt′ − S(ρ0||ρi) (3.27)

with ρi = exp(−βHD)/tr[exp(−βHD)]; since when calculating Σ the system was considered to

be initially in equilibrium. However, after all that, we see that the relative entropy S(ρ0||ρi)

is a constant, and because we will be working mainly with differences in these quantities, we

will just drop the constant S(ρ0||ρi) without any change in the behavior of the system, and

call Σ and Υ thermodynamic quantities. To finish this discussion, note that our detector is

uniformly accelerated, that is, there is a constant injection of energy into the system. But

we are not taking into account the change it causes to the Hamiltonian, and therefore, we

are ignoring the work done on the system by this force. We do this because our system is

accelerated eternally, which would imply the divergence of this work. Moreover, by imposing

the trajectory of a uniformly accelerated observer on our system in the way we did, we are

only considering the kinematics effects associated with it, and not the dynamical properties

of the entity causing this acceleration. Thus, in what follow, we are not accounting for the

energy involved in the acceleration process; in fact, this energy is precisely the energy of the

particles measured by the accelerated observer -as well as the energy of the emitted particle

as seen by a inertial observer-, so that in essence, this energy is being considered implicitly.

Following our protocol, we will subtract the heat bath total entropy from the accelerated

system and plot the difference, looking for deviances from 0, which would otherwise indicate

that there is no difference at all.
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Figure 3.3: Total entropy as shown in Equation (3.26). In the left we have the profile for
both accelerated and static systems; the inner left accounts for the Unruh effect, while the
inner right, for the static system case. On the far right we have the difference of the first two,
showing how much the total entropy variation of the two system are similar.

Entropy variation of a system is closely related to the loss of coherence in quantum systems.

Coherences are a basis dependent quantities, but since we are working with thermodynamics,

there are arguments to choose the energy eigenbasis of (3.9) as a preffered basis to this discus-

sion. In fact, for a Gibbs state -whose entropy is maximum[27]- the coherences in this energy

eigenbasis is inexistent. Giving the discussion of the last subsection one would therefore expect

to see a difference in entropy variation in the two regions of Fig. 3.1, i.e, the accelerated two-

qubit system should have an inferior increasing of total entropy whenever the entanglement is

stronger, and vice-versa. However, Fig. 3.3 seems to tell another story. Indeed, what we see

is that even though very small variations can be seen, the entropy variation of an accelerated

observer and a static one in contact with a heat bath at corresponding temperature seems to

bear no resemblance to 3.1, i.e, it does not seems to matter if a system get entangled while the

other does not: the variation in entropy will be roughly the same. This is not that alarming

if we remember that what is shown in the figure is the total entropy of the whole extended

detector system, while what is shown in Fig 3.1 are correlations internal to the detector.

The data in the above image appears in the left hand side of Equation (3.26), and can

therefore be separeted into the two contribuitions. According to a recent work [28] quantum

coherence plays an important role in the entropy production of an nonequilibrium system. Let
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us then look at the entropy production of the two settings.
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Figure 3.4: Total entropy production. In the inner left (right) we have the accelerated (static)
system. On the far right we have the difference of the first two, that is, Σ = ΣUN − ΣHB

.

The entropy production of the two settings indeed differ in a manner consistent with the

Fig. 3.1. To start with, by comparing the two images we can see that indeed less entropy

is produced by the system capable of getting entangled. We still see a critical separation

distance very close to the wavelengh, ΩL ≈ 1, but somewhat transladed to the left a bit,

meaning that separations comparable to Ω−1 will have the accelerated system producing more

entropy. But in general we observe what we would expect if we were analysing the entropy

produced by each qubit, i.e., a behavior in constrast with the concurrence. Now, if ΩL < 1,

then then accelerated detector will produce more entropy and will not get entangled, as one

should expect; if ΩL > 1, then the opposite is true. It is interesting to point that if we

consider our two-qubit system to be just one extended detector, wich it is, in fact, than we

can say that we are using a single detector to probe differences between the Unruh setting

and the Heat bath one. This is stricking because we have already commented that a single

point-like Unruh-Dewitt detector cannot probe any differences in the setup under discussion,

that is, just by changing the internal structure of the detector, specifically, by allowing it to

have a dimension perpendicular to the acceleration direction7, we are able to distinguish the

7It is important not to have dimensions in the direction of the acceleration for it would lead to an inho-
mogeneous temperature across this dimension [29].
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two setting just by looking at the entropy of the detector. Moreover, this extended detector

shows an entropy production that reflects the correlation among its internal parts.

