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Resumo

Nesta dissertação investigamos a dinâmica da produção de entropia termodinâmica no efeito
dinâmico Casimir. Isto é feito considerando um campo escalar quântico confinado por uma cavidade
unidimensional composta por um par de espelhos ideais, um fixo e outro que pode se mover em uma
trajetória prescrita. O objetivo central deste trabalho é compreender como a entropia termodinâmica
do campo evolui ao longo do tempo devido ao processo de criação de partículas induzido pelas
condições de contorno não triviais impostas pelo espelho móvel. Ao empregar uma abordagem
hamiltoniana eficaz, mostra-se que a produção de entropia do sistema aumenta com o número de
partículas criadas dentro do limite de curto prazo. Além disso, pode-se também demonstrar que esta
abordagem está diretamente relacionada com a geração de coerência quântica na base energética do
campo. Utilizando um método distinto, fundamentado na teoria dos estados gaussianos, conseguimos
analisar o limite de longo prazo da produção de entropia para um único modo do campo. Os
resultados obtidos estabelecem uma relação entre o aumento da entropia termodinâmica no modo
de campo e o emaranhamento entre o modo considerado e o resto da estrutura do modo de campo.
Desta forma, vinculamos a produção de entropia no campo devido ao efeito Casimir dinâmico com
duas características fundamentais da mecânica quântica: coerência quântica e emaranhamento.

Palavras-chaves: Efeito Casimir dinâmico; Produção de entropia; Termodinâmica quântica;
Entropia diagonal; Irreversibilidade.



Abstract

In this dissertation, we investigate the dynamics of the thermodynamic entropy production in
the dynamical Casimir effect. This is done by considering a quantum scalar field confined by a
one-dimensional cavity composed of a pair of ideal mirrors, one fixed and the other allowed to move
in a prescribed trajectory. The central goal of this work is to understand how the thermodynamic
entropy of the field evolves over time due to the particle creation process induced by the non-
trivial boundary conditions imposed by the moving mirror. By employing an effective Hamiltonian
approach, the system’s entropy production is shown to increase with the number of particles created
within the short-time limit. Moreover, one can also demonstrate that this approach is directly related
to the generation of quantum coherence in the energy basis of the field. Utilizing a distinct method,
grounded in the theory of Gaussian states, we were able to analyze the long-time limit of the entropy
production for a single mode of the field. The obtained results establish a relationship between the
increase in thermodynamic entropy in the field mode and the entanglement between the considered
mode and the rest of the field mode structure. In this way, we link the entropy production in the field
due to the dynamical Casimir effect with two fundamental features of quantum mechanics: quantum
coherence and entanglement.

Keywords: Dynamical Casimir effect; Entropy production; Quantum thermodynamics; Diagonal
entropy; Irreversibility.
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1

Chapter 1

Introduction

The year was 1947, and Hendrik Casimir, a Dutch physicist based at Philips Research Labs, had
already obtained, together with Dirk Polder, the expression for the dispersive forces between atoms
in the long-distance regime, today known as Casimir-Polder forces [1]. In the summer of that same
year, while walking with Niels Bohr and talking about the unexpected simplicity of the obtained
expression, Casimir heard from him some murmurs about a loose connection between his results and
the "zero-point energy" [2]. Inspired by Bohr’s words, Casimir was led to consider the role played by
the vacuum fluctuations of the electromagnetic field in those interactions. In 1948, after considering
how the presence of a pair of parallel ideal conductor plates could change the zero-point energy of
free space, Casimir predicted the emergence of attractive forces between the plates even in vacuum,
the surprising physical phenomenon now known as the Casimir effect [3].

Particularly, Casimir’s result offers us a novel perspective on the nature of the vacuum and
invites us to realize that the latter cannot be seen just as an inert actor, but rather as a physical
entity full of activity that reacts against distortions caused by the presence of other objects [4].
Indeed, modern arguments, grounded on the fluctuation-dissipation theorem [5], anticipate that
because of this fluctuating character, a moving ideal plate (a non-uniform accelerated mirror, more
specifically) should perceive the vacuum as a viscous medium, inducing dissipative reactive forces [6].
The immediate question that emerges under those considerations is how such a moving mirror could
dissipate energy if the system is in a vacuum. Looking in retrospect, the correct explanation to this
puzzle was already contained in the surprising prediction made in 1970, by the American physicist
Gerald Moore [7]. There, he showed how non-stationary boundaries, such as a set of moving mirrors,
can lead to the creation of pairs of particles from the vacuum state of a quantum field.

In his seminal paper, Moore considered the quantization of a linear polarized electromagnetic
field confined by a one-dimensional cavity composed of two ideal mirrors, one at rest and the other
describing an arbitrary trajectory in time. Moore could bypass the initial difficulty associated with
time-dependent boundary conditions by mapping the problem into the static mirror model, with
the help of the conformal symmetry present in his (1+1)-dimensional problem. Using perturbation
theory in terms of slow mirror velocities (with respect to c), he predicted that such a time-dependent



2 Chapter 1. Introduction

cavity should produce only a negligible amount of photons from the vacuum. In 1975, Bryce De-
Witt [8] made, independently, the equivalent prediction in terms of a single moving mirror setup. For
this reason, such a phenomenon is recurrently called Moore-DeWitt effect, although nowadays, it is
mostly known as the dynamical Casimir effect (DCE): the physical phenomenon of particle creation
from the vacuum due to non-adiabatic changes on quantum field properties, such as non-stationary
boundary conditions (like moving mirrors) or time-dependent cavity properties of the filling medium
(like changing dielectric constant).

The notion that the vacuum can lead to the generation of particles dates back to the pioneering
work of Schrödinger in 1939, who explored the possibility for particle production in an expanding
universe [9]. Similar suggestions (in other curved space-time contexts) were also made by DeWitt [10]
in 1953 and Imamura [11] in 1960. But it was Parker [12, 13], in 1969, and Zel’dovich [14], in 1970, who
were the first to introduce a comprehensive treatment of cosmological particle creation. Attention
to moving mirrors configurations was resumed with the outstanding result obtained by Hawking
in 1974 [15], who predicted the thermal emission of particles from black holes, in the phenomenon
of Hawking radiation [16]. This led, Fulling and Davies in 1976 [17], to a more detailed study on
DeWitt’s simple model of a moving mirror. The philosophy adopted by the authors was that in
order to better grasp Hawking results, one would first need to understand the effects of acceleration
(of mirrors) on quantum field theory (QFT). The combined efforts of DeWitt, Davies, Fulling and
Unruh on the subject [8, 18–20], culminated, in the same year with the profound realization that
the notion of particle in QFT is observer-dependent. This was due to the discovery of the Unruh
effect [21], which predicts the vacuum to be seen by a uniformly accelerated observer as a thermal
bath of particles. In 1977, Davies and Fulling [22] extended previous results on the radiation of
moving mirrors with emphasis on an energy-momentum tensor analysis. Such an analysis was also
carefully carried out by Candelas and Deutsch [23] in the same year.

Subsequently, research in the DCE gained traction, and an increasing number of physicists began
to consider different theoretical configurations with the common theme of the amplification of vacuum
fluctuations into real particles by rapidly changing quantum field properties. The name "dynamical
Casimir effect" itself was originally coined by Yablonovitch in 1989, in a seminal paper [24] where
he drew attention to the possibility of observing the Unruh effect through the sudden change in the
index of refraction of the filling medium of a cavity. A competing term for the research program was
also put forward by Dodonov et al. [25] as nonstationary Casimir effect. Nonetheless, the tag dynam-
ical end up gaining overwhelming popularity due to the authority of Schwinger [26] in his fascination
with Sonoluminescence —the intriguing phenomena of intense light flashing by a bubble of air in an
extreme acoustic field [27]— cultivated in his last years of life, as he conjectured (wrongly, unfortu-
nately) that dynamical consideration of the Casimir effect could explain the phenomenon. In more
than fifty years of existence the research program has received a great deal of attention with numer-
ous developments, encompassing the considerations of the particle production from semi-transparent
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mirrors [28–33], to quantized motion of the walls [34–40], effective Hamiltonian approaches [34, 41–
45], distinct geometrical configurations [46–50], curved spacetime settings [51–53], nonlinear interac-
tions [54–56] and entanglement dynamics [57–60]. For a comprehensive overview, interested readers
are directed to a recent review [61].

As widely acknowledged in the literature, the DCE can only occur when a quantum field is sub-
jected to non-adiabatic changes of one of its external parameters [61]. For instance, a moving cavity
can amplify vacuum fluctuations into particles, but only if the mirror positions change rapidly enough
to prevent the field from re-adapting to its instantaneous configuration. Since in thermodynamics,
irreversible processes typically unfold similarly, the last behavior strongly suggests that the effect
must exhibit some sort of intrinsic irreversibility. However, in spite of this intuition, the literature in
the DCE lacks a robust study about this matter, raising the question of how one can confirm such
a hypothesis and, if confirmed, what sources might be playing a role in the irreversible dynamics of
the phenomenon.

For this reason, by focreated particles.cusing on a physical configuration where a quantum field
is constrained by classical moving mirrors, we are then immediately led to consider the study of
such dynamics in terms of a familiar measure of irreversibility in physics: the change in the system’s
thermodynamic entropy. Consequently, the central question of the work can be summarized as: how
much thermodynamic entropy is produced in a quantum field due to the DCE if one takes into account
the correspondent time-dependent nature of boundary conditions?

To do so, we first delimit the object of study, by choosing the most simple (but still non-trivial)
system that reproduces the DCE: that of a quantum scalar field confined in a one-dimensional cavity
by a pair of ideal mirrors, with one fixed in a given position and the other allowed to move in
a prescribed trajectory. Since the system under consideration is isolated from the environment, a
satisfactory discussion on the topic can only be achieved if we introduce the necessary ingredients
of thermodynamics in isolated quantum systems, which is the subject of Chapter 2. We begin
the correspondent chapter with a brief discussion on the irreversibility present in physics and the
increasing necessity of understanding thermodynamics from a quantum mechanical point of view.
In the second part of the chapter, we then explore a much more deep question associated with the
correct definition of microscopic entropy, capable of extending the laws of thermodynamics to the
quantum realm. For such, we introduce the most popular candidates for microscopic entropy, in
order: von Neumann, Boltzmann, observational and diagonal entropy, discussing their definitions,
properties and pros and cons. We complete the corresponding chapter by motivating why we end up
choosing the diagonal entropy as our thermodynamics entropy of interest.

Subsequently, in Chapter 3, we properly introduce the mathematical machinery used in the
literature to characterize and compute interesting quantities in the DCE. In the first part, we delineate
the system in terms of a classical field theory, followed by a formal introduction of the quantization
procedure. Finally, the general paradigm of the DCE is introduced, by showing how the imposed
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time-dependent boundary conditions translates into the particle creation process. In the second part
of the chapter we then introduce the so called, instantaneous basis approach to be utilized through
the work and whom we derive an effective Hamiltonian in Schrödinger picture and the widely used
techniques of instantaneous decomposition in the Heisenberg picture. Finally, in the third part, we
give an overview on how to compute the so-called Bogoliubov coefficients —a set of coefficients that
connect the particle notion before and after the cavity motion— from both techniques outlined in
the latter approach.

In Chapter 4, we get hands-on and use the knowledge gathered in the previous chapters to derive
the original results presented in this dissertation. Specifically, we compute the explicit expressions for
the diagonal entropy, which is the adequate thermodynamic entropy for our context. To implement
the calculations, we use two distinct methods: one based on the effective Hamiltonian and the
other grounded on the evolution of Gaussian states. In the first part of the chapter, we use the
effective Hamiltonian to evolve the density operator through a perturbation theory on the small
mirror amplitude. Due to the inherent complexity of the Hamiltonian, the naive expansion leads to
secular terms in the special (but important) case of the oscillation cavity, constraining the results
to the short-time limit. A general expression for the diagonal entropy is then computed in terms
of the density operator, as well as its version for the particular oscillating case. Consequently, we
obtain that the entropy production in the short-time regime scales with the number of particles,
and it is directly linked with the developments of quantum coherence in the energy eigenbasis. For
the second part of the chapter, we briefly revise the literature in the Gaussian states, i.e., a class of
quantum states in which its Wigner function has a Gaussian character. In terms of the knowledge
of the Wigner function for a single mode of the field, we can then obtain expressions for the reduced
density operator in a given field mode. With the help of the Bogoliubov coefficients associated
with the parametric oscillations of the second mirror, we can evolve the reduced expression for the
diagonal entropy (single-mode). Here we are able to obtain expression in the short-time limit, where
the scaling behavior with the number is recovered, and in the long-time regime, where it is found
that the diagonal entropy corresponds to the Rényi-2 entropy, and therefore, quantifies the amount
of entanglement between the considered mode and the rest of the field.

Finally, in chapter 5 —not surprisingly named conclusions and perspectives—, we conclude the
dissertation by summarizing all the important results obtained throughout this work, interpreting
them and providing some perspectives for further investigations.
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Chapter 2

Thermodynamics of isolated quantum
systems

As delineated in Chapter 1, the main goal of this work is to investigate the intrinsic irreversibility
associated with the phenomenon of the DCE by analyzing the thermodynamic entropy production.
The system we choose to study is composed by a quantum scalar field confined by an idealized
time-dependent cavity. Since the cavity properties are described by external prescribed parameters,
our system can be said to be isolated in the thermodynamic sense (although not closed), i.e., the
quantum system can exchange energy in a controllable manner with the mirrors, but its remain in a
pure state since the cavity dynamics in still classical. In this sense it will be important to explore the
thermodynamics of isolated quantum systems in order to justify the choice of the thermodynamic
entropy to be utilized throughout this description.

2.1 Irreversibility in Physics

Except for gravity, all the known fundamental forces of nature are described by the standard
model of particles in terms of quantum field theories [62]. There, each interaction and fundamental
particle can be shown to satisfy CPT symmetry, with the laws of physics remaining the same over
the combined conjugation of Charge (interchanging particles by antiparticles), inversion of Parity
(replacing left hand by right hand) and reversal of Time (reversing the direction of motion of all
particles). In most processes, one can neglect the effects of C and P , such that all interactions must be
invariant over T . Consequently, the most basic laws of physics can be said to be time-symmetric [63]
and devoid of a preferred direction in time for the occurrence of physical phenomena.

Despite this observation about fundamental physical theories, almost all the phenomena we en-
counter in our daily lives seem to follow very specific temporal orders: milk always dilutes in coffee
but never separates again; hot soup always cools to room temperature but never heats up at the
expense of cooling the environment; we are born, we grow old, and we die, never the other way
around. All of these cases are instances of irreversible processes, i.e., processes that seems to follow
an "arrow in time" by manifesting spontaneously in one direction but never in the opposite.
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Classical thermodynamics was perhaps the first truly physical theory to incorporate into its basic
assumptions the distinction between the order of occurrence of such processes. In it, irreversibility is
quantified through a state function of the system called entropy. Under the statement of the second
law of thermodynamics, the entropy of a closed system, either increases or remains constant over
time, but never decreases [64]. This law, which was initially introduced on purely phenomenologi-
cal grounds, establishes restrictions on the occurrence of phenomena, which despite respecting the
conservation of energy, never manifest themselves spontaneously in the macroscopic regime.

It was only with the advent of statistical physics, that the nature of the second law could be
understood not as a fundamental law in the strict sense, but a statistical statement that hold true
only on average. More specifically, its validity is recovered when dealing with sufficiently complex
systems comprised of a vast number of microscopic constituents –as in the case of a typical macro-
scopic system– where one expects statistical deviations from the second law to become vanishing
small and entropy to be likely to increase (or stay constant) in the overwhelming number of cases.
When statistical deviations do in fact play a role, stronger principles known as fluctuation theorems
emerge [65, 66], and irreversibility is then defined in terms of those processes in which entropy tends
to increase on average.