Knowing S and Σ one can obviously determine Υ by use of (3.26). In our case, the fact that

the entropy production does behaves differently for the two system and the total entropy does

not, implies that the entropy flux should also behave in a different manner as to compensate

for the excess of produced entropy, but for completeness we present the entropy flux below.

Thus one can distinguish between an accelerated observer and a static one in contact with a

heat bath by looking at the entropy production or the entropy flux, but not buy looking at

the total entropy variation only. Expliciting the role of coherence in entropy production and

flux when distinguishing an accelerated from an ordinary static observer.
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Figure 3.5: Total entropy flux from the system to the environment. In the inner left (right)
we have the accelerated (static) system. On the far right we have the difference of the first
two, that is, Υ = ΥUN −ΥHB

.





Chapter 4

Concluding Remarks

The Unruh effect is one of those phenomena that seems to be inexplicable with our current

understanding of physics, in fact, there is no consensus in the scientific community regarding

the physical meaning of the calculation leading to the effect. It must be clear, as discussed

with detail in Chapter 1, that no mathematical inconsistencies exists in the derivation, and

that all, if any, claim against the effect must rely on the physical interpretation of the obtained

result, i.e., even though the math is saying that a uniformly accelerated observer does heat

up where an inertial observer sees zero temperature, how this connects to the physical world

is still an open question. Without the aid of direct observation of the effect, the physicists are

left with the task of studying the implications of such phenomenon in other quantities they

are already able to observe on the lab, and it is in this direction this thesis walks.

The verification that indeed the Unruh and Heat bath setting are not equivalent, giving

us some way to separate what is really due to the vacuum entanglement and what is just

due to a thermal bath, open a new door on trying to find specific behavior that would differ

from known results, and as such, shed light into the physics involved in phenomena that lies

in the edge of quantum mechanics and the classical theory of spacetime, perhaps, extending

our understanding of this intersection. Guided by this line of thought, this work dives into

the relation of entropy of entanglement between the vacuum and the two probes and the

entanglement between the probes itself.

Interestingly enough, even though a Unruh-Dewitt detector alone cannot distinguish be-
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tween the to settings discussed in this thesis, an extended detector formed by two such de-

tectors separated perpendicularly to the acceleration does distinguish the two scenarios, even

for a massless scalar field. Moreover, and perhaps what is most striking is that using a single

extended detector, we can expose differences in the two scenarios if we analyze the entangle-

ment between the system and the environment. One of the most interesting results obtained

here is perhaps the fact that the entropy production carries with it what appear to be a sig-

nature of entanglement within the extended detector, i.e., we can probe internal properties

of the extended detector just by looking at his interaction with the field. Also, more entropy

is produced by the two-qubit system when internal correlation is not verified, precisely what

one would expect from the a genuine thermodynamic entropy of either one of the qubits, since

more entropy produced implies more loss of coherence, which renders the creation of entan-

glement by spontaneous emission harder. As such, the interaction of the extended detector

with the field, seems to reflects the correlations among its internal degrees of freedom.

A room for improvement in this work comes from the fact that we have only studied the

case where both initial probes are in their excited states, since we were interested in the

entanglement that would be created from the interaction alone. A interesting point to extend

the finding here would be to check if one can probe differences in the two settings, having the

probes a initial state other than ρ0 = |00〉〈00|. This is nice because if no difference can be

observed, than we have more evidences, that the internal correlation of our extended detector is

of paramount importance to the very existence of any difference. For example, if no difference

in entropy of entanglement can be observed between the two setting for initial states that do

not allow for internal quantum correlation, then one is led to the conclusion that in the energy

eigenbasis, coherence is at the core of the Unruh effect, as opposed to an ordinary thermal

heat bath. Another point to be exploring is the actual thermodynamic entropy of each qubit,

and see how this influences the correlation between them. It would be nice to study driven

systems as well.



Appendix A

Basic Differential Geometry Concepts

Differential Geometry is at the core of this work. For those not so familiar with the

concepts of this field of mathematics, we present here a very brief and condensed overview

of some topics that might be critical for the developtment of the subject as proposed by this

work. In accordance with the rest of the text, the material presented in this appendix is also

exposed in a way that should not make any use of unecessery assumptions, for instance, we

should not make reference to a local coordinate system, unless if to examplify some definition.

To make things easier, we will always be considering a smoth, or infinitely differentiable,

manifolds - all the definitions, however, apply to a manifold that is differentiable only k ∈ Z+

times, just change C∞ by Ck1 where appropriate and you should have the definitions working

for nonsmoth, differentiable manifolds. The presentation here is similar and inspired by that

of Wald [12] and Carroll [15], and is not intended as a pedagogical exposition, but rather as

a dictionary of differential geometry’s jargon.

A.1 Manifolds, Vectors and Tensors

Simply put, a differentiable manifold is the generalization of our well-known Euclidean

geometry where we allow it to have a complicated global topology, but nonetheless, require

that it remains similar enough to a Euclidean geometry in a way that we can make sense

of functions and coordinate systems at each point - even though comparisons of properties

1Ck is the class of functions that can be differentiated k times, with all derivatives being continuous.
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from separated points might not always be possible. So in essence, we build a manifold of

dimension n by sewing together, in a continuous way, a bunch of Rn structures until we achieve

the aforementioned topology when we look at it globally. The precise definition as given by

Wald is the following.

Definition A.1.1. An n-dimensional, C∞, real manifold M is a set together with a collection

of subsets {Oα} satisfying

(i) Each p ∈M lies in at least one Oα.

(ii) For each index α there is a one-to-one, onto, map φα : Oα −→ Uα, where Uα ∈ Rn is an

open subset.

(iii) If Oα and Oβ are such that Oα ∩Oβ 6= ∅, then we require the map φβ ◦φ−1
α , which maps

φα[Oα ∩ Oβ] ∈ Uα to φβ[Oα ∩ Oβ] ∈ Uβ, to be of class C∞. Besides, φα[Oα ∩ Oβ] ∈ Uα

and φβ[Oα ∩Oβ] ∈ Uβ must be open subsets of Rn .

The last condition makes the “sewing in a continuous way” bit mathematically precise.

The pair (Oα, φα) is usually called a chart, or a coordinate system, and the union of charts that

covers M is referred to as an atlas. It is worth mentioning that the above definition considers

that all possible atlas are taken into account, so that the same manifold with different choices

of covering are not counted twice.

In ordinary, flat geometry we have an intuitive notion of vectors as stretching from one

point to another, and collectively forming a set, called vector space: elements of this set

can, among other properties, be added to form yet another element of the same set. While

this notion can be helpful in the absence of a more complex global structure, in a general

differentiable manifold the global topology will spoil this vector space structure, but, since we

have defined manifolds to be locally Rn, we can work with “infinitesimal displacements” as so

to make sense of vectors at a point p ∈M , i.e, “infinitesimal displacements” on a manifold will

continue to possess a vector structure. This discussion motivates the definition of the tangent

vector space, defined for each point p ∈M .
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To this end, let F denote the collection of all C∞ functions from M into R. We define a

tangent vector v at the point p to be a map from F to R satisfying

(i) v(af + bg) = av(f) + bv(g), for all f, g ∈ F ; a, b ∈ R;

(ii) v(fg) = f(p)v(g) + g(p)v(f),

i.e, a vector is a linear map satisfying the Leibnitz rule. The collection of all vectors at p ∈M

is denoted by Vp and named tangent vector space, with dim(Vp) = dim(M). In fact, one can

show that for each element f ∈ F , the directional derivative provides a map f −→ df/dλ(p)

that satisfies A.1. Thus, the tangent vector space at p ∈ M is identified with the set of all

directional derivative operators along curves passing through p.