With the rapidly technological advancements in experimental techniques over the last few decades,
experimentalists now have an increasing control over the states of quantum systems, enabling the
detail study of their behavior even out of equilibrium. In such scenarios physicist not only have access
to open systems like small quantum systems in contact with weak thermal baths, which are instances
of open quantum systems [67], but can also isolate many-body systems from the environment with
high degree of tunability, as in the case of ultra cold atoms experiments [68, 69]. While the status of
thermodynamics as a phenomenological theory is well-established, challenges arise when attempting
to apply it to non-equilibrium situations as captured by those small quantum systems. Hence,
the task of understanding how thermodynamics emerges from quantum mechanical and statistical
considerations —commonly known as quantum thermodynamics– is of increasing importance. For this
context, various approaches have emerged in the quest to grasp thermodynamics from a microscopic
level. Notable developments include those based on statistical physics [65, 70], resource theory [71],
density functional theory [72], axiomatic formulation [73] and information theory [74, 75]. For a
comprehensive study of entropy production in both classical and quantum systems, we recommend
Ref. [76] and its associated sources.

2.2 In the pursuit of a microscopic definition for entropy

An ongoing conundrum in the foundations of physics refers to the problem of how to establish the
correct definition of microscopic entropy that naturally extends the laws of thermodynamics to the
context of quantum mechanics for both open and isolated systems [77–80]. In this section, we will
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explore some candidates for microscopic entropy and motivate the choice of thermodynamic entropy
to be utilized in our work.

2.2.1 The von Neumann Entropy

Perhaps the most natural candidate for microscopic entropy —due to its exceptional success for
applications in information and communication theories— is the von Neumann entropy SvN, which
is defined for a system’s state ρ̂ to be simply

SvN(ρ̂) = − Tr {ρ̂ ln ρ̂} . (2.1)

Importantly, the von Neumann entropy is consistent with thermodynamic considerations in two
important situations:

1. When the system is in equilibrium and is represented by statistical ensembles, such as the
Gibbs thermal state

ρ̂G(β) := e−βĤ

Z(β) , Z(β) := Tr
{
e−βĤ

}
, (2.2)

or its generalizations, as in the case of the grand canonical ensemble (β is inverse of the
thermodynamic temperature).

2. For ensembles, even out of equilibrium, that describes open systems coupled to an
ideal heat bath. Such consideration is justified in light of the extensive use of SvN in quantum
thermodynamics to study small quantum systems in weak contact with a large thermal bath.

On the other hand, there are strong arguments against the idea that the von Neumann entropy
correspond to the thermodynamic entropy in general. The main reason is related with its property
of being invariant under a unitary evolution, such as in

SvN(ρ̂) = SvN(Û ρ̂Û †), (2.3)

where Û is the unitary operator associated with the time evolution of ρ̂. As a result, if we were
to interpret SvN as providing an accurate thermodynamic description, it would logically entail the
prediction that the thermodynamic entropy of isolated quantum systems should remain constant for
any process. The implication stands in direct contradiction to the second law of thermodynamics
that postulate a strict increase in thermodynamic entropy for such systems, as it is observed em-
pirically during the free expansion of a gas or in the mixing of liquids. Other important postulate
of thermodynamics that SvN violates is the uniqueness of entropy as a function of energy. This
violation occur specifically in isolated systems, where the change in SvN must vanish in any cyclic
process despite some possible non-zero change for the system’s energy [78].
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In principle, one could stand for the position that SvN is in fact our desired microscopic entropy
and restricting its use only for situations where an adequate ensemble of states is possibly defined.
However, this cannot possibly explain how the laws of thermodynamics can emerge from microscopic
considerations, where the time evolution of the system ρ̂(t) is given from its initial state [77]. In this
respect, although the von Neumann entropy stands as an essential informational tool and coincides
with the thermodynamic entropy for important situations, we can not elevate SvN to the status of
microscopic entropy to be used throughout this work (specially because we must consider an isolated
quantum system).

2.2.2 Boltzmann Entropy

Another contestant for microscopic definition of entropy is the Boltzmann entropy SB. To de-
scribe it in the context of quantum mechanics, let us first consider any closed system governed by a
Hamiltonian operator Ĥ respecting the following stationary Schrödinger equation

Ĥ |Ei⟩ = Ei |Ei⟩ ,

where {|Ei⟩} corresponds to the set of energy eigenstates with energy eigenvalues Ei.
If the system under consideration is sufficiently simple such that an observer has complete exper-

imental control over it, one can understand an energy measurement in terms of orthogonal projectors
Πi = |Ei⟩ ⟨Ei| , which, as the name itself reveals, projects an arbitrary state into the correspondent
energy eigenvalue. However, in a more realistic situation, the inherent complexity of the system im-
plies that measurement instruments should have an intrinsic resolution (or uncertainty) δE associated
with energy readings E. This means that instead of sharp detection of individual spectrum lines, now,
any energy value E measured by the observer should be contained in an interval ∆E := [E,E + δE]
with a bunch of possible exact energy eigenvalues Ei in it. We call the set of possible macroscopically
distinguishable energy outcome {E}, the macrostate of the system.

In this context of ignorance over the complete description of the system, more realistic measure-
ments are characterized by the following projectors

ΠE =
∑

Ei∈[E,E+δE ]
|Ei⟩ ⟨Ei| ,

whose set {ΠE} is complete (∑E ΠE = 1) and orthonormal (ΠEΠE′ = δE,E′ΠE). We call such
measurements as coarse-grained since it capture the loss of perfect knowledge of the system due to
the coarseness of our macroscopic apparatuses.
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If an observer performing a coarse-grained measurement obtains an energy outcome E, then the
Boltzmann entropy of the system can be defined as

SB(E) := ln VE, (2.4)

where VE = Tr{ΠE}, referred as the system’s volume element, is simply the rank of the projector ΠE.
Since VE represent the amount of exact energy eigenvalues contained in the coarse-grained interval
∆E, one can then interpret the Boltzmann entropy as counting the number of microstates (energy
eigenvalues) which are compatible with the system’s macrostate with energy outcome E.

In the situation in which we have information about further macroscopic variables, such as the
particle number N , the Boltzmann entropy can be generalized as

SB(E,N, . . . ) = lnVE,N,..., (2.5)

with VE,N,... counting all the microstate compatible with the macroscopic constraints E,N, etc.
An advantage of Eq. (2.4) over SvN , is that Boltzmann entropy in non-zero even for a pure

state ρ̂ = |ψ⟩ ⟨ψ|, and therefore, is compatible with the description of isolated quantum systems.
Another positive side in favor of SB is related on how intuitively the Boltzmann entropy explain the
second law of thermodynamics without needing the notion of statistical ensembles. If one consider
an isolated system initially prepared in a state with small volume term, one expects the same to
evolve towards a region with larger volume and to spend most of the time within the largest volume
term (correspondent with thermal equilibrium).

But just like SvN , the Boltzmann entropy faces some conceptual obstacles that prevent its iden-
tification as our sought microscopic entropy. The first reason is related with its inadequacy in the
description of small quantum systems, where an experimenter usually have precise control over the
quantum degrees of freedom. Since the volume term is equal to unity for a single microstate, one
would expect SB to vanish, and therefore, to not explain how SvN can possibly describe the ther-
modynamic entropy for small open systems. The second reason is associated with the unsatisfactory
situation in which one needs to introduce a non-uniquely defined coarse-graining on top of the sys-
tem’s dynamics. From those reasons, we should refrain from utilizing the SB in our description.

2.2.3 Observational entropy

A third possible candidate for microscopic entropic quantity which interpolates the ideas of von
Neumann and Boltzmann is the so-called observational entropy. To properly define it, we begin
considering a set of coarse-grained measurements C = {Πc} characterized by a complete set of
orthogonal projectors Πc respecting the identities ∑c Πc = 1 and ΠcΠc′ = δc,c′Πc. In this respect, if
the system is in a given state ρ̂, the observational entropy associated with a coarse-graining C takes
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the following expression
SC

obs(ρ̂) := −
∑
c

pc ln pc
Vc
, (2.6)

where pc := Tr{Πcρ̂} is the probability of observing the outcome c, while Vc := Tr{Πc} is the volume
term for Πc.

As we will see next, one can generally interpret the expression (2.6) as quantifying the amount of
information an observer can deduce from the system’s initial state if he/she perform measurements
within a basis defined by the process of coarse-graining. To see this we can rewrite Eq. (2.6) as in

SC
obs(ρ̂) =

∑
c

pc (− ln pc + ln Vc) = SSh(pc) +
∑
c

pcSB(c), (2.7)

where SSh(pc) = −∑
c pc ln pc is the Shannon entropy associated with the probabilities pc and the

second term corresponds to the average value of the Boltzmann entropy for such outcome. In terms
of the last expression (2.7) it easy to identify that

1. In the fine-grained situation where we have access to all physical information about the system,
we can choose a coarse-graining Cψ = {|ψ⟩ ⟨ψ|} correspondent to the eigenstate of the system’s
density operator ρ̂ = ∑

ψ ρψ |ψ⟩ ⟨ψ| (which is the most informative measurement possible).
Since in this case the volume term is Vψ = 1, one obtains

S
Cψ
obs(ρ̂) = SSh(ρψ) = SvN(ρ̂); (2.8)

2. In the maximum coarse-grained situation where we only have access to imprecise measurements,
we are restricted to the coarse-graining CO = {|o⟩ ⟨o|} associated to the measurements of a
given macroscopic observable Ô. In this context, after measuring the system we will have full
confidence that the system’s state ρ̂ is found in a given macrostate ΠO′ . Since the probabilities
fall to be pO = δoo′ with volume term VO = Tr{Πo′}, one obtains,

SCO
obs(ρ̂) = SB(o′). (2.9)

If the chosen macroscopic observable correspond to the system’s energy (or the set of known
macroscopic variables), Eq. (2.9) will coincide with the Boltzmann definition of entropy.

Therefore, the observational definition of entropy is sufficient flexible to reproduce the two pre-
vious notions of entropic quantities (von Neumann and Boltzmann).

Finally, it is important to notice that although Eq. (2.6) is well-defined for an arbitrary state ρ̂
and coarse-graining C, one still need to make the right choice of coarse-graining to connect SC

obs(ρ̂)
with the thermodynamic entropy. In this regard, the observation entropy suffers from a difficulty
similar to that faced by SB, relying on the introduction of a coarse-graining, which is non-unique
and independent of the Hamiltonian structure.
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On the other hand, the observational entropy can still be employed to analyze a third special
situation: where we can only perform fine-grained measurements on a fixed basis. Take for example a
sufficiently complex isolated quantum system that can exchange energy in a controllable manner due
to an external time-dependent parameter, such as a changing magnetic field or a non-stationary cav-
ity property. Although the system’s energy eigenstates are now time-dependent |En(t)⟩, due to the
system’s complexity, the experimentalist in general only have control over energy measurements on a
fixed basis (such as the initial eigenstate |En(0)⟩). In this circumstance, we identify the observational
coarse-graining measurement Cd to be given by the set of fixed initial energy eigenstate projectors
{|En(0)⟩ ⟨En(0)|}, with volume term Vn = 1 and probabilities pEn(t) = ⟨En(0)| ρ̂(t) |En(0)⟩. Conse-
quently, the observational entropy in this context takes the form

SCd
obs(ρ̂(t)) = SvN(ρ̂d(t)) = −

∑
n

pEn(t) ln pEn(t), (2.10)

where ρ̂d(t) = ∑
i pEn(t) |En(0)⟩ ⟨En(0)| are the diagonal components of the density operator in the

fixed initial energy eigenbasis. An interesting feature of expression (2.10) is that since SvN(ρ̂d(t)) is
defined instantaneously, there is no requirement for the introduction of any further coarse-graining
or to assume the Hamiltonian to be stationary. In the next section, we shall investigate with more
attention the properties of the last expression.

2.2.4 Diagonal entropy

From the problems outlined in the previous sections, we can start making sense about the con-
ditions we should expect from a microscopic entropy to be consistent with our system: (i) it should
be defined for isolated quantum systems; (ii) it should be independent of coarse-graining procedures;
and (iii) it should be defined for time-dependent Hamiltonian. An immediate candidate that satisfies
such conditions is given by expression (2.10) and it was first introduced in Ref. [78] as the thermo-
dynamic entropy for closed systems: the so-called diagonal entropy or d-entropy Sd, which is given
in a more clean notation by

Sd := −
∑
n

ρnn ln ρnn, (2.11)

where ρnn are the diagonal components of the system’s density operator in the eigenbasis of the
Hamiltonian (energy eigenstates). An ambiguity inherent in the last expression corresponds to the
circumstance in which energy eigenstates are degenerate. As such situations occur accidentally or
as a result of system symmetries, they are generally absent and will be ignored throughout the text.
It is also important to emphasize that Sd expression differs from that of the von Neumann entropy,
written in the basis that diagonalize the density operator. As expressed in Eq. (2.11), we are really
discarding all the non-diagonal contributions of SvN when expressed in the Hamiltonian eigenbasis.
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More specifically, the diagonal entropy can be interpreted as quantifying the amount of random-
ness observed in the energy eigenbasis of the system. To see this more explicitly, one can consider the
commonly encountered situation where the system has a sufficiently large dimensionality and quan-
tum state tomography becomes impractical [81]. For such physical configurations, it is reasonable to
assume a physicist to have access to only a restricted number of possible measurements, such as the
energy values of the system. Therefore, for a general process (unitary or not) it becomes inevitable
the emergence of transitions between instantaneous energy levels and the consequent development
of quantum coherence and entanglement among different parts of the system. The diagonal entropy
can then be identified as measuring the loss of information due to the limited set of measurements
available.

Another interesting result to highlight here is that an emerging notion of entropy exactly equal
to the Sd expression can be derived from a recent framework of quantum thermodynamics intro-
duce in Ref. [82]. Indeed, in this formalism, which is grounded in physical quantities that remain
invariant under an emergent gauge group, the corresponding gauge-invariant definition of heat can
be attributed to the (almost inevitable) transitions between energy levels [82].

In Ref. [78] the author has putted forward some arguments to motivate (on physical grounds) the
central importance of the diagonal contributions of ρ̂ (in the energy basis) for the thermodynamic
characterization of quantum systems.

1. In general, all information about time-average observables —which appear in any
thermodynamic measurements— is contained only at the diagonal elements of ρ̂.

The reason for such consideration is associated with the description of sufficiently complex
systems that have achieved a steady state after some process that occur in the distant past,
such as in

ρ̂(t) =
∑
mn

ρnme
−i(Em−En)t |m⟩ ⟨n| , (2.12)

where Ĥ |n⟩ = En |n⟩ is the stationary Schrödinger equation for the final time-independent
Hamiltonian. If one anticipate that quantum systems, even when isolated, are likely to ex-
hibit some form of ergodic behavior [78, 83], then the time averages for any thermodynamic
observable Ô should be comparable to its equilibrium ensemble average, as in

〈
Ô(t)

〉
≡ lim

τ→∞

1
τ

∫ τ

0
dt
〈
Ô(t)

〉
, (2.13)

where
〈
Ô(t)

〉
= Tr

{
ρ̂(t)Ô

}
. The last expression means that for the steady state (2.12), one

expects such observable time averages to respect

〈
Ô(t)

〉
=
∑
nm

ρnmOnm⟨e−i(Em−En)t⟩, (2.14)
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where Onm ≡ ⟨n| Ô |m⟩ are the observable matrix elements in the energy eigenstate basis. For
the case in which the eigenstates of the Hamiltonian are not degenerate, the time average over
the exponential terms reduces to [83]

⟨e−i(Em−En)t⟩ = lim
τ→∞

1
τ

∫ τ

0
dte−i(Em−En)t = δnm. (2.15)

As a result, one obtains from Eq. (2.14) the following expression

〈
Ô(t)

〉
=
∑
nm

ρnnOnn, (2.16)

which is dependent only on the time-independent diagonal elements of the density operator
in the eigenbasis of the Hamiltonian. The conclusion we draw from this expression, is that
relevant information for thermodynamic measurements is only present in the diagonal terms
ρnn.