To see this somewhat obscure looking definition more clearly, let φ : O ∈ M −→ U ⊂ Rn

be a chart, with p ∈ O, and consider a curve γ : R −→M parameterized by λ. If f ∈ F then

d

dλ
f =

d

dλ
(f ◦ γ)

d

dλ
(f ◦ φ−1) ◦ (φ ◦ γ)

d

dλ
(φ ◦ γ)µ

∂

∂xµ
(f ◦ φ−1)

dxµ

dλ
∂µf,

(A.1)

where (x0, x1, ..., xn−1) are the Cartesian coordinates of Rn. Note that we can decompose any

directional derivative operator d/dλ as a linear combination of the vectors dxµ/dλ, showing

that, indeed, they form a basis of Vp. In this special case, when xµ are the coordinates of Rn,

the basis {∂µ} is called coordinate basis of Vp.

Now that we have a well defined notion of tangent vector space, consider the collection,

V ∗p , of linear maps f : Vp −→ R. Of course, to define the action of those maps on arbitrary

elements of Vp, it suffices to define their actions on its basis. Hence, given a basis v1, v2, ..., vn

of Vp, we define elements ωj ∈ V ∗p by imposing

ωi(vj) = δij , i, j ∈ {1, 2, ..., n}. (A.2)
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One can check that by the above equation, the set {ω1, ω2, ..., ωn} automatically defines a

basis for the space V ∗p . An arbitrary element of V ∗p is then written in this basis, and acted

upon by means of (A.2). The correspondence v ↔ ω defines an isomorphism between the sets

Vp and V ∗p , which is in general coordinate-dependent unless more structure is given for Vp.

To finish this section we present yet another type of map. Up to know we have defined

maps F −→ R and vp −→ R. Now we introduce the idea of a tensor. A tensor of type (k, l)

is a multilinear map from the Cartesian product of k copies of V ∗p , and l copies of Vp into the

real numbers. More precisely

T : V ∗ × ...× V ∗︸ ︷︷ ︸
k

×V × ...× V︸ ︷︷ ︸
l

−→ R (A.3)

where we have dropped the subscripts p labeling the vector spaces; but note that the above

definition is to be understood as defined for every point p ∈M .

A tensor that stands out among all the other, at least in the context of the General Theory

of Relativity, is the metric tensor, usually denoted g. This is a tensor of type (0, 2), that is,

it maps two vectors from the cotangent space to the real numbers, and gives to the manifold

M the structure of a metric space.

g : V ∗ × V ∗ −→ R. (A.4)

It defines a generalized notion of distance in the manifold M , which can be positive-definite,

for a Riemannian metric, or even negative numbers in the case of a Lorentzian metric. To

differentiate between those two cases, we look at the signature of the metric, that is, the

sequence of signs of the eigenvalues of the metric tensor. If all eigenvalues are nonzero and

positive, (+,+, ...,+), the metric is said to be Riemannian, if all eigenvalues are nonzero and

only one of them is negative, (−,+, ...,+), then the metric is said to be a Lorentzian metric,

finally, if any eigenvalue vanish the tensor is said to be degenerate. This can be further used

to classify two events in a manifold. Indeed, given a manifold (M, g) with Lorentzian metric,
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two vectors v, w ∈ Vp, where Vp is the tangent vector space at p ∈ M , are said to be timelike

separated if g(w, v) < 0, null separated if g(w, v) = 0, and spacelike separated if g(w, v) > 02.

This nomenclature will also be used when talking about events and curves in the same fashion.

Even though nothing in this appendix has demanded a metric, such a definition can, among

other things, establish a coordinate-independent isomorphism between tangent and cotangent

vector spaces, as well as fix the otherwise arbitrary choice of a covariant derivative operator

-which we will not be discussing here- by requiring it to be compatible with the metric in the

sense that when applied to g we have 0 as a result.

A.2 Maps between manifolds

A simple way to relate quantities defined on one manifold, M , to quantities defined on

another one, N , can be achieved by means of a map φ : M −→ N . Such relations can

be of very great use; note that, in particular, when M and N are the same manifold, this

transformation may encode symmetries of the system being modeled. Suppose then that φ is

a C∞ map, and consider a function f : N −→ R. We can obviously use φ to map a point from

M to N , and then use f to map the result into R, thus the composition

(f ◦ φ) : M −→ R, (A.5)

is a function defined on M and is called the “pull back” of f , as if we have pulled f from N

back to M - back because it moves a quantities in the “direction of the inverse of” φ. Similarly,

using the above composition, we can go in the other direction and carry tangent vectors from

M at a point p, to N at point φ(p). For every v ∈ Vp, let us define the map φ∗v : Vp −→ Vφ(p)

acting according to

(φ∗v)(f) = v(f ◦ φ). (A.6)

2For a metric with signature (+,+, ...,−) the greater than, and less than symbols are interchanged.
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From (A.1), we see that v is just mapping a function on M as it should be, on the left-hand

side, however, we have the map (φ∗v) acting on a function defined on N , and as such, belongs

to a tangent space of the manifold N . Because of this, we call φ∗ the “push forward” map,

which carries vectors from Vp, p ∈M to Vq, q ∈ N .

Since we are not assuming φ to have an inverse, we are unable, for example, to “push

forward” a function g : M −→ R to N , since the composition g ◦φ−1 : N −→ R is not defined

because, in general, we lack φ−1. Likewise, we cannot “pull back” a tangent vector from N to

M , we can, however, do it with dual vectors, the elements of the cotangent space. Define the

map φ∗ω : V ∗p −→ V ∗φ(p), ω ∈ Vq, q ∈ N , by

(φ∗ω)(v) = ω(φ∗v), (A.7)

v ∈ Vp, p ∈ M . Again we see that the above definition works fine: on the left-hand side we

have our desired map, while on the right-hand side, we carries v from Vp to Vφ(p) and then

uses ω to map the result to R. One can extend these operations accordingly to multilinear

maps, noting the restrictions due to the absence of φ−1. With the maps φ∗, and φ∗ in hands,

we can “pull back” tensors of type (0, l) from N to M - from point φ(p) to the point p, as well

as “push forward” tensor of type (k, 0) from M to N - from point p to the point φ(p). For a

tensor (0, l), for example, we obtain

(φ∗T )(v1, ..., vl) = T (φ∗v1, ..., φ
∗v1), (A.8)

v1, ..., vl ∈ Vp with p ∈M . And for (k, 0) tensors

(φ∗K)(ω1, ..., ωk) = K(φ∗ω1, ..., φ∗ω
k), (A.9)

with obvious notation.

If besides the map φ : M −→ N , we also have a well-defined φ−1 : N −→ M that

is one-to-one, onto, and C∞, then the manifolds M and N are said to be diffeomorphic -
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implying dim(M) = dim(N), which basically means that they are “equal”, as far as the

manifold properties are concerned; in particular, two physical systems described by N and

M are necessarily identical. The existence φ and φ−1 allows one to “pull back” and “push

forward” all types of tensor, i.e, (k, 0), (0, l), and even (k, l). As pointed out in the beginning

of the section, these maps may encode symmetries. Indeed, if T is a tensor, and φ∗T = T , we

say that φ∗ is a symmetry transformation of the tensor T , a notion we discuss more thoroughly

on the next section.

A.3 Symmetries and Lie Derivative

In this section we just employ the idea of maps between manifolds, more specifically, dif-

feomorphisms, with a bit of real analysis to have a better understanding of what a tensor

symmetry transformation means. We thus work with a group of diffeomorphisms parameter-

ized by a continuous parameter.