2. The diagonal components of ρ̂ are conserved for quasi-static process.

A second argument for the importance of the diagonal terms ρnn in Eq. (2.11) is contained in the
adiabatic theorem for quantum mechanics [84] which asserts that a slowly varying Hamiltonian
do not induce transitions between instantaneous eigenstates. More specifically, given a time-
dependent Hamiltonian Ĥ(t) satisfying Ĥ(t) |n(t)⟩ = En(t) |n(t)⟩ and an arbitrary state vector

|Ψ(t)⟩ =
∑
n

cn(t) |n(t)⟩ , (2.17)

which is a solution of the time-dependent Schrödinger equation, if H(t) changes sufficiently
slowly on time, i.e., quasi-static process, one can show that the time-dependent amplitudes
cn(t) must evolve in time as [85]

cn(t) = cn(0) exp
{

−i
∫ t

0

[
Em(t′) − i ⟨m(t′)| ∂

∂t′
|m(t′)⟩

]
dt′
}
. (2.18)

An immediate consequence of Eq. (2.18) is the conservation of the eigenstate probabilities:
|cn(t)|2 = |cn(0)|2, meaning that if the system begins as an eigenstate of the initial Hamiltonian
Ĥ(0) then it will remain as an eigenstate of Ĥ(t) during all time (differing only by a time-
dependent phase factor). A trivial corollary of the last result is that the diagonal terms ρnn(t) =
|cn(t)|2 of the density operator in the instantaneous energy eigenbasis should remain constant
over time for any quasi-static processes. If we identify heat in the quantum realm as energy
increase due to transitions between different energy levels —as described in Refs. [78, 86, 87]—
one can associate thermodynamic adiabaticity with quasi-static processes. Then, any entropic
quantity that dependent only on ρnn, such as Sd, should be conserved for adiabatic processes,
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as it is expected from a thermodynamic entropy.

In addition to the last physical motivation, the diagonal entropy can be show to exhibit all the
key properties expected from a thermodynamic entropy. For equilibrium states, where the density
operator is stationary (and therefore, diagonal), the d-entropy can be shown to be identical to SvN .
As a result, Sd must respect important properties such as extensivity, positivity and vanishing under
the zero-temperature limit. In more general scenarios, such as when the d-entropy can change in
time, one can prove for any time-dependent process in isolated systems that [78]

Sd(t) ≥ SvN(0), (2.19)

as long as the initial state is stationary. It is also important to remark that the last expression is not
saying that Sd(t) is always a monotonic function of time. Furthermore, this entropy increase can be
better understood in terms of a general unitary evolution of the density operator in time

ρ̂(t) = Û(t)ρ̂(0)Û †(t), (2.20)

Û(t) being a unitary operator. For an initially diagonal state ρ̂(0) = ∑
m ρmm(0) |m⟩ ⟨m|, one can

easily show that
ρnn(t) = ⟨n| ρ̂(t) |n⟩ =

∑
m

Pnmρmm(0), (2.21)

where the matrix elements Pnm = |Umn|2 determines the transition rates between the instantaneous
energy eigenvalues. Given that the matrix P is doubly stochastic (∑m Pmn = ∑

n Pnm = 1), there
is a tendency for the system to promote a uniform spreading of probability density ρnn among the
energy spectrum. As a result, since Sd is a measure of the spread of ρnn, for any dynamical process
the diagonal entropy must necessarily either increase or remain constant. The validity of Eq. (2.19)
could also be extended in Ref. [79] for a particular class of non-diagonal initial states called by the
authors as "generalized equilibrium pure states".

Another important property one expects a thermodynamic entropy to respect is the fundamental
thermodynamic relation

∆U = T∆S −
∑
j

∂U

∂λi

∣∣∣∣
S
∆λi, (2.22)

which is a direct consequence of the thermodynamic postulate that require the entropy to be a
unique function of energy E and the external parameters λ1, λ2, etc. By expressing the system’s
energy U(t) = ∑

n ρnn(t)En(t) in terms of a linear order expansion on ∆ρ and ∆λ, one can easily
obtain the change in energy ∆U to be

∆U ≈
∑
n

∆En(t)ρnn(0) +
∑
n

En(0)∆ρnn(t), (2.23)
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where ∆En(t) = En(t) −En(0) is the change in the instantaneous energy eigenstates due to the time
evolution while ∆ρnn(t) = ρnn(t) − ρnn(0) is the change in the diagonal components of ρ̂. Since we
do not expect transitions between instantaneous energy levels in the adiabatic limit (∆ρnn(t) = 0),
one can identify the first term in Eq. (2.23) given by ∆Ead = ∑

n ∆En(t)ρnn(0), as the adiabatic
change of the system’s energy, or simply the work done by the system due to the changes of the
external parameters λi. As a result, the second term Q(t) = ∑

nEn(0)∆ρnn(t) must correspond to
the non-adiabatic change of the energy, i.e., the heat generated by the system when the process is
non-quasi-static.

Similarly, a change in the diagonal entropy to the leading order in ∆ρ̂nn(t) can be obtained as

∆Sd ≈ −
∑
n

[∆ρnn(t) ln ρnn(0) + ρnn(0)∆ ln ρnn(t)] = −
∑
n

∆ρnn(t) ln ρnn(0), (2.24)

since ∑n ∆ρnn(t) = Tr{ρ(t)} − Tr{ρ(0)} = 0. If we consider an initially thermal state in Eq. (2.2) in
the energy eigenbasis

ρ̂(0) =
∑
n

1
Z
e−En(0)/T |n⟩ ⟨n| with Z =

∑
m

e−Em|(0)/T , (2.25)

is immediately from Eq. (2.24) that ∆Sd = ∑
n ∆ρnn(t)En(0)/T = Q(t)/T . Using this last identity

one can then show by that Eq. (2.23) can be written as

∆U ≈ ∆Ead + T∆Sd. (2.26)

Since ∆Ead is understood as a function of the state of the system, one can write it in terms of the
partial derivatives of the system energy over the external parameters as in

∆Ead =
∑
j

∂U

∂λi

∣∣∣∣
Sd

∆λi, (2.27)

making Eq. (2.26) equivalent to the fundamental thermodynamic relation (2.22). In fact, the last
demonstration can be extended for more general scenarios. More specifically, the diagonal entropy
can be shown to be a unique function of energy (and therefore, to satisfy the fundamental relation)
as long as the system’s Hamiltonian is local and non-integrable [78].

Finally, due to the correspondence between Sd and SvN for equilibrium states, is immediately
that the diagonal entropy must be additive in thermal equilibrium. However, in non-equilibrium
conditions, the situation becomes more subtle. While the sum of thermodynamic entropies for
subsystems aligns with the sum of their diagonal entropies, they are not equal to the total Sd.
Additionally, it can also be demonstrated that when two initially uncoupled systems each in local
equilibrium, are allowed to interact, the sum of their diagonal entropy should satisfy the inequality
S

(1)
d (t)+S(2)

d (t) ≥ S
(1)
d (0)+S(2)

d (0). This last result is aligned with thermodynamic expectation, since
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the second law of thermodynamics demands the sum of entropies to increase or remain constant.
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Chapter 3

The dynamical Casimir effect

As explained in the introduction, the DCE can be understood as the particle creation phe-
nomenon that occurs when the structure of the vacuum state of a quantum field is distorted in a
non-adiabatically manner. Although this description is qualitatively informative, to better grasp the
origin of such effect is essential to define it in a mathematically precise manner. In this chapter we
must, therefore, derive the DCE for the particular system under consideration, i.e., a quantum field
constrained by a moving cavity. After this we shall complement the discussion by introducing the
mathematical formalism needed to compute, in the next chapter, the system’s entropy production.

3.1 QFT through the DCE

The goal of this section is twofold: in one hand we introduce the DCE and the notation to be
used in the rest of this work, but on the other hand, we also make the discussion sufficiently rigorous
from the mathematical point of view, such that will serve as an introduction to quantum field theory
in time-dependent backgrounds.

3.1.1 The system

In order to reproduce the DCE, we begin considering a real massless Klein-Gordon field Φ(xµ)
embedded in a (1 + 1)-dimensional Minkowski spacetime with a Lagrangian density

L(xµ) = 1
2η

µν∂µΦ∂νΦ, (3.1)

where xµ ≡ (x0, x1) is the two-vector and ηµν = diag{1,−1} with µ, ν = 1, 2. If we introduce a global
inertial coordinate system (t, x), one can account for the dynamical nature of the phenomenon by
confining the field into a time-dependent space interval Σ(t) = {x ∈ [x1, x2(t)]} with two boundaries
at its endpoints: one fixed at x1 = x0, and another allowed to move in a prescribe trajectory
x2(t) = x0 + l(t), with l(t) being the time-dependent interval distance. For simplification purposes,
we account for the interaction between the field and the moving boundaries by applying the following
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Dirichlet conditions on the field
Φ(x1, t) = Φ(x2(t), t) = 0. (3.2)

Therefore, if one consider Φ as describing a convenient component of the electromagnetic vector
potential when the polarization effects are negligible, then the imposed boundary conditions describes
a time-dependent cavity composed by two ideal mirrors (perfect reflectors). From now on we must
adopt this last interpretation for Σ(t).

From the previous considerations, the system can then be described (in the chosen inertial refer-
ence frame) in terms of the following action

A = 1
2

∫
dt
∫

Σ(t)
dx
[
(∂tΦ)2 − (∂xΦ)2

]
. (3.3)

By demanding Eq. (3.3) to be stationary (δA = 0), one obtain the equation of motion for the field
to be simply the wave equation with dynamical boundaries conditions

(
∂2
t − ∂2

x

)
Φ(x, t) = 0, with Φ(x0, t) = Φ(x0 + l(t), t) = 0. (3.4)

A more rigorous account of the system can be implemented by introducing a phase space formula-
tion for the theory. Since we are describing a quadratic lagrangian with linear dynamical equations,
this last procedure can be accomplished by specifying the symplectic linear space (M,Ω(., .)) of the
theory, where M is a vector space and Ω(., .), is the canonical symplectic form, i.e., a non-degenerate,
antisymmetric, bilinear map. From the Lagrangian density (3.1), one can begin this task by intro-
ducing the canonically conjugate field

Π(x, t) = ∂L
∂(∂tΦ) = ∂tΦ(x, t), (3.5)

which is defined on the spatial interval Σ(t) at a given global inertial time t. Here, we restrict
attention to the class of smooth functions which live in C∞

0 (Σ(t)): the space of infinite differentiable
functions which are compact support at this last space interval. As a result, one can define the
system’s phase space M, at a given instant of time t0, by specifying the values of the pair of function
Φ and Π, on Σ(t0), forming

M ≡ {[Φ,Π]|Φ : Σ(t0) → R,Π : Σ(t0); Φ,Π ∈ C∞
0 (Σ(t0))}. (3.6)

Since Eq. (3.4) is well-posed (there exist a unique solution for a given initial-value specification), one
can define S to be the space of solutions of the Klein-Gordon equation (with dynamical boundary
conditions (3.2)) which arise from an initial data in M.

Lastly, to define the system’s symplectic structure, we search for bilinear maps of the form
S × S → R, which are conserved over time. A hint to this task can be found by looking to the
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structure of the Klein-Gordon equation ∂µ∂µΦ = 0. If we consider two solutions Φ1 and Φ2 on S,
one must expect them to respect,

0 = Φ1∂µ∂
µΦ2 − Φ2∂µ∂

µΦ1 = ∂µJµ(Φ1,Φ2), (3.7)

where we have defined Jµ(Φ1,Φ2) =: Φ1∂µΦ2 − Φ2∂µΦ1. Using ∂µJµ = ηµσ∂σJµ, follow immediately
from the last expression that

∂t

∫
Σ(t)

dxJ0 =
∫

Σ(t)
dx∂xJ1 = [Φ1∂xΦ2 − Φ2∂xΦ1] |x2(t)

x1 = 0, (3.8)

meaning that the spatial integral of J0 = Φ1∂tΦ2 − Φ2∂tΦ1 over the interval Σ(t), remain the same
for all instants of time. As an immediate consequence, by giving two points of M, say, [Φ1,Π1] and
[Φ2,Π2], both at an arbitrary instant of time t0, we are compelled to introduce as the symplectic
structure Ω : M × M → R, the following invariant bilinear map,

Ω ([Φ1,Π1], [Φ2,Π2]) :=
∫

Σ(t0)
dx [Π1Φ2 − Φ1Π2] . (3.9)

With it, the Poisson brackets {·, ·}PB on M is defined to be simply

{Ω ([Φ1,Π1], ·) ,Ω ([Φ2,Π2], ·)}PB = −Ω ([Φ1,Π1], [Φ2,Π2]) , (3.10)

where Ω ([f, g], ·) ≡
∫

Σ(t0) dx[gΦ − Πf ] can be viewed as a linear map on M. As an example, by
choosing [Φ1,Π1] = [0, f1] and [Φ2,Π2] = [f2, 0], one obtain from Eq. (3.10) the following expression

{∫
Σ(t0)

dxf1Φ,
∫

Σ(t0)
dxf2Π

}
PB

=
∫

Σ(t0)
dxf1f2, (3.11)

which is the smeared version on space of the familiar expression (but mathematically ill-defined)

{Φ(x1, t0),Π(x2, t0)} = δ(x1 − x2).

As a matter of fact, any attempt to define the functions Φ and Π in a particular space-time point
(x, t), is doomed from the start to run into serious convergence problems. For this reason we generally
“smear” Φ in spacetime averages over test functions f , such as in

Φ(f) :=
∫
R2

dtdx f(x, t)Φ(x, t) (3.12)

Π(g) :=
∫
R2

dtdx g(x, t)Π(x, t) (3.13)

where f and g are smooth and of compact support on Minkowski spacetime, i.e., are elements of
T = C∞

0 (R2). By identifying a linear map E : T → S between the space of test functions and the
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space of classical solutions, one can enunciate the following properties which are gonna be relevant
latter (see Ref. [88] for proofs and exact definitions):

(i) Every Φa ∈ S can be expressed as Φa = Ef for some f ∈ T;

(ii) Ef = 0 if and only if f = ∂µ∂
µg for some g ∈ T;

(iii) For all Φa ∈ S and all f ∈ T, one have
∫
R2

dtdx fΦa = Ω(Ef,Φa). (3.14)

System’s Hamiltonian

Despite the introduction of the phase formalism for the classical theory, we have not yet touched
on the explicit expression for the system’s Hamiltonian H. With the conjugate field Π, as defined in
Eq. (3.5), the standard way to define H would be by following the Legendre transformation

H(t) =
∫

Σ(t)
dxH(x, t) with H = Π∂tΦ − L(Φ,Π, t). (3.15)

Then, the time evolution of any given functional F [Φ,Π] is provided by the Poisson equation

Ḟ (t) = {F (t), H(t)}PB, where {F,G}PB =
∫

dx
(
δF

δΦ
δG

δΠ − δF

δΠ
δG

δΦ

)
(3.16)

is the field version of the classical Poisson bracket and δ
δψ

= ∂
∂ψ

+ ∂
∂x

∂
∂(∂xψ) is the functional derivative.

But contrary to naive expectations, the explicit expression for the Hamiltonian function cannot
be straightforwardly defined in our system. As pointed out by Moore in his seminal work [7], given
the oversimplified description of the mirror (in terms of the idealized boundary conditions (3.2)), our
system cannot have a fundamental Hamiltonian H to generate the exact time evolution. To show
this, let us suppose, by contradiction, that H indeed exists. From Eq. (3.16), one should be able
to evolve the field configuration from (x, t0) → (x, t0 + dt) in terms of the following infinitesimal
expression

Φ(x, t0 + dt) = Φ(x, t0) + {Φ(x, t0), H}PBdt. (3.17)

Now, if by chance we require the point (x, t0) to lie on the mirror trajectory, since Φ(x, t0) = 0 (by
the boundary conditions), one cannot expect an initially vanishing function to evolve into a non-zero
value. Showing that H cannot exist.

For this reason, the overwhelming majority of papers on the subject tend to address the problem
in the Heisenberg picture, where the relevant quantities are calculated without making reference to
the explicit state vector of the system. However, contrary to Moore conclusion, the description of the
DCE in Schrödinger picture is indeed attainable through the introduction of effective Hamiltonians.
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The first description along these lines was obtained by Razavy [41] and Law [34, 42] in terms of an
instantaneous decomposition of the field. Other important contributions to the effective description
of field dynamics can be found in the works of Johnston et al. [89], Schützhold et al. [43] and Haro et
al. [44, 45]. Throughout this work, we shall explore such effective Hamiltonian techniques to compute
relevant properties.