Definition A.3.1. A one-parameter group of diffeomorphism φt is a C∞ map from R×M −→

M such that for fixed t ∈ R, φt : M −→ M is a diffeomorphism and for all s, t ∈ R, we have

φt ◦ φs = φt+s.

We can associate a vector field, say v with the map φt. Indeed, for each p ∈ M we have

that φt(p) : R −→ M is a curve on the manifold M . Let φt=0(p) = p, then we define v|p to

be the tangent vector to the curve φt(p) at t = 0; do this for all p ∈ M and we have a vector

field v that is said to be the generator of the group. Now, suppose we have a tensor T and

we push it forward by means of φ∗t . A question that naturally arises, since the manifolds are

diffeomorphic, is how φ∗tT relates to φ∗sT for s 6= t. In the limit s→ t, since φ0 is the identity

transformation, the answer o that question is called Lie derivative, Lv along the vector field
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v:

LvT = lim
t→0

{
φ∗tT − φ∗0T

t

}
= lim

t→0

{
φ∗tT − T

t

}
.

(A.10)

One can check that with this definition Lv is linear and does obey the Leibnitz rule on outer

product of tensors. Also, if we apply this derivative to an ordinary function f :M−→ R, we

get the ordinary directional derivative

Lvf = v(f), (A.11)

by immediate application of Equation (A.6).

It is clear now why the idea of maps and Lie derivative are good tools to work with

symmetries. Let say that φt is a symmetry transformation of a given tensor T , then

LvT = 0, (A.12)

that is, the tensor T remains unchanged as one moves it along the integral curves of φt.

In the context of General Relativity, the most important example are the symmetries of

the metric tensor. Say (M, g) is a manifold with metric g, then if

Lvg = 0, (A.13)

we say that this transformation is an isometry; further, we call the vector field v a killing

vector field. Thus, a killing vector field is but a vector field that generates a group of symmetry

transformations of the metric g.



Appendix B

Master Equation Derivation

In this appendix we just present a more detailed calculation of the master equation used in

Chapter 3, as well as the Fourier transform of the correlation functions shown in Equation 3.22.

B.1 Master Equation

Ours starting point is the Hamiltonian shown in Equation 3.5

H = HI +HD +HF , (B.1)

where each term is as explained in the text. We will work in the interaction picture with

H = H0 + HI . In the interaction picture, the density matrix evolves according to eh von

Neumann equation

d

dt
ρI(t) = −i[HI(t), ρI(t)] (B.2)

where the subscript I denotes we are working in the interaction picture, and HI(t) is the

interaction picture version of HI . By direct integration the above equation yields

ρI(t) = ρI(t0)− i
∫ t

t0

[HI(s), ρI(s)]ds (B.3)

Plugging Equation (B.3) back into (B.2) we obtain

d

dt
ρI(t) = −i[HI(t), ρI(t0)]−

∫ t

t0

[HI(t), [HI(s), ρI(s)]]ds, (B.4)
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and after tracing out the reservoir degrees of freedom, one is left with

d

dt
ρDI(t) = −

∫ t

t0

trF [HI(t), [HI(s), ρI(s)]]ds, (B.5)

with ρDI(t) representing the interaction picture of the density matrix of our two-qubit system.

The term [HI(t), ρI(t0)] was set to zero because we have a stationary reservoir.

Now, as discussed in the main text, we perform the Born approximation by considering

that the state of the system + environment is at all times separable, i.e., the weak-coupling

approximation,

ρI(t) ≈ ρDI(t)⊗ ρF (0) (B.6)

here ρF (0) is the unchanging state of the reservoir. After that, Equation (B.5) reads

d

dt
ρDI(t) = −

∫ t

t0

trF [HI(t), [HI(s), ρDI(s)⊗ ρF (0)]]ds, (B.7)

Next, to obtain an equation that is local in time, we perform the Markov approximation, that

is, we assume that the state of the system at time t will not depend on the state of the system

at times s prior to t, s < t. With this, we obtain a Markovian dynamics, a dynamics without

memory; meaning the state of the system will not depend on its history. We also make the

change of variables s→ s− t. The result after these changes are

d

dt
ρDI(t) = −

∫ t−t0

0

trF [HI(t), [HI(t− s), ρDI(t)⊗ ρF (0)]]ds, (B.8)

With this change of variable we can see that the parameter s indicates how far we go

back in time to account for memory effects concerning the bath, with characteristic time τF ,

the reservoir relaxation time; i.e., any change in the reservoir due to the interaction with the

two-qubit system will relax in time intervals of order τF , which in turn is considered to be

much smaller then the system relaxation time τD, i.e., τF � τD. For that matter, under the

Markov approximation the integrand decays very quickly for s � τF , for we are considering

that the state of the system should not be affected by the reservoir’s state at times before
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t− τF . Since τF � τD we can extend the integration interval to infinity.

d

dt
ρDI(t) = −

∫ +∞

0

trF [HI(t), [HI(t− s), ρDI(t)⊗ ρF (0)]]ds. (B.9)

Now, we plug the Hamiltonian (3.4) into the above equation to obtain

d

dt
ρDI(t) = ε2

0

∑
m,`

{∫ +∞

0

e−iΩstrF [φ̃m(t)φ̃l(t− s)]ds
(
A†`ρDIA

m − AmA†`ρDI
)

+

∫ +∞

0

e+iΩstrF [φ̃m(t)φ̃`(t− s)]ds
(
A`ρDIA

†m − A†mAlρDI
)}
.

(B.10)

where A and A† are the fermionic ladder operators.

Some comments are in order here. First of all we have introduced the φm to indicate

φ(t, ~xm), that is, we use the index to label the trajectory of each atom; in our case, the

parameter t is the same regardless of the indeces m, `. Further, we introduced the φ̃ field. This

is the so called smeared field [23][5] and is just the operator-value distribution φ integrated

against the test function Ψ in (3.4).

φ̃(t) =

∫
Σt

φ(t, ~x)Ψ(~x)dVt, (B.11)

where Σt is a Cauchy surface and dVt its volume element. It was shown in Ref. [23] that this

procedure naturally takes care of the regularization of the Fourier transform of the field corre-

lation function. It is nothing but a physically motivated way to introduce the iε-prescription.

Finally, the ε0 is just the value assumed by ε(t) between the switching on and off of the detec-

tor. This can be done, because at the times for which ε(t) differs from ε0, the integrals vanish

due to the correlation functions g of the field

g(t, ~xm; t′, ~x`) = trF [φm(t)φl(t
′)], (B.12)

for simplicity we are ignoring the tilde here, since all this will be fixed in the end of the

calculation. An interesting characteristic of our problem is the fact that our trajectories (2.10)

are orbits of a timelike Killing vector field, that is, along these trajectories we have time-
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translation symmetry, and the above correlation function is time-independent. Indeed, by

shifting the fields in the above equation by t− s we get

Γm`(Ω) =

∫ +∞

0

eiΩsg(s, ~xm; 0, ~x`)ds (B.13)

which dos not depend upon the time t. Given this new notation, our master equation can be

written as

d

dt
ρDI(t) = ε2

0

∑
m,`

{
Γm`(−Ω)

(
A†`ρDIA

m − AmA†`ρDI
)

+ Γm`(Ω)
(
A`ρDIA

†m − A†mAlρDI
)}
.

(B.14)

To separate the unitary and dissipative contribuitions, we decompose Γ as [24]

Γm`(Ω) =
1

2
γm`(Ω) + iSm`(Ω), (B.15)

where

γm`(Ω) =

∫ +∞

−∞
eiΩsg(s, ~xm; 0, ~x`)ds, (B.16)

is the positive matrix appearing in (3.22). The form of S(Ω) is not of particular interest to

us. The final form of the master equation is then

d

dt
ρDI(t) = L(ρDI) = −i[Heff , ρDI ] +D(ρDI), (B.17)

where we set Heff = 01, since we are not interested in this unitary contribution. Going back to

the Schrödinder picture yield precisely the same equation as above, but with ρDI(t)→ ρI(t).