3.1.2 Quantization procedure

In contrast to the paradigm of classical mechanics, —where a state is represented by a point
in finite dimensional manifold M, an observable is a real-valued function defined on M and the
dynamical evolution is given by a canonical transformation generated by a Hamiltonian function— the
quantum realm presents a remarkable different scenario. There, a quantum state is represented by a
ray in an infinite dimensional projective Hilbert space F, observables are self-adjoint operators acting
on F and its dynamical evolution is given by unitary transformations generated by a Hamiltonian
operator [88].

In this respect, to construct a quantum version of our classical theory we are going to need to
account for:

1. An algebraic structure: How to establish the correct algebra from classical Poisson-brackets
{·, ·}PB to quantum commutators [·, ·], wherein classical observables Oi are mapped to self-
adjoint operators Ôi;

2. The choice of a Hilbert Space: How to appropriately choose the Hilbert space F in which the
quantum states of the theory reside and the system observables Ô : F → F operate.

Building the Hilbert space of our theory

The first challenge we are faced with, is how to extract a Hilbert space F out of the ingredients
already present in our theory. If we remember, such as space F needs to be: (i) A linear vector
space over the complex numbers C; (ii) Equipped with a positive definite inner product ⟨·, ·⟩; (iii)
Complete with respect to the norm defined by ⟨·, ·⟩.

We already have a linear vector space, the space of smooth solutions of the Klein-Gordon equation,
denoted by S. But unfortunately, the same is defined over the real numbers R. We can overcome
this issue with the complexification of S into SC = S ⊗ C. To define the notion of "orthonormality"
on SC we can introduce the Klein-Gordon inner product, by

(Φ1,Φ2)KG = −iΩ(Φ∗
1,Φ2) = i

∫
Σ(t)

dx [Φ∗
1∂tΦ2 − Φ2∂tΦ∗

1] , (3.18)

which is invariant in the cavity interval Σ(t). An unpleasant feature of Eq. (3.18) is that is not
positive definite on SC, as it assigns negative values for complex solutions (Φ∗

i ,Φ∗
j) = −(Φi,Φj). To
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remedy this last difficult one can always choose any subspace SC+ ⊂ SC (space of positive solutions)
which satisfies the following properties:

(i) The inner product (3.18) is positive definite on SC+;

(ii) SC = SC+ ⊕ SC+, with the bar designating the complex conjugated of the space;

(iii) For all ψ+ ∈ SC+ and ψ− ∈ SC+, we have (ψ+, ψ−)KG = 0.

With the last considerations we now have an inner product space (SC+, (·, ·)KG). If SC+ is not
complete in the norm defined by its inner product, we can extend it into a Hilbert space H with the
well-defined mathematical procedure called Cauchy completion, whereby taking equivalence classes
of Cauchy sequences1 on (SC+, (·, ·)KG), one can endow it with a Hilbert space structure.

Although we have successfully obtained H from S, this is not yet the Hilbert space for the theory
that we are looking for. In the meantime, we shall denote by |ψa⟩ and ⟨ψa|, the vectors and dual
vectors belonging, respectively, to H and H. In this manner ⟨ψa|ψa⟩ ≡ (ψ, ψ)KG designate its inner
product. Furthermore, we can also introduce the symmetric n-th tensor product of Hilbert spaces as

H
(n)
S =

n⊗
S H =

n times︷ ︸︸ ︷
H ⊗s · · · ⊗s H,

with elements denoted by |ψa1 , ψa2 , . . . , ψan⟩S = |ψa1⟩ ⊗s |ψa2⟩ ⊗s · · · ⊗s |ψan⟩, where ⊗s is the
symmetric tensor product defined by

|ψa1⟩ ⊗s |ψa2⟩ = 1
2 (|ψa1⟩ ⊗ |ψa2⟩ + |ψa2⟩ ⊗ |ψa1⟩) .

Here, H(0) with elements |ψ⟩, is simply the set of complex scalars C (which is also a Hilbert space).
With all the ingredients at hands, we are now in a position to define the Hilbert space of our

theory, the so-called symmetric Fock space FS(H) in terms of the following direct sum

FS(H) =
∞⊕
n=0

H
(n)
S = C ⊕ H ⊕ (H ⊗s H) ⊕ . . . , (3.19)

where a general vector |Ψ⟩ ∈ FS(H) is represented by

|Ψ⟩ = (|ψ⟩ , |ψa1⟩ , |ψa1 , ψa2⟩S , . . . , |ψa1 , ψa2 , . . . , ψan⟩S , . . . ). (3.20)

Before continuing, we must introduce two important operators for the theory: the annihilation
operator â(⟨ξa|) : FS(H) → FS(H) acting on a general state of system as

â(⟨ξa|) |Ψ⟩ = (⟨ξa|ψa⟩ ,
√

2 ⟨ξa|ψa⟩ |ψa1⟩ ,
√

3 ⟨ξa|ψa⟩ |ψa1 , ψa2⟩S , . . . ), (3.21)
1If V is a normed vector space, a sequence {vn} of elements of V is said to be a Cauchy sequence in V if given a

ϵ > 0 there exists a N ∈ Z such that ||vn − vm|| < ϵ for all n, m > N .
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and the creation operator â†(|ξa⟩) : FS(H) → FS(H), defined as

â†(|ξa⟩) |Ψ⟩ = (0, ψ |ξa1⟩ ,
√

2 |ξa1 , ψa2⟩S ,
√

3 |ξa1 , ψk2 , ψk3⟩S , . . . ). (3.22)

Defining the algebraic structure of the quantum theory

In order to obtain the quantum version of our theory, we need to construct a bridge where
functions Ω([Φ,Π], ·) defined on M are represented by operators Ω̂([Φ,Π], ·) on F, with the following
commutation relations

[
Ω̂ ([Φ1,Π1], ·) , Ω̂ ([Φ2,Π2], ·)

]
= −iΩ ([Φ1,Π1], [Φ2,Π2]) Î , (3.23)

where Î is the identity operator. Inspecting the definition for the creation and annihilation operators
in Eqs. (3.21) and (3.22) with more attention, one can have a hint of how to define Ω̂([Φ,Π], ·). By
looking at their commutation relations applied to a general state |Ψ⟩, one have

â(⟨ξa|)â†(|ηa⟩) |Ψ⟩ − â†(|ηa⟩)â(⟨ξa|) |Ψ⟩ = ⟨ξa|ηa⟩ |Ψ⟩ , (3.24)

or more explicitly [
â(⟨ξa|), â†(|ηa⟩)

]
= ⟨ξa|ηa⟩ Î . (3.25)

Using the fact that ⟨ξa|ηa⟩ = −iΩ(ξ∗
a, ηa) and comparing Eq. (3.25) with Eq. (3.23), it is possible

to see that the correct expression for Ω̂([Φ,Π], ·) must be an adequate combination of creation and
annihilation operators.

From the previous discussion we have seen that for any Φa ∈ S, we can always proceed with a
decomposition in positive and negative solutions Φa = Φ+

a + Φ−
a with Φ+

a ∈ SC+ and Φ−
a ∈ SC+.

This correspondence Φa → Φ+
a of selecting positive solutions must then guarantee the existence of a

linear one-to-one map K : S → H with the following properties

KΦa →
∣∣∣Φ+

a

〉
∈ H, KΦa →

〈
Φ+
a

∣∣∣ ∈ H. (3.26)

By considering any Φa ∈ S, the quantization procedure can then be achieved by defining the operator
Ω̂ (Φa, ·) on FS(H), by

Ω̂ (Φa, ·) = iâ(KΦa) − iâ†(KΦa). (3.27)

In particular, the quantum field operator Φ̂(f) weighted by a test function f —which is now inter-
preted as an operator-value distribution— is defined by

Φ̂(f) = iâ(K (Ef)) − iâ†(K (Ef)). (3.28)
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A more familiar form for the last expression can be introduced if one chooses a particular orthonormal
basis {uk(x, t)} for the space of positive solutions SC+. In this case, K (Ef) ≡ |Ef⟩ = ∑

k ⟨uk|Ef⟩ |uk⟩
and by writing ⟨uk|Ef⟩ = iΩ(Ef, u∗

k) = i
∫

dxdtfu∗
k with the help of the identity (3.14), we can explore

the linearity of the creation and annihilation operators to obtain

Φ̂(f) = iâ

(
−i
∑
k

∫
R

dtdxf(x, t)uk(x, t) ⟨uk|
)

− iâ†
(
i
∑
k

∫
R

dtdxf(x, t)u∗
k(x, t) |uk⟩

)

=
∑
k

∫
R

dtdxf(x, t)uk(x, t)â (⟨uk|) +
∑
k

∫
R

dtdxf(x, t)u∗
k(x, t)â† (|uk⟩)

=
∫
R

dtdxf(x, t)Φ̂(x, t),

where
Φ̂(x, t) =

∑
k

[
uk(x, t)âk + u∗

k(x, t)â
†
k

]
, (3.29)

is the spacetime expression for the quantum field with âk := â (⟨uk|) and â†
k := â† (|uk⟩) being the

creation and annihilation operators in the chosen basis. Since the basis {uk} is orthonormal, one can
show from relation (3.23) that âk and â†

k respects the standard commutation relations
[
âk, âj

]
=
[
â†
k, â

†
j

]
= 0 and

[
âk, â

†
j

]
= δkj. (3.30)

The above construction show to us in a very explicit manner that the field expansion in terms of
creation and annihilation operators is completely dependent on the choice of the space of positive
solutions SC+ and its correspondent orthonormal basis {uk}. This means that, in general, we will
have infinitely many unitarily nonequivalent choices to decompose our field. In particular, we call uk
to be positive-frequency if it satisfies the relation

i∂tuk = +ωkuk, ωk > 0, (3.31)

while its complex conjugated counterpart u∗
k its called negative-frequency as it respects

i∂tu
∗
k = −ωku∗

k, ωk > 0. (3.32)

The significance of this nomenclature becomes apparent when expressing the system’s Hamiltonian
in terms of the operators âk and â†

k. By expressing the naive Hamiltonian choice given by Eq. (3.15),
together with the Lagrangian density (3.1), one obtains: H = 1

2

[
(∂tΦ)2 + (∂xΦ)2

]
. Introducing the

field expansion from Eq. (3.29) into the quantum version for the last Hamiltonian and using the
orthonormality conditions given by the inner product (3.18), one obtains the expression

Ĥ =
∑
kj

{
Θ[u∗

k, uj]â
†
kâj + Θ[uk, u∗

j ]âkâ
†
j + Θ[uk, uj]âkâj + Θ[u∗

k, u
∗
j ]â

†
kâ

†
j

}
, (3.33)
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where we have defined the functional Θ[u, v] := 1
2
∫

Σ(t) dx [∂tu∂tv + ∂xu∂xv] for any complex functions
u and v. In the special case in which uk is positive-frequency (and u∗

k negative-frequency), we
automatically obtain2 Θ[u∗

k, uj] = Θ[uk, u∗
j ] = ωjδkj and Θ[uk, uk] = Θ[u∗

k, u
∗
k] = 0, so the Hamiltonian

(3.33) becomes
Ĥ =

∑
k

ωk

(
â†
kâk + 1

2

)
for ∂tuk = −iωkuk, (3.34)

which is diagonal with respect to the operators âk and â†
k. In this exceptional circumstance, a part

from the infinite number of terms proportional to ωk/2 (the zero-point energy contributions of the
theory), one can understand the system’s Hamiltonian as made up of a collection of mode terms
N̂k = â†

kâk, each one accompanied by a discrete quantum of energy ℏωk (in SI units). We then
interpret the average value of the operator N̂k as counting the number of energy excitation with a
definite field mode k, which in the context of quantum field theory we simply refer as particles.

As we have seen in more formally in definitions (3.21) and (3.22), another important use for
the operators âk and â†

k is to construct a particular basis for Fs(H). One can reformulate such a
construction by defining the ground state of the theory |0⟩, as the state annihilated by all âk, that
is,

âk |0⟩ = 0, for all k. (3.35)

As the ground state is the lowest energetic state of the field, we call it the vacuum state of the
theory. A general state with nki particles populated in all the ki-th modes can be constructed by the
repeated application of the creation operator â†

k on this vacuum state,

|n⟩ = |nk1 , nk2 , . . .⟩ =
∏
i

1√
nki !

(
â†
ki

)nki |0⟩ . (3.36)

In this language, Eqs. (3.21) and (3.22) can be rewritten as

âk |n1, . . . , nk, . . .⟩ = √
nk |n1, . . . , nk − 1, . . .⟩ , (3.37)

â†
k |n1, . . . , nk, . . .⟩ =

√
nk + 1 |n1, . . . , nk + 1, . . .⟩ . (3.38)

3.1.3 Field expansion in different time intervals

Let us consider at the initial time interval in: {t ∈ (−∞, 0]} that the system is in a static
configuration with a constant cavity length l(t ≤ 0) = l0. Given the static nature of the imposed
boundary conditions, a natural set of orthonormal solutions for the wave equation (3.4) can be

2When uk is positive-frequency, follow immediately from the Klein-Gordon inner product properties that:
ωj

∫
Σ(t) dxu∗

kuj = δkj − ωk

∫
Σ(t) dxuju∗

k whereas ωj

∫
dxukuj = −ωk

∫
Σ(t) dxu∗

ku∗
j . Using the wave equation together

with the boundary conditions on Σ(t) we can also obtain the expression
∫

Σ(t) dx∂xf∗
k ∂xuj = ω2

j

∫
Σ(t) dxu∗

kuj .
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introduced simply as

uin
k (x, t) = 1√

πk
sin

[
ωin
k (x− x0)

]
e−iωin

k t for t ≤ 0, (3.39)

where ωin
k = kπ/l0 with k = 1, 2, . . . are the initial time-independent frequencies and, again, the set

{uin
k (x, t)} form a basis that spams the subspace SC+ for this time interval. In this circumstance,

the field expansion takes the form

Φ̂(x, t ≤ 0) =
∑
k

[
âin
k u

in
k (x, t) + âin†

k uin∗
k (x, t)

]
, (3.40)

where âin
k and âin†

k are the initial annihilation and creations operators which defines an initial vacuum
state |0; in⟩ by the same arguments presented in Eq. (3.35).

In particular, the modes uin
k are said to be positive-frequency from the criterion introduced in Eq.

(3.31). As a consequence, not only the system’s Hamiltonian is automatically diagonalized and we
have a well-defined notion of particles for all t ≤ 0, but one can also show that this is the preferred
and most natural choice for a mode decomposition. To display this, we begin considering an inertial
observer with coordinates (x̃, t̃) which is moving with velocity v in respect to the fixed mirrors x0

and x0 + l0 of our cavity. One can relate the two descriptions by means of the following Lorentz
transformation

t = γ
(
t̃+ vx̃

)
,

x = γ(x̃+ vt̃),
x0 = γ(x̃0 + vt̃),

(3.41)

where γ = 1/
√

1 − v2 is the Lorentz factor. The time derivative of our positive-frequency modes in
the new frame is then

i∂t̃u
in
k = i

∂uin
k

∂x

∂x

∂t̃
+ i

∂uin
k

∂x0

∂x0

∂t̃
+ i

∂uin
k

∂t

∂t

∂t̃

= γωin
k√
kπ

sin[ωin
k (x− x0)]e−iωin

k t = ω̃in
k u

in
k , (3.42)

where ω̃in
k = γωin

k is the frequency in the boosted frame. This is telling us that although the field
frequency is re-scaled by the Lorentz factor, different observers will agree on how to distinguish
between positive and negative frequencies solutions and, therefore, on how to define the creation and
annihilation operators and the correspondent vacuum state for the system.

Now let us discuss the situation in which the field is subjected to dynamical boundary condi-
tions (3.4). For the time interval t > 0, when the cavity returns to motion, the natural criterion
of selecting positive-frequency solutions is no longer available, meaning we do not expect to find an
unambiguous choice for SC+ and, therefore, to the notion of particles. To see this in a more explicit
manner, let’s consider the approach pioneered by Gerald Moore in 1970 [7]. At this time interval,
an expansion for the quantum field can still be decomposed in terms of the initial operators âin

k and
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âin†
k in the form,

Φ̂(x, t > 0) =
∑
k

[
âin
k uk(x, t) + âin†

k u∗
k(x, t)

]
, (3.43)

as long as the new set of mode functions {uk(x, t)} satisfies: (i) the wave equation (3.4), (ii) the
time-dependent boundary condition (3.4), and (iii) the initial condition uk(x, 0) = uin

k (x, 0). To
attack such problem one can exploit the conformal invariance of the wave equation (3.4) in (1 + 1)-
dimension, which under the coordinate transformation (x, t) → (ξ, η) with equations

η − ξ = R (t− x) and η + ξ = R (t+ x) , (3.44)

preserve its structure under the form of

∂2Φ̂
∂η2 − ∂2Φ̂

∂ξ2 = 0 ⇄
∂2Φ̂
∂t2

− ∂2Φ̂
∂x2 = 0,

where R(t ± x) is an arbitrary function, and we have used new set of abstract coordinates ξ and η

restricted to the finite interval 0 ≤ ξ, η ≤ 1.
To map the time-dependent problem into a more amenable where the boundary conditions are

static, we choose the function R in such a way that the ξ-coordinate (analogous to our original spatial
coordinate) is defined to satisfy

ξ = 0 when x = x0, (3.45)

ξ = 1 when x = x0 + l(t). (3.46)

Solving the conformal transformed scalar field equation for Φ̂(ξ, η), under the boundary conditions
Φ̂(0, τ) = Φ̂(1, η) = 0, we can analogously find solutions in the form

uk = 1√
kπ

sin(kπξ)e−ikπη = i√
4kπ

{
e−ikπ(η+ξ) − e−ikπ(η−ξ)

}
≡ i√

4kπ

{
e−ikπR(t+x) − e−ikπR(t−x)

}
, (3.47)

whereby using the inverses of the conformal transformations (3.44) we have returned to the (x, t)
representation in the second line. Using the identity

R(t+ x) −R(t− x) = (τ + ξ) − (τ − ξ) = 2ξ, (3.48)

we can then force the function R to satisfy R(t− x) = F (t− x) and R(t+ x) = G(t+ x) (where F
and G are another arbitrary functions) and search for solutions in the form

uk (x, t) = i√
4kπ

[
e−ikπG(t+x) − e−ikπF (t−x)

]
, (3.49)
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provided that we can solve the following functional relations derived from Eq. (3.48)

G
(
t+ x0 + l(t)

)
− F

(
t− x0 − l(t)

)
= 2 and G

(
t+ x0

)
− F

(
t− x0

)
= 0. (3.50)

The above relations are known as generalized Moore’s equation [7]. If one consider the special case in
which x0 = 0, we recover the original function relation due to Moore in which G(z) = F (z) = R(z)
such that R(t+ l(t)) −R(t− l(t)) = 2.

To exemplify the last discussion, let us consider the special case in which x0 = 0 and the second
mirror perform small oscillations with l(t) = l0 [1 + ϵ sin (qωin

1 t)], where q = 1, 2, . . . and ε ≪ 1. In
the long-time limit εt/l0 ≫ 1, solutions to the Moore’s equations (3.50) can be found exactly as [90,
91]

R(z) = z

l0
− 2
πq

Im
{

ln
[

1 + ξ(t)
1 − ξ(t) + e

iπqz
l0

]}
with ξ(t) = exp

{
(−1)q+1πqεt

l0

}
. (3.51)

Introducing Eq. (3.51) into expression (3.49), one finds that in the time-dependent case, the resulting
mode decomposition is not separable on the time and space coordinates. Since different observers
will not agree on how to expand the field in terms of modes with positive and negative frequencies,
in general there will not exist a preferred and unambiguous choice for the vacuum state of the theory.
Thus, unless we can specify a measurement process, the usual notion of particle loses its well-defined
meaning, and only when the cavity comes to rest we can associate a definite particle interpretation
to the quanta described by these operators [42].

As a result, in order to define a meaningful particle state for our theory, we must consider that,
after a finite period of time T , the cavity returns to a static configuration with a constant cavity
length l(t ≥ T ) = lT . At this final time interval out: {t ∈ [T,∞)} one can then reintroduce a
preferred choice for the mode function

uout
k (x, t) = 1√

πk
sin

[
ωout
k (x− x0)

]
e−iωout

k t for t ≥ T (3.52)

and described in terms of the positive frequencies ωout
k = kπ/lT . Due to the continued distortion of

the mode function structure, the initial operators âin
k and âin†

k cease to have a physical significance
at the end of the cavity motion, and we then decompose the field as

Φ̂(x, t ≥ T ) =
∑
k

[
âout
k uout

k (x, t) + âout†
k uout∗

k (x, t)
]
, (3.53)

with the new set of final operators âout
k and âout†

k satisfying analogous commutation relations as in
Eq. (3.30), as well as defining a new vacuum state |0; out⟩ as the state annihilated by all âk.
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3.1.4 Connecting the two field representations

As pointed out in Ref. [59], although both sets Gin = {uin
k , u

in∗
k } and Gout = {uout

k , uout∗
k } form a

basis for the space of solutions S, they represent different decompositions into the subspaces SC+

and SC+. The two sets of mode functions (3.39) and (3.52) should then be related by a linear
transformation

uin
k =

∑
j

[
αjku

out
j + βjku

out∗
j

]
, (3.54)

where αjk and βjk are complex numbers called Bogoliubov coefficients satisfying the following unitary
conditions

∞∑
m=1

(α∗
nmαkm − β∗

nmβkm) = δnk,
∞∑
n=1

(α∗
nmαnj − β∗

nmβnj) = δmj,
∞∑
n=1

(β∗
nmαnk − β∗

nkαnm) = 0.

Inserting Eq. (3.54) into the field decomposition (3.40), and comparing with Eq. (3.53), we obtain
the set of Bogoliubov transformations

âout
j =

∑
k

[
αkj â

in
k + β∗

kj â
in†
k

]
. (3.55)

For the special case in which the final position of the moving boundary coincides with initial
position l0 and ωin

k = ωout
k = ωk, the Bogoliubov coefficients can be found using the definition of

inner product given in Eq. (3.18) in the expression (3.55) as in [92]

αjk = (uin
k , uj)

βjk = −
(
uin
k , u

∗
j

)
 = 1

2l0

√
j

k

∫ t+l0

t−l0
dx′ exp

{
−i
[
ωin
k l0R (x′) ∓ ωin

j x
′
]}
, (3.56)

where a transformation of variable t± x → x′ were used throughout the derivation.
Observe that the vacuum defined by âout

k and âin
k are not equivalent in general and as a conse-

quence, when computing the number of particles defined by the final operators âout
k and âout†

k with
respect to the initial vacuum |0; in⟩, it is obtained

N(T ) =
∑
j

⟨0; in|âout†
j âout

j |0; in⟩ =
∑
jk

|βjk(T )|2. (3.57)

In general, βjk is non-zero when time-dependent boundary conditions are imposed on the field. This
last equation characterizes the DCE as the quantum field phenomenon of particle creation from the
vacuum due to the time-dependent nature of the imposed boundary conditions.
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3.2 The instantaneous basis approach

Although we have presented Moore’s approach to handle with the problem of particle creation
due to the DCE, for the purposes of this work it will more suitable to utilize a different method
known as the instantaneous basis approach. The main feature of this approach revolves around the
introduction of the auxiliary function

φk(x, t) =
√

2
l(t) sin [ωk(t) (x− x0)] , with ωk(t) = kπ

l(t) (k = 1, 2, . . . ) (3.58)

which is an eigenfunction of the one-dimensional Laplacian operator −∂2
x with the dynamical bound-

ary condition (3.4). It is easy to check that the set {φk(x, t)} satisfies the orthonormality and
completeness conditions

∫ x0+l(t)

x0
dx φk(x, t)φj(x, t) = δkj, (3.59)∑

k

φk(x, t)φk(x′, t) = δ(x− x′), (3.60)

and therefore, constitute an orthonormal basis. With this at hands, the classical field Φ(x, t) can
then be expanded as

Φ(x, t) =
∑
k

qk(t)φk(x, t), (3.61a)

with qk(t) being the position quadrature for the field. At this point, as we have already discussed
the system’s quantization, it may seem a little odd to reintroduce classical expressions for the field,
and we agree. Nevertheless, in this section we will try to reformulate the problem by re-expressing
the system’s Lagrangian L =

∫
Σ(t) dxL in terms of the new generalized coordinate function qk(t) and

its derivatives q̇k(t) := dqk(t)/dt3. By inserting Eqs. (3.61a) into expression (3.1), one obtains,

L (qk, q̇k, t) =
∫ x0+l(t)

x0
dxL (qk, q̇k, t)

= 1
2
∑
k

q̇2
k − ω2

k(t)q2
k +

∑
j

[2Gkj(t)qkq̇j +Hkj(t)qkqj]

 , (3.62)

3The presentation was heavily inspired by Ref. [93].
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where we have used the relations (3.1) as well as the identity
∫ l(t)

0 ∂xφk(x, t)∂xφj(x, t) = −ω2
k(t)δkj.

The time-dependent coefficients in Eq. (3.62) are defined as

Gjk(t) :=
∫ x0+l(t)

x0
dx φ̇j(x, t)φk(x, t) = λ(t)gjk, (3.63a)

Hjk(t) :=
∫ x0+l(t)

x0
dx φ̇j(x, t)φ̇k(x, t) = λ2(t)

∑
l

gjlgkl, (3.63b)

with λ(t) = l̇(t)/l(t) and

gjk =

 (−1)j−k 2kj
k2−j2 , k ̸= j

0, k = j.
(3.64)

The dynamical equation for the quadrature position qk(t) can be obtained from the correspondent
version of the Euler-Legendre equations

d
dt
∂L

∂q̇k
− ∂L

∂qk
= q̈k + ω2

k(t)qk − 2λ(t)
∑
j

gkj q̇j + λ̇(t)
∑
j

gkjqj − λ2(t)
∑
jl

gklgjlqj = 0. (3.65)

Finally, the Hamiltonian description of the system can be introduced by expanding the momentum
density field in terms of the basis function (3.58) as in

Π(x, t) =
∑
k

pk(t)φk(x, t), (3.66)

where the generalized conjugated momenta pk(t) is defined from the Lagrangian Eq. (3.62) its terms
of

pk(t) = ∂L

∂q̇k
= q̇k(t) −

∑
j

Gkj(t)qj(t). (3.67)

With it, the system’s Hamiltonian can be obtained with the following Legendre transformation

H(t) =
∑
k

q̇k(t)pk(t) − L [qk(t), pk(t), t]

= 1
2
∑
k

[
p2
k(t) + ω2

k(t)q2
k(t)

]
+
∑
kj

Gjk(t)qj(t)pk(t). (3.68)

The last expression makes clear that the dynamical description of the system is equivalent to that
of a system of coupled harmonic oscillators with time dependent frequencies. Using the terminology
due to Ref. [43], after the Hamiltonian is quantized we will be able to identify two different effects
responsible for the particle creation process: a squeezing effect due to the time-dependence in the
mode frequencies ωk(t) present in the first part of the Hamiltonian and a acceleration effect due to
the time-dependence of coupling coefficient Gkj(t) in the second part.
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Comparatively speaking, the energy of the field E is defined in terms of the 00-component of the
energy-momentum density and the Lagrangian density (3.1), as

E(t) =
∫

Σ(t)
dx T00 = 1

2

∫
Σ(t)

dx
[
Π2 + (∂xΦ)2

]
(3.69)

= 1
2
∑
k

[
p2
k(t) + ω2

k(t)q2
k(t)

]
(3.70)

where Tµν = ∂νΦ ∂Φ
∂(∂νΦ) − ηµνL.

Therefore, the system’s effective Hamiltonian differs from the field energy (3.69) with the following
form

H(t) − E(t) =
∑
kj

Gkj(t)qj(t)pk(t). (3.71)

3.2.1 Decomposition with static operators

As we have obtained the necessary ingredients for further discussion, we can return to the quantum
description. This is done straightforwardly by promoting the functions qk(t) and pk(t) to the status of
operators q̂k(t) and p̂k(t) acting on FS(H) and imposing the following set of equal-time commutation
relations [

q̂k(t), p̂j(t)
]

= iδkj and
[
q̂k(t), q̂j(t)

]
=
[
p̂k(t), p̂j(t)

]
= 0. (3.72)

By comparing the initial field decomposition (3.40) in terms of mode function (3.39) (and its
time derivative), with the quantum version of the Eqs. (3.61), one can straightforwardly obtain the
following expressions for the quadrature operators at the initial interval of time t ≤ 0:

q̂k(t ≤ 0) = 1√
2ωin

k

[
âin
k (t) + âin†

k (t)
]
, (3.73a)

p̂k(t ≤ 0) = i

√
ωin
k

2
[
âin†
k (t) − âin

k (t)
]
, (3.73b)

where âin
k (t) = âin

k e
−iωin

k t and âin†
k (t) = âin†

k eiω
in
k t are the correspondent initial annihilation and creation

operators in the Heisenberg picture.
For the intermediate interval of time 0 < t < T , when the cavity is in motion, we expect

the quadrature operators to follow a more complicated dependence on time due to the dynamical
equations (3.65) and (3.67). A popular approach widely used in Refs. [94–98] to obtain expressions
for q̂k(t) and p̂k(t) at t > 0, is based in a decomposition in terms of the static initial operators âin†

k
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and âin
k , but with a mode structure distorted on time by the following Fourier expansion

q̂k(t > 0) =
∑
j

1√
2ωin

j

âin
j Q

(k)
j (t) + h.c, (3.74a)

p̂k(t > 0) = −i
∑
j

√
ωin
j

2 âin
j P

(k)
j (t) + h.c, (3.74b)

where the Fourier coefficients Q(k)
j (t) and P

(k)
j (t) are complex functions satisfying the differential

equations

Q̇
(k)
j (t) = P

(k)
j (t) −

∑
l

Gjl(t)Q(k)
l (t), (3.75)

Ṗ
(k)
j (t) = −ω2

j (t)Q
(k)
j (t) +

∑
l

Glj(t)Q(k)
l (t), (3.76)

together with the initial conditions

Q
(k)
j (0) = P

(k)
j (0) = δkj and Q̇

(k)
j (0) = Ṗ

(k)
j (0) = −iωin

k δkj. (3.77a)

Finally, for completeness, at the final interval of time t ≥ T (when the cavity return to its static
configuration), as in the initial case, the quadrature operators take the following expression in the
Heisenberg picture

q̂k(t ≥ 0) = 1√
2ωout

k

[
âout
k (t) + âout†

k (t)
]
, (3.78a)

p̂k(t ≥ 0) = i

√
ωout
k

2
[
âout†
k (t) − âout

k (t)
]
, (3.78b)

where, again, âout
k (t) = âout

k e−iωout
k t and âout†

k (t) = âout†
k eiω

out
k t.

3.2.2 Decomposition with instantaneous operators

Another possible decomposition for q̂k(t) and p̂k(t) involves the introduction of a time-dependent
version for the operators âin

k and âin†
k in close analogy with Eq. (3.73a) and (3.73b). In this spirit,

we define for the interval of time 0 ≤ t ≤ T , the following quadrature operators [42]

q̂k(t) = 1√
2ωk(t)

[
âk(t) + â†

k(t)
]
, (3.79a)

p̂k(t) = i

√
ωk(t)

2
[
â†
k(t) − âk(t)

]
, (3.79b)
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where the instantaneous creation and annihilation operators âk(t) and â†
k(t) respect, as expected, the

usual commutation relations
[
âk(t), âj(t)

]
=
[
â†
k(t), â

†
j(t)

]
= 0 and

[
âk(t), â†

j(t)
]

= δkj. (3.80)

The name instantaneous refers to the physical interpretation that if we "freeze" the system at some
instant t0, then âk(t0) and â†

k(t0) must describe the operators as if the cavity has been stopped at a
fixed size l(t0) (where the notion of particle is well-defined) [42].