The form of D is

D(ρ) = ε2
0

∑
m,`=A,B

{
γm`(Ω)

(
A(m)ρA

†
(`) −

1

2

{
A†(`)A(m), ρ

})
+ γm`(−Ω)

(
A†(m)ρA(`) −

1

2

{
A(`)A

†
(m), ρ

})}
,

(B.18)

which is the desired result as in (3.21).

1The quantities S(±Ω) are part of this effective Hamiltonian that we disconsider.
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B.2 Correlation Functions

In this section we evaluate

γm`(Ω) =

∫ +∞

−∞
eiΩsg(s, ~xm; 0, ~x`)ds, (B.19)

by the method of residue. To remember, the trajectory of our two-atoms, A and B, are given

by

tA = a−1eaξ sinh(aτ) xA = a−1eaξ cosh(aτ) y = 0 and z = 0, (B.20)

for the atom A, and

tB = a−1eaξ sinh(aτ) xB = a−1eaξ cosh(aτ) y = 0 and z = L, (B.21)

for the atom B.

For the simples case of a massless scalar field in the Minkowski vacuum state -which is true

in our case- the correlation functions, also known as positive-frequency Wightman functions,

are well known to be [20]

g(t, ~xm; t′, ~x`) = trF [φm(t)φl(t
′)] =

1

4π2

−1

|t− t′ − iε|2 − |~xm − ~x`|2
. (B.22)

with ε > 0.

Since there is a sum in the master equation, we will have all the terms g(t, ~xA; t′, ~xA),

g(t, ~xA; t′, ~xB), g(t, ~xB; t′, ~xA) and g(t, ~xB; t′, ~xB) appearing there. In fact, the diagonal terms

are equal to each other. Also, the cross terms are also equal to each other, so that we only

have to calculate two of the above four functions. Since both calculations are essentially the

same, we will do only g(t, ~xA; t′, ~xA) explicitly. If one substitutes the trajectory (B.20) with

ξ = 0 into the above expression, the result is

g(t, ~xm; t′, ~x`) = − a2

16π2
csch2

(
1

2
a(τ − τ ′)− iaε

)
, (B.23)
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where csch is the hyperbolic cosecant function. To proceed, we make use of the Laurent

expansion of the cosecant function [20]

csch(πx) =
1

π2

+∞∑
k=−∞

(x− k)−2, (B.24)

that, together with the identity csch(x) = icsc(ix), allow us to write (B.23) in the form

g(s, ~xA; 0, ~xA) = − 1

4π2

+∞∑
k=−∞

(s− 2iε+ 2kπi/a)−2. (B.25)

By plugging this result into (B.19), we are left with the task of evaluating the integral

γAA(Ω) = − 1

4π2

+∞∑
k=−∞

∫ +∞

−∞
ds

eiΩs

s− 2iε+ 2kπi/a
, (B.26)

with poles at s = −2i(kπ/a−ε). This integral can be solved by the methods of residue. Indeed,

consider the contour that cover all the real line and is closed by a semicircle in the upper-half

part of the complex plane. By the residue theorem [35] the integral over this contour is given

by ∫ +∞

−∞
ds

eiΩs

s− 2iε+ 2kπi/a
= 2πi

d

ds
eiΩs
∣∣∣∣
s=−2i(kπ/a−ε)

= −2πΩe2Ω(kπ/a−ε), (B.27)

Finally

γAA(Ω) =

∫ +∞

−∞
dseiΩsg(s, ~xA; 0, ~xA)ds =

Ω

2π

0∑
k=−∞

(
e2πΩ/a

)k
=

Ω

2π

+∞∑
k=0

(
e−2πΩ/a

)k
=

Ω

2π

1

1− e−2πΩ/a
.

(B.28)

the final, desired result. To calculate γAB(Ω) = γBA(Ω) one follows the same procedure, the

only difference being the position of the poles that will be shifted by an amount proportional

the separation distance between the two atoms.
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