Here we will consider an effective description in which the annihilation and creation operators âk(t)
and â†

k(t) are supposed to have an explicit time-dependence in the Heisenberg picture (exclusively
due to the system’s dynamics), while the frequency ωk(t) and the coefficients Gkj(t) and Hkj(t) are
dependent on time only implicitly through the cavity size l(t)4. Therefore, we are compelled to
express the total time derivative of q̂k(t) in terms of its explicit and implicit time dependence:

˙̂qk(t) = ∂tq̂k(t) − 1
2
ω̇k(t)
ωk(t)

q̂k(t), (3.81)

where ω̇k(t) ≡ ∂ωk(t)
∂l(t) l̇(t). Our strategy to construct an effective Hamiltonian out of this last descrip-

tion can be obtained by rewriting the instantaneous Lagrangian (3.62) in terms of qk and ∂tqk (instead
of q̇k) with help of the classical version of relation (3.81). Following the same steps performed in
the beginning of this section, one can update the classical Hamiltonian (3.68) by simply changing
Gkj → Gkj − 1

2
ω̇j
ωj
δkj.

An effective Hamiltonian operator can then be obtained from the structure of the classical ex-
pression (3.68) (with the updated coefficients), by promoting its quadrature functions qk(t) and pk(t)
to quantum operators q̂k(t) and p̂k(t) in such a way that

Ĥeff(t) = 1
2
∑
k

[
p̂2
k(t) + ω2

k(t)q̂2
k(t)

]
− 1

2
∑
kj


√√√√ωj(t)
ωk(t)

µjk(t)q̂j(t)p̂k(t) +

√√√√ωk(t)
ωj(t)

µkj(t)p̂j(t)q̂k(t)
 ,
(3.82)

where we have symmetrized the term q̂j(t)p̂k(t) → 1
2 [q̂j(t)p̂k(t) + p̂k(t)q̂j(t)] and exchanged the in-

dexes in
√

ωj(t)
ωk(t)µkj(t)p̂k(t)q̂j(t) →

√
ωk(t)
ωj(t)µjk(t)p̂j(t)q̂k(t), since k and j are muted in the double sum.

In this context, the new time-dependent coefficient is defined to be

µjk(t) :=

√√√√ωk(t)
ωj(t)

[
Gkj(t) + 1

2
ω̇j(t)
ωj(t)

δkj

]
. (3.83)

4Although we will continue to display the same notation ∗(t), a more rigorous reading of its time-dependence should
take into account the following form: ωk(t) ≡ ωk[l(t)], Gkj(t) ≡ Gkj [l(t)] and Hkj(t) ≡ Hkj [l(t)].
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In terms of the instantaneous creation and annihilation operators â†
k(t) and âk(t) from definitions

(3.79), the effective Hamiltonian (3.82) takes the form (after normal ordering)

Ĥeff(t) =
∑
k

ωk(t)â†
k(t)âk(t) (3.84)

+ i

2
∑
kj

{
µ(k,j)(t)

[
âj(t)âk(t) − â†

k(t)â
†
j(t)

]
+ µ[k,j](t)

[
â†
k(t)âj(t) − â†

j(t)âk(t)
]}
, (3.85)

where the correspondent coefficients are defined to be

µ[k,j](t) = 1
2 [µkj(t) − µjk(t)] and µ(k,j)(t) = 1

2 [µkj(t) + µjk(t)] . (3.86)

Here, we can clearly see the existence of two different contributions: the terms containing the coef-
ficients µ(k,j)(t) govern the process of creation and annihilation of pairs of particles, while the ones
proportional to µ[k,j](t) are responsible for scattering of particles between distinct modes. Indeed,
our effective Hamiltonian (3.84) has the exact expression of the Hamiltonian obtained in Ref [99] and
is completely equivalent to the ones presented in Ref. [41, 42] even though having slightly different
presentation for its time-dependent coefficients. For consistency, we derive the effective Hamilto-
nian (3.84) with a different approach and compare it with the Hamiltonian presented in the referred
literature in Appendix A.

Until now the description of the system has been restricted to the Heisenberg picture of quantum
mechanics, where operators have a dependence on time, but state vectors are time-independent. In
particular, in this picture, an observable Ô(t) will evolve on time through the Heisenberg equation
of motion

˙̂
OH(t) = i

[
ĤH(t), ÔH(t)

]
+
(
∂tÔ

S(t)
)H

, (3.87)

where the superscript H and S designate operator’s representation in the Heisenberg and Schrödinger
pictures. We can also express our effective Hamiltonian, in the Schrödinger picture, with the following
decomposition

ĤS
eff(t) = ĤS

free(t) + ĤS
int(t) (3.88)

where the contributions

ĤS
free(t) :=

∑
k

ωk(t)âin†
k âin

k , (3.89)

ĤS
int(t) := i

2
∑
kj

[
µ(k,j)(t)

(
âin
k â

in
j − âin†

k âin†
j

)
+ µ[k,j](t)

(
âin†
k âin

j − âin†
j âin

k

)]
, (3.90)

are respectively, the free and the interacting part of the Hamiltonian. Here the instantaneous anni-
hilation operator (in the Heisenberg picture) can be expressed in terms of âk(t) = Û †(t, 0)âin

k Û(t, 0),
with Û(t, 0) being the time evolution operator generated by the Hamiltonian (3.88) from the initial
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instant of time t = 0. In particular, an arbitrary instantaneous vector state |ψ(t)⟩S = Û(t, 0) |ψ; in⟩H
evolves in time by the correspondent Schrödinger equation

i∂t |Ψ(t)⟩S = ĤS(t) |Ψ(t)⟩S . (3.91)

3.3 Bogoliubov coefficients

As it was possible to learn in section 3.2.4, all the information associated with the temporal
evolution of the system can be recovered from the knowledge of the Bogoliubov coefficients connecting
the two static representations of the field (in and out). As we will see in the next chapter, knowing
these coefficients will prove fundamental to investigate the behavior of thermodynamic entropy in
the DCE. The main goal of this section, therefore, is to obtain explicit expressions for the Bogoliubov
coefficients of the system.

3.3.1 Instantaneous decomposition

As we do not expect the annihilation (and creations) operators to depend explicitly on time in
the Schrödinger picture (only thorough the mirror trajectory l(t)), the correspondent Heisenberg
equation for the instantaneous operator âk(t) must take the following form

d
dt âk(t) = i

[
Ĥeff(t), âk(t)

]
. (3.92)

Inserting effective Hamiltonian (3.84) into the last expression, one can derive the following dynamical
equation

˙̂ak(t) = −iωk(t)âk(t) +
∑
j

[
µ[k,j](t)âj(t) + µ(k,j)(t)â†

j(t)
]
. (3.93)

In terms of the initial operators âin
k = âk(0) and (âin†

k = â†
k(0)), one can obtain solutions for the

differential equation (3.93) with the instantaneous version of the Bogoliubov transformations

âk(t) =
∑
j

[
αjk(t)âin

j + β∗
jk(t)â

in†
j

]
, (3.94)

where αjk(t) and βjk(t) are the "instantaneous" Bogoliubov coefficients with the initial conditions
αjk(0) = δjk and βjk(0) = 0. Inserting the expression (3.94) and its hermitian conjugated into Eq.
(3.93) one obtains

˙̂ak(t) =
∑
jj′

{ [
−iωj(t)αj′j(t)δjk + µ[k,j](t)αj′j(t) + µ(k,j)(t)βj′j(t)

]
âin
j′ (3.95)

+
[
−iωj(t)β∗

j′j(t)δjk + µ(k,j)(t)α∗
j′j(t) + µ[k,j](t)βj′j(t)

]
âin†
j′

}
. (3.96)
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Equating the last expression with the time derivative of Eq. (3.94) given by ˙̂ak(t) =∑
j

[
α̇jk(t)âin

j + β̇∗
jk(t)â

in†
j

]
, we find the following differential equations for the Bogoliubov coefficients

α̇jk(t) = −iωk(t)αjk(t) +
∑
j′

[
µ[k,j](t)αj′j(t) + µ(k,j)(t)β∗

j′j(t)
]
, (3.97a)

β̇jk(t) = +iωk(t)βjk(t) +
∑
j′

[
µ(k,j)(t)αj′j(t) + µ[k,j](t)β∗

j′j(t)
]
. (3.97b)

Since the coefficients µ[k,j](t) and µ(k,j)(t) are of order O[λ(t)] (where λ(t) = l̇(t)/l(t)), if we suppose
the cavity to move much slower than the speed of light (l̇(t) ≪ 1), one can expand the Bogoliubov
coefficients in terms of λ(t). The zeroth order solution is

α
(0)
jk (t) = αjk(0)e−iΘk(t) = δjke

−iΘk(t), (3.98a)

β
(0)
jk (t) = βjk(0)e+iΘk(t) = 0. (3.98b)

with Θk(t) =
∫ t

0 dtωk(t′). Substituting Eq. (3.98) into the right side of Eq. (3.97) we obtain

α̇
(1)
jk (t) = −iωk(t)αjk(t) +

∑
j′

[
µ[k,j](t)α(0)

jj′ (t) + µ(k,j)(t)β(0)∗
jj′ (t)

]
, (3.99a)

β̇
(1)
jk (t) = +iωk(t)βjk(t) +

∑
j′

[
µ(k,j)(t)α(0)

jj′ (t) + µ[k,j](t)β(0)∗
jj′ (t)

]
, (3.99b)

whose solutions are given by

α
(1)
jk (t) =e−iΘk(t)

∫ t

0
dt′ µ[k,j](t′)e−i[Θk(t′)−Θj(t′)], (3.100a)

β
(1)
jk (t) =eiΘk(t)

∫ t

0
dt′ µ(k,j)(t′)e−i[Θk(t′)+Θj(t′)]. (3.100b)

Continuing with the same iteration scheme, one can obtain solutions at high orders of the perturbation
parameter. As we will only be interested the first order solution for the Bogoliubov coefficients, we
resume the Bogoliubov expressions to be

αjk(t) =e−iΘk(t)
[
δjk +

∫ t

0
dt′ µ[k,j](t′)e−i[Θk(t′)−Θj(t′)]

]
+ O(λ2), (3.101a)

βjk(t) =eiΘk(t)
∫ t

0
dt′ µ(k,j)(t′)e−i[Θk(t′)+Θj(t′)] + O(λ2). (3.101b)

The last expression will be of great importance when we utilize an effective Hamiltonian description
to compute the system’s density operator.
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With the help of Eqs. (3.64), (3.83) and (3.86), explicit expressions for the second Bogoliubov
coefficient can be found as

αjk = eiΘk(t)
[
δkj + (−1)j−k+1

√
jk

k − j

∫ t

0
dt′λ(t′)e−i(ωin

k −ωin
j )t′

]
+ O(λ2) (3.102)

βjk = (−1)j−k+1
√
jk

k + j
eiω

in
k t
∫ t

0
dt′λ(t′)e−i(ωin

k +ωin
j )t′ + O(λ2). (3.103)

3.3.2 Static decomposition

A more robust method to find the Bogoliubov coefficients used in Ref. [95–98] involves the field
decomposition (3.74) in terms of the initial operators âin

k and âin†
k . In this description, during the

cavity motion, one can expand the quantum field as

Φ̂(x, t) =
∑
k

1√
2ωin

k

∑
j

Q
(k)
j (t)φj(x, t) âin

k + h.c.
 for 0 ≤ t ≤ T, (3.104)

where the Fourier coefficients Q(k)
j (t) satisfies the initial conditions

Q
(k)
j (0) = δjk, Q̇

(k)
j (0) = −iωin

k δkj.

Substituting the quadrature position function (3.74a) (where the Fourier coefficients are defined) into
the equation of motion (3.65), one can obtain the following set of coupled differential equations

Q̈
(k)
j + ω2

j (t)Q
(k)
j = 2λ(t)

∑
l

gklQ̇
(k)
l + λ̇(t)

∑
l

gklQ
(k)
l + O(λ2). (3.105)

For t ≥ T , after the mirror returns to its stationary configuration, the quantum field is decomposed
in terms of Eq. (3.52) with mode function (3.52) as

Φ̂(x, t) =
∑
k

1√
2ωout

k

[
φk(x, T )e−iωout

k tâout
k + h.c.

]
for t ≥ T. (3.106)

Since at this interval we have λ(T ) = 0, the right-hand side of Eq. (3.105) vanishes and one can write
the Fourier coefficients as

Q
(k)
j (t) = ξ

(k)
j e−iωout

j t + η
(k)
j eiω

out
j t, (3.107)

where ξ(k)
k and η

(k)
k are complex coefficients. Inserting the last expression (3.107) with φk(x, T ) into

the field decomposition (3.104), by comparing the resulting expression with the decomposition (3.106)
one can relate the Bogoliubov transformations (3.55) in terms of the complex coefficients (3.107) as

αjk =

√√√√ωout
k

ωin
j

ξ
(j)
k and βjk =

√√√√ωout
k

ωin
j

η
(j)
k . (3.108)
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This means that to calculate the Bogoliubov coefficients one only need to solve the infinite set of
coupled differential equations (3.105) to obtain the complex numbers ξ(k)

j and η
(k)
j . To complicate

things, the equation that we need to solve have an arbitrary time-dependence in an infinite number
of terms. So, in order to simplify the problem, we concentrate in this section on the particular case in
which the walls perform harmonic oscillations with small amplitude. We then impose the following
equation of motion for the moving mirror

l(t) = l0 [1 + ϵ sin (ωpt)] , (3.109)

where ωp = pπ/l0 is an unperturbed field frequency and ϵ ≪ 1 is a small dimensionless parameter.
Since we impose the field to be weakly perturbed by the mirror oscillations (3.109), is natural to

search for solutions to Q(k)
j by allowing the coefficients ξ(k)

j and η(k)
j in Eq. (3.107) to be functions that

vary slowly in time, i.e., ξ̇(k)
j , η̇

(k)
j ∼ ϵ. Then by substituting Eq. (3.107) into (3.105) and employing

the usual prescriptions of the method of slowly varying amplitudes [100] (shown in Appendix B), it is
possible to obtain a set of coupled first order differential equations with time independent coefficients.
For k ≥ p, their expressions take the form

d
dτ ξ

(n)
k = (−1)p

[
(k + p)ξnk+p − (k − p)ξnk−p

]
, (3.110a)

d
dτ η

(n)
k = (−1)p

[
(k + p)ηnk+p − (k − p)ηnk−p

]
, (3.110b)

whereas for 1 ≤ k ≤ p− 1 we have p− 1 equations

d
dτ ξ

(n)
k = (−1)p

[
(p+ k)ξnk+p − (p− k)ηnp−k

]
, (3.111a)

d
dτ η

(n)
k = (−1)p

[
(p+ k)ηnk+p − (p− k)ξnp−k

]
, (3.111b)

where it was defined the dimensionless time parameter τ = ϵω1t/2 and the initial conditions for
the complex coefficients are ξ

(k)
j (0) = δkj and η

(k)
j (0) = 0. From such conditions, one can show

that solutions for the system of equation (3.111) form a set ξ(np+j)
mp+j = η

(np+j)
mp−j ≡ 0 if k ̸= j with

j, k = {0, 1, . . . , p−1} and n,m = {0, 1, 2, . . . }. Complete solutions for the non-vanishing coefficients
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were found in Ref. [96] and are expressed in terms of the hypergeometrical function F (a, b; c; z) as

ξ
(pn+j)
pm+j = Γ(1 + n+ j/p)(σκ)n−m

Γ(1 +m+ j/p)Γ(1 + n−m)F (n+ j/p,−m− j/p; 1 + n−m;κ2) 0 ≤ m ≤ n

(3.112)

ξ
(pn+j)
pm+j = Γ(m+ j/p)(−σκ)m−n

Γ(n+ j/p)Γ(1 +m− n)F (m+ j/p,−n− j/p; 1 +m− n;κ2), m ≥ n, (3.113)

η
(pn+j)
pm−j = −Γ (m− j/p) Γ (1 + j/p)

πΓ(1 + n+m) sin [π (m− j/p)] (σκ)n+m (3.114)

× F
(
n+ j/p,m− j/p; 1 + n+m;κ2

)
,

where Γ(n) is the gamma function, σ = (−1)p and

κ(τ) = sinh(pτ)√
1 + sinh2(pτ)

. (3.115)

One can also write equivalent expressions for Eqs. (3.110) and (3.111) in terms of coefficients with
the same lower indexes [98]. For n > p, their expressions take the form

d
dτ ξ

(n)
k = n(−1)p

[
ξ

(n−p)
k − ξ

(n+p)
k

]
, (3.116a)

d
dτ η

(n)
k = n(−1)p

[
η

(n−p)
k − η

(n+p)
k

]
, (3.116b)

whereas for 1 < n < p− 1 we have p− 1 equations

d
dτ ξ

(n)
k = n(−1)p+1

[
η

(p−n)∗
k + ξ

(p+n)
k

]
, (3.117a)

d
dτ η

(n)
k = n(−1)p+1

[
ξ

(p−n)∗
k + η

(p+n)
k

]
. (3.117b)

Nonetheless, in the next chapter, we will be interested in computing the diagonal entropy gener-
ated in particular modes of the field when the cavity oscillates in resonance with the first unperturbed
field frequency. As a result, for reasons that will become clear later, it will be sufficient for us to pay
attention only to the asymptotic behavior of the Bogoliubov coefficients in which one of the index
is equal to 1. In the special case of parametric resonance, i.e., when the cavity oscillates with twice
the fundamental unperturbed frequency (p = 2), the set of differential equations for the creation and
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annihilation operators in Eqs. (3.110) and (3.117) reduces to the following structure:


d
dτα1m = −β∗

1m −
√

3α3m,
d

dτ β1m = −α∗
1m −

√
3β3m,

for k = 1 (3.118a)


d
dταkm =

√
k(k − 2)α(k−2)m −

√
k(k + 2)α(k+2)m,

d
dτ βkm =

√
k(k − 2)β(k−2)k −

√
k(k + 2)β(k+2)m.

for k > 2, (3.118b)

In the particular case when the first index is equal to 1, one can express its solutions in the
asymptotic cases: for τ ≪ 1, in the short-time regime, we have

α1(2µ+1)(τ ≪ 1) = (−1)µ
√

2µ+ 1 Γ(µ+ 1/2)κµ
Γ(1/2)Γ(1 + µ) = (µ+ 1)KµJµ τ

µ, (3.119a)

β1(2µ+1)(τ ≪ 1) = (−1)µ
√

2µ+ 1Γ(µ+ 1/2)Γ(3/2)κµ+1

πΓ(2 + µ) = −KµJµ τ
µ+1. (3.119b)

where µ = 0, 1, 2, . . . and we have defined the coefficients Jµ and Kµ to be

Jµ := (2µ)!
2µ(µ!)2 and Kµ := (−1)µ

√
2µ+ 1
µ+ 1 . (3.120)

For τ ≫ 1, in the long-time regime, the expression obtained is

α1(2µ+1)(τ ≫ 1) ≈ 2
π

(−1)µ√
2µ+ 1 , (3.121a)

β1(2µ+1)(τ ≫ 1) ≈ 2
π

(−1)µ√
2µ+ 1 . (3.121b)

In the next chapter we shall explore the above results to obtain explicit expressions for the
thermodynamic entropy for a system reproducing the DCE.





43

Chapter 4

Thermodynamic Entropy production in
the DCE

In this chapter we will be interested in studying the irreversibility associated with the DCE
in terms of the production of the system’s thermodynamic entropy. As discussed earlier, for this
endeavor, we shall consider as the main figure of merit the diagonal entropy [78]

Sd(ρ̂) = −
∑
n

ρnn ln ρnn, (4.1)

where ρnn = ⟨in; n| ρ̂ |n; in⟩ are the diagonal elements of the system’s density operator in the initial
energy eigenbasis.

4.1 Effective Hamiltonian approach

To investigate the entropy production within the proposed scheme, one first needs to obtain
an explicit expression for the system’s density operator ρ̂ after the cavity returns to its stationary
configuration. A first intuitive approach is to use the effective Hamiltonian (3.88) derived in the
previous chapter to evolve the system’s density operator by the Liouville–von Neumann equation

˙̂ρ(t) = −i
[
ĤS

eff(t), ρ̂(t)
]
. (4.2)

Since the time-dependent boundary condition on the field introduces an interacting contribution
to the effective Hamiltonian (3.88), calculations are more naturally performed if we move to the
interaction picture of quantum mechanics, as we are going to do next.

4.1.1 The interaction picture

Given a state vector |ψ(t)⟩S and an arbitrary observable ÔS, both in the Schrödinger picture, one
can write their counterpart expressions in the interaction picture, namely |ψ(t)⟩I and ÔI(t), by the
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following definitions
|ψ(t)⟩I := Û †

free(t)|ψ(t)⟩S,

ÔI(t) := Û †
free(t)ÔSÛfree(t),

(4.3)

where Ûfree is a unitary operator associated to the time evolution of the free part of the Hamiltonian
given by

Ûfree(t) := exp
{

−i
∫ t

0
dt′ĤS

free(t′)
}

= exp
{
−iΘk(t)âin†

k âin
k

}
, (4.4)

with Θk(t) =
∫ t

0 dt′ωk(t′). As illustrated by Eq. (4.3), state vectors in the interaction picture inher-
ently contain a time-dependent contribution due to the free component of the Hamiltonian. There-
fore, their correct time evolution is exclusively governed by the interaction part of the Hamiltonian,
as exemplified by the following Schrödinger equation:

i∂t |Ψ(t)⟩I = ĤI
int(t) |Ψ(t)⟩I , (4.5)

where the Hamiltonian in the interaction picture ĤI
int(t) is given explicitly by

ĤI
int(t) = Û †

free(t)ĤS
int(t)Û

†
free(t)

= i

2
∑
kj

[
B∗
jk(t)âin

j â
in
k − Bjk(t)âin†

k âin†
j + Ajk(t)âin†

k âin
j − A∗

jk(t)â
in†
j âin

k

]
. (4.6)

For simplification purposes the time-dependence of the creation and annihilation operators (in the
interaction picture) has been included into the Hamiltonian’s coefficients in the form

Ajk(t) := µ[k,j](t)e−i[Θk(t)−Θj(t)] and Bjk(t) := µ(k,j)(t)e−i[Θj(t)+Θk(t)], (4.7)

which are connected with the first-order Bogoliubov coefficient defined in Eqs. (3.100) by

α̃
(1)
jk (t) := α

(1)
jk (t)e+iΘk(t) =

∫ t

0
dt′ Ajk(t′), (4.8a)

β̃
(1)
jk (t) := β

(1)
jk (t)e−iΘk(t) =

∫ t

0
dt′ Bjk(t′). (4.8b)

The above correspondence will be of fundamental importance when expressing solutions for the
density operator in a more compact form. From the Eq. (4.5), the interacting version of the system’s
density operator ρ̂I(t) = |Ψ(t)⟩I ⟨Ψ(t)|I now evolves on time through the updated version of the
Liouville-von Neumann equation

˙̂ρI(t) = −i
[
ĤI

int(t), ρ̂I(t)
]
. (4.9)



4.1. Effective Hamiltonian approach 45

4.1.2 Solving the dynamical equation for ρ̂I(t)

Equipped with the dynamical equation (4.9) we can begin searching for explicit solutions for ρ̂I .
The first difficulty encountered in this approach is related to the inherent complexity associated with
the effective Hamiltonian and its infinite set of coupled creation and annihilation operators with
time-dependent coefficients. To circumvent this problem, we opt to narrow our focus of study to the
subset of cavity configurations where the second mirror performs the following trajectory

l(t) = l0 [1 + ϵξ(t)] , (4.10)

where ξ(t) is an arbitrary continuous function of order unity —as well as its first derivative —, while
ϵ ≪ 1 is a small dimensionless parameter needed to ensure that the mirror motion amplitude is
sufficiently small such that the field is only weakly perturbed. For simplicity, we also choose the first
mirror to be located at a fixed position x1 = 0.

A key insight from Eq. (4.10) is to acknowledge that the time-dependent coefficients Ajk(t) and
Bjk(t) defined in Eq. (4.7) —which are proportional to λ(t) = l̇(t)/l(t) because the coefficients
in Eq. (3.83)— are now dependent on the small dimensional parameter ϵ at least in first order.
Therefore, by imposing the mirror trajectories (4.10), we expect the corrections to the solvable part
of the field to be sufficiently weak, allowing for the application of perturbation theory in terms of ϵ.

A formal solution to Eq. (4.9) can then be obtained, up to second order in ϵ, in terms of the
following expansion

ρ̂(T ) = ρ̂(0) − i
∫ T

0
dt′
[
ĤI

int(t′), ρ̂(0)
]

−
∫ T

0
dt′
∫ t′

0
dt′′

[
ĤI

int(t′),
[
ĤI

int(t′′), ρ̂(0)
]]
. (4.11)

As the central goal of this chapter is to investigate the thermodynamic aspects of the particle
creation process due to the DCE, is reasonable to assume the system to be initially prepared in the
initial vacuum state ρ̂(0) = |0; in⟩ ⟨in; 0|. From this initial state, the second order term in the last
expansion is now separable in terms of the integration time variables t′ and t′′, such as in

∫ T

0
dt′
∫ t′

0
dt′′

[
ĤI

int(t′),
[
ĤI

int(t′′), ρ̂(0)
]]

= 1
2

[∫ T

0
dt′ĤI

int(t′),
[∫ T

0
dt′′ĤI

int(t′′), ρ̂(0)
]]
, (4.12)

where the right side integral is twice as larger as the left side one because of the parameterization in
different domains of integration over the plane (t′, t′′). Another useful property for the calculation of
the pertubative expansion comes from the fact that the time-dependence in the Hamiltonian (3.88)
is concentrated only on the coefficients. Consequently, using Eqs. (4.8), one can write

∫ T

0
dt′′H(t′′) = i

2
∑
nl

[
β̃

(1)
ln â

in
k â

in
j − β̃

(1)∗
kj âin†

k âin†
j + α̃

(1)
ln â

in†
j âin

k − α̃
(1)∗
ln âin†

k âin
j

]
. (4.13)

Inserting the last identities (4.12) and (4.13) into the operator expansion (4.11) and after lengthy
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algebraic manipulations with the commutators, one can obtain the following expression for the sys-
tem’s density operator (up to second order in ϵ)

ρ̂(T ) = ρ̂0 − 1
2

∑
kj

β̃(1)∗
kj

(
âin†
k âin†

j ρ̂0
)

− 1
4

∑
nm

β̃(1)
mnβ̃

(1)∗
kj

(
âin†
k âin†

j ρ̂0â
in
mâ

in
n

)
− β̃(1)

mnβ̃
(1)∗
kj

(
âin
mâ

in
n â

in†
k âin†

j ρ̂0
)

+ β̃(1)∗
mn β̃

(1)∗
kj

(
âin†
m âin†

n âin†
k âin†

j ρ̂0
)

+ 2α̃(1)∗
mn β̃

(1)∗
kj

(
âin†
m âin

n â
in†
k âin†

j ρ̂0
) + h.c.

. (4.14)

Despite appearing a mess from a first look, expression (4.14) shows a relative compactness due
to the notation for the first order Bogoliubov coefficients. With the last expression we can directly
calculate the number of particles created inside the cavity due to the DCE, taking the following form

N(T ) = Tr
{∑

k

ρ̂(T )âin†
k âin

k

}
= 1

4 Re
∑

kk′jmn

β̃(1)
mnβ̃

(1)∗
k′j Tr

{
âin†
k′ â

in†
j ρ̂0â

in
mâ

in
n â

in†
k âin

k

}
=
∑
kj

|β(1)
kj |2, (4.15)

in agreement with Eq. (3.57), thus showing the consistency of our calculations. Moreover, one can
obtain explicit expressions for the diagonal elements of the density operator in the initial energy
basis directly from Eq. (4.14). Those elements come from three contributions

⟨0| ρ̂(T ) |0⟩ = ⟨0| ρ̂(0) |0⟩ − 1
4 Re

∑
kjmn

β̃(1)
mnβ̃

(1)∗
kj ⟨0| âin

mâ
in
n â

in†
k âin†

j ρ̂(0) |0⟩ = 1 − 1
2N(T ), (4.16)

⟨2k| ρ̂(T ) |2k⟩ = 1
4 Re

∑
k′jmn

β̃(1)
mnβ̃

(1)∗
k′j ⟨2k| âin†

k′ â
in†
j ρ̂(0)âin

mâ
in
n |2k⟩ = 1

2 |β(1)
kk |2, (4.17)

⟨1k, 1j| ρ̂(T ) |1k, 1j⟩ = 1
4 Re

∑
k′j′mn

β̃(1)
mnβ̃

(1)∗
k′j′ ⟨1k, 1j| âin†

k′ â
in†
j′ ρ̂(0)âin

mâ
in
n |1k, 1j⟩ = |β(1)

kj |2. (4.18)

With the help of the last expressions we are now ready to discuss the entropy production due to the
particle creation process.

4.1.3 Entropy production

From the diagonal contributions to the density operator, as shown in Eq. (4.14), the diagonal
entropy Sd can be directly computed, resulting in1

Sd(T ) = − ⟨0| ρ̂ |0⟩ ln ⟨0| ρ̂ |0⟩ −
∑
k

⟨2k| ρ̂ |2k⟩ ln ⟨2k| ρ̂ |2k⟩ − 1
2

∑
kj

⟨1k, 1j| ρ̂ |1k, 1j⟩ ln ⟨1k, 1j| ρ̂ |1k, 1j⟩

= −
[
1 − 1

2N(T )
]

ln
[
1 − 1

2N(T )
]

−
∑
kj

1
2 |βkj(T )|2 ln(1 − 1

2δkj)|βkj(T )|2, (4.19)

1The 1/2 factor in the last term is employed to prevent the over-counting of the diagonal contributions
⟨1k, 1j | ρ̂ |1k, 1j⟩ when summing over k and j, i.e., ⟨1k, 1j | ρ̂ |1k, 1j⟩ is the same as ⟨1j , 1k| ρ̂ |1j , 1k⟩.



4.1. Effective Hamiltonian approach 47

which is the system’s thermodynamic entropy expression for the subclass of mirror motions that
weak perturb the field (at second order in ϵ). The very first noticeable aspect of Eq. (4.19) is its
scaling behavior with the number of particles created in the cavity as a result of its motion. This
is also explicit due to the presence of the terms |βkj|2, which can be interpreted as the j-th mode
contribution of the in-field to the number of particles created at the k-th mode on the out-field.

In general, this link between irreversibility and the particle creation process is consistent with the
well established fact that the DCE only occurs if the field is perturbed non-adiabatically, i.e., if the
motion of the mirror is fast enough to prevent the field to instantly readjust and thus causing the
amplification of quantum vacuum fluctuations. Therefore, the dependence of our thermodynamic
entropy with the number of particle created during the process is a feature we already should expect.

Since the initial number of particles in the cavity is zero, i.e., ∑kj |βjk(0)| = N(0) = 0, it follows
immediately that the system’s entropy production, represented by ∆Sd, is identical to Eq. (4.19), as
illustrated by

∆Sd(T ) := Sd(T ) − Sd(0) = Sd(T ). (4.20)

Another insight given by Eq. (4.19) to the interpretation of the thermodynamic entropy produc-
tion is related in how the initial vacuum state is transformed in a coherent superposition of excited
states as time passes. To connect these two notions, we first need to introduce the concept of quantum
coherence and how it is quantified.

Quantum coherence

Let us consider the famous double-slit experiment for a moment. In that experiment, an electron
is allowed to pass through a wall with two slits and its subsequent position is measured by a detector
placed at a rear screen. In general, one can consider the electron’s state |Ψ⟩ after passing through
the two slits, to be described by the superposition

|Ψ⟩ = 1√
2
(
|Ψ1⟩ + eiθ |Ψ2⟩

)
, (4.21)

where |Ψ1⟩ and |Ψ2⟩ designate the states correspondent to the different paths taken and θ is relative
phase between them. More specifically, if one calculate the probability of measuring the electron in
a given position x, we obtain

|Ψ(x)|2 = 1
2
[
|Ψ1(x)|2 + |Ψ2(x)|2 + 2 Re

{
Ψ1(x)∗Ψ2(x)eiθ

}]
, (4.22)

which characterizes, in an explicit manner, the existence of interference between the two states |Ψ1⟩
and |Ψ2⟩ (here Ψi(x) = ⟨x|Ψi⟩ is the wave function associated to the state |Ψi⟩). We then say that
the state |Ψ⟩ described by the Eq. (4.21) exhibit quantum coherence, since the phase relationship
between the superimposed states allows the existence of interference phenomena.
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To see the importance of the relative phase between the two states, let us consider the correspon-
dent system’s density matrix ρ̂Ψ = |Ψ⟩ ⟨Ψ| in the basis spanned by the vectors {|Ψ1⟩ , |Ψ2⟩}

ρ̂Ψ = 1
2

 1 e−iθ

eiθ 1

 . (4.23)

For the chosen basis, its diagonal terms ⟨Ψ1| ρ̂ |Ψ1⟩ and ⟨Ψ2| ρ̂ |Ψ2⟩ are the system’s populations
and represent the probabilities of measuring each one of the possible outcomes. The off-diagonal
contributions ⟨Ψ1| ρ̂ |Ψ2⟩ and ⟨Ψ2| ρ̂ |Ψ1⟩, on the other hand, are known as the coherences of the
system, since it carries information about the relative phase between the states.

To see the reason for the last nomenclature, if we consider the experiment to not being performed
in a good vacuum, for each interaction between the electron and the environment (collisions with
the air molecules, for example), one expects the relative phase θ between the superposed states to
change randomly. With the phase relationship between |Ψ1⟩ and |Ψ2⟩ becoming uncorrelated, the
average value of the exponential term eiθ tends to zero (net sum of phasors with random direction
tends to vanish) and the density operator becomes diagonal

ρ̂Ψ −→ ρ̂′
Ψ = 1

2

 1 0
0 1

 . (4.24)

If we now calculate the probability to measure a given outcome at position x with the last density
matrix, one obtains

|Ψ(x)|2 = Tr{ρ̂′
Ψ |x⟩ ⟨x|} = 1

2
[
|Ψ1(x)|2 + |Ψ2(x)|2

]
, (4.25)

which does not exhibit the interference term present in Eq. (4.22). We then say that due to the
absence of a phase relationship, the system has lost coherence through a process called quantum
decoherence. Showing the important role played by the off-diagonal terms of the density operator in
characterizing the quantum coherence.

Another rightful question in this context, is how to quantify the amount of quantum coherence
exhibited by a state in a given basis. The first rigorous mathematical account to this issue was
introduced in Ref. [101] in terms of the concepts of incoherent states and operations. There, once
we fix a particular basis {|i⟩} for i = 1, . . . , d in a d-dimensional Hilbert space, a quantum state is
said to be incoherent if its density operator δ̂ is diagonal in that basis, that is

δ̂ =
d∑
i=1

δi |i⟩ ⟨i| . (4.26)

Furthermore, if we denote by I the set of all incoherent states, an operation described by a set of
Kraus operators {K̂n} (satisfying the closure condition ∑

n K̂
†
nK̂n = I) is said to be an incoherent

operation if it maps any incoherent state into another incoherent operator, i.e., if K̂nIK̂†
n ⊂ I for
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all n.
Then, in regard to pure states (see Ref. [101] to the general characterization), a coherence measure

is defined to be any mapping C from quantum states to non-negative number which satisfies the
following necessary conditions

1. C(δ̂) = 0, for all δ̂ ∈ I

2. C(ρ̂) ≥ C(∑n K̂nρ̂K̂
†
n), for all {K̂n} such that K̂nIK̂†

n ⊂ I.

Considering the decomposition ρ̂ = ∑
ij ρij |i⟩ ⟨j| for a given density operator, one very intuitive

exemplar of a coherence measure can be introduced in terms of the l1-norm of coherence

Cl1(ρ̂) =
∑
i,j
i̸=j

|ρij|, (4.27)

which is given by the sum of the off-diagonal contributions of the density operator. The name l1-norm
comes from the distance measure of order one: Dl1(ρ̂, δ̂) = ||ρ̂− δ̂||1 = ∑

ij |ρij − δij| which quantify
the distance between a given state ρ̂ to the correspondent set of incoherent states. Another intuitive
measure of coherence is the relative entropy of coherence Cre(ρ̂) described by

Cre(ρ̂) = SvN(ρ̂d) − SvN(ρ̂), (4.28)

where ρ̂d = ∑
i ρii |i⟩ ⟨i| are the diagonal contributions for the density operator in the chosen basis. An

insightful feature of both definitions (4.27) and (4.28) is the quantification of the amount of quantum
coherence the system’s state ρ̂ has by adequately counting how much off-diagonal contributions ρ̂
exhibit in a given basis.

From definition (4.28) it is also immediate to notice that the entropy production given by our
formula (4.19) is exactly equal to the creation of coherence in the energy eigenbasis of the field.
To see this, we pick up the initial energy eigenbasis to measure the amount of coherence generated
throughout the cavity motion. This is consistent with a definition of a thermodynamic entropy, since
the system’s energy is the most natural thermodynamic measurement one can expect to recover in
the quantum settings. Under the above choice, we directly see that SvN(ρ̂d) = Sd(ρ̂). As the system’s
evolution is unitary, and the initial state is pure, we have SvN(ρ̂) = 0, thus implying that

Cre(ρ̂) = Sd(T ). (4.29)

Note that, differently from Eq. (4.19), such a result is a general one, independent of the perturbation
theory used here. This result implies that we will observe irreversibility (positive entropy production)
for every process that creates coherence in the system. Therefore, reversible processes must be
the ones that are performed slowly enough in order to not induce transitions among the energy
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eigenstates. This result is in agreement with the discussions presented in Refs. [78, 82, 86, 87], where
both entropy production and heat are associated with processes that generates coherences.

Oscillating mirror

In order to illustrate our results in terms of a specific cavity configuration, let us consider that
the second mirror performs harmonic oscillations of the form

ξ(t) = sin(ωpt), (4.30)

where ωp = pωin
1 is an integral multiple of the first unperturbed field frequency. Substituting the last

expression into Eq. (3.102) with ων = ωin
k + ωin

j , we have

βjk = (−1)j−kϵωp
√
jk

k + j
eiω

in
k T
∫ T

0
dt′ cos(ωpt′)e−iωνt′

= (−1)j−kϵωp
√
jk

k + j
eiω

in
k T


sin(ωp−ων

2 T)
ωp−ων e

i
2 (ωp−ων)T + sin(ωp+ων

2 T)
ωp+ων e− i

2 (ωp+ων)T for ωp ̸= ων ,
1
2

[
T + sin(ωpT )

ωp
e−iωpT

]
for ωp = ων .

If we assume the case in which the mirror returns to its initial position at time t = T after performing
a certain number of complete cycles (ωpT = 2πm with m = 1, 2, . . . ), then the last expression can
be further simplified as

βjk = (−1)j−kϵωp
√
jk

k + j
eiω

in
k T


2ων

ω2
ν−ω2

p
sin

(
ωνT

2

)
e
i
2ωνT for ωp ̸= ων ,

1
2T for ωp = ων .

(4.31)

By applying a rotating-wave approximation on the Eq. (4.31), where we ignore all the rapidly
oscillatory terms associated with the modes ωp ̸= ωk + ωj, one obtains the following expression for
the second Bogoliubov coefficient

βjk = (−1)j−k
√
jk

k + j

ϵωpT

2 eiω
in
k T δj,(p−k), for k = 1, . . . , p− 1. (4.32)

In terms of the last expression we can calculate the number of particles created on time as

N(τ) =
∑
jk

|βjk(τ)|2 = p2τ 2∑
kj

jk

(k + j)2 δj,(p−k)

= τ 2
p−1∑
k=1

(p− k)k = p(p2 − 1)
6 τ 2, (4.33)

where we have defined the dimensionless time τ = 1
2ϵω

in
1 T . Note that the above expression in

agreement with Ref. [102]. It is also important to observe that in the specific scenario of motion,
where the cavity oscillates in resonance with the p-th unperturbed field frequency, the application of
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naive perturbation theory outlined in Eq. (4.11) introduces secular terms proportional to orders of
ϵT , analogous to those found in Eq. (4.32). To see the inconvenience of those terms, if the timescale
is of order T ∼ 1

ϵ
, then perturbation theory breaks down, and subsequent terms become greater than

their predecessors. As a consequence, the expression (4.33) serves as a reliable approximation only
when τ ≪ 1.

In respect to the thermodynamic entropy production, by considering the relation

|βjk(τ)|2 = 6
p(p2 − 1)

p2kj

(k + j)2N(τ)δk,(p−j),

one can rewrite expression (4.19) in the oscillatory mirror configuration as

Sd(τ) = 1
2N(τ)

1 − ln 1
2N(τ) + ln p(p

2 − 1)
6 − 6 v(p)

p(p2 − 1)

, (4.34)

with
v(p) =

p−1∑
k=1

(p− k)k ln(p− k)k.

Figure 4.1 shows the diagonal entropy for this particular case. As it is clear from the figure,
entropy will be produced in the field for every value of the mirror frequency p, except for p = 1,
where the number of created particles vanishes.

The present approach, based on the effective Hamiltonian, allowed us to compute the entropy
production in the system by means of the time evolution of the density operator. This leads to a
direct connection between entropy production and the generation of coherences in the field. In the
next section we rely on the Heisenberg picture and compute the entropy production in terms of the
time evolution of Gaussian states. This allows us to investigate the contribution to the entropy of
the entanglement between a single mode and the rest of the field.

4.2 Gaussian state approach

As shown in the previous section, a downside of the effective Hamiltonian approach is the restric-
tion of the obtained results to the short-time regime, whenever the mirror oscillates in resonance with
one of the unperturbed field frequencies. To address this issue, this section will introduce a distinct
technique based on the evolution of Gaussian states in order to obtain expressions for the reduced
diagonal entropy (in a specific field mode) for all time regimes. As will become evident later, such
method will enable us to relate the irreversibility dynamics with that of the entanglement between
the considered mode and the rest of the mode structure.
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Figure 4.1: The diagonal entropy expression given by Eq. (4.34) is plotted in terms
of the dimensionless time τ for distinct values of the frequency of oscillation of the
mirror. It is important to observed that each point of the graphic represents the
thermodynamical entropy for a given instant of time τ as if the cavity has stopped at

the instantaneous cavity length l(τ).

4.2.1 Basic elements in the theory of Gaussian states

Before we delve into the theory of Gaussian states, let us first consider the field quadrature
operators q̂k and p̂k in the time interval out: t ≥ T , when the cavity has already returned to its static
configuration as described by the Eqs. (3.78). Moving to the Schrödinger picture, their expressions
take the form

q̂k = 1√
2ωout

k

(
âout
k + âout†

k

)
, (4.35a)

p̂k = −i
√
ωout
k

2
(
âout
k − âout†

k

)
, (4.35b)

and both satisfies the following commutation relations
[
q̂k, p̂j

]
= iδkj and

[
q̂k, q̂j

]
=
[
p̂k, p̂j

]
= 0. (4.36)

Although we are dealing with an infinite dimensional system, for presentation purpose, we will
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consider the description of only a finite number N of modes. To this end, a more compact mathe-
matical formulation for the system can be obtained with the introduction of the vector

R̂ =
N⊕
k=1

r̂k with r̂k = 1√
ωout
k

(ωout
k q̂k, p̂k)T , (4.37)

and the commutation relations, now summarized to a single expression

[
R̂k, R̂j

]
= iΩkj, (4.38)

with the orthogonal matrix Ω defining the system’s simplectic form

Ω =
N⊕
k=1

 0 1
−1 0

 . (4.39)

In this notation, the Heisenberg uncertainty relations are generalized to the so-called, Robertson-
Schrödinger uncertainty relations [103, 104]

Σ + i

2Ω ≥ 0, (4.40)

where Σ is the covariance matrix with elements

Σkj := Cov(R̂k, R̂j) := 1
2⟨R̂kR̂j + R̂jR̂k⟩ − ⟨R̂k⟩⟨R̂j⟩, (4.41)

from the standard definition of covariance Cov(Â, B̂) = 1
2

{
Â − ⟨Â⟩, B̂ − ⟨B̂⟩

}
where {Â, B̂} =

ÂB̂ + B̂Â is the anti-commutator of Â and B̂.

Coherent states

At this stage, it would be instructive for our discussion to introduce an important set of states
spanning the single-mode Hilbert space H : the so-called coherent states, denoted for a given field
mode k as |αk⟩. Perhaps the most prominent defining feature for the last set of states is captured by
the relation

âk |αk⟩ = αk |αk⟩ ,

which means that {|αk⟩} are eigenstates of the annihilation operator âout
k ≡ âk, with the eigenvalues

{αk} being complex numbers. In terms of the set of number states {|nk⟩} of a given field mode k,
one can represent the coherent state |αk⟩ as [105]

|αk⟩ = e− 1
2 |αk|2 ∑

nk

αnkk√
nk!

|nk⟩ = D̂(αk) |0k⟩ . (4.42)
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where D̂(αk) is the displacement operator with the form

D̂(αk) := eαkâ
†
k

−α∗
kâk . (4.43)

In terms of the action of the last operator in the vacuum state |0k⟩ as in Eq. (4.42), one can also
demonstrate two important relations for a given coherent state, say

1
π

∫
C

d2αk |αk⟩ ⟨αk| = I (completeness), (4.44a)

⟨βk|αk⟩ = e
1
2 |αk−βk|2e

1
2(αkβ∗

k−α∗
kβk) (non-orthogonality), (4.44b)

where d2αk := d Re[αk]d Im[αk] is the differential element in the complex plane. Indeed, as a direct
consequence of the completeness relation (4.44a), the characterization of any bounded operator Ô
(on the Hilbert space of one bosonic mode k) can be expressed in the complex plane in terms of the
following identities

Tr
{
Ô
}

= 1
π

∫
C

d2αk ⟨αk| Ô |αk⟩ (trace relation), (4.45a)

Ô = 1
π

∫
C

d2αk Tr
{
ÔD̂(αk)

}
D̂(−αk) (Fourier-Weyl relation). (4.45b)

Wigner functions

Having gathered all the results thus far, we are now in a position to discuss how the state of
a given quantum system can be characterized in the coherent state formulation. In terms of the
Fourier-Weyl identity introduced in Eq. (4.45b), the system’s density operator ρ̂ for a single bosonic
mode takes the following form

ρ̂ = 1
π

∫
C

d2αkχ(αk)D̂(αk), (4.46)

where χ(αk) is system’s characteristic function and is defined as

χ(αk) := Tr
{
ρ̂D̂(−αk)

}
. (4.47)

This description essentially implies that having knowledge of χ(αk) provides complete information
about the system’s state ρ̂. So, an alternative description for a quantum system can be obtained with
the introduction of the Wigner quasi-probability function W (αk), defined as the Fourier transform
of the characteristic function in the complex plane, such as

W (αk) = 1
π

∫
C

d2βeαkβ
∗
k−α∗

kβkχ(βk). (4.48)
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In particular, the Wigner function can be demonstrated to be normalized
∫
C

d2αkW (αk) = χ(0) = Tr{ρ̂} = 1, (4.49)

while the purity µ for the system’s state ρ̂ can be calculated through [106]

µ(ρ̂) = Tr
{
ρ̂2
}

=
∫
C

d2αkW
2(αk) =

∫
C

d2βkχ
2(βk). (4.50)

Although we have defined W in the coherent state formulation, we can also rewrite it in terms of
eigenvalues of the quadrature operators q̂k and p̂k. In order to do this we begin considering the inverse
relation âk = 1√

2ωout
k

(ωout
k q̂k + ip̂k). With the latter, one can express the displacement operator as

D̂(αk) = eαkâ
†
k

−α∗
kâk = e−i(qkp̂k−pk q̂k) = e−irTk Ωr̂k = D̂(−r̂k), (4.51)

where rk = (qk, pk)T ≡
√

2
ωout
k

(Re{αk}, ωout
k Im{αk})T are the eigenvalues of r̂k, as defined

in Eq. (4.37). By converting the differential element on the complex plane as in d2αk =
d Re{αk}d Im{αk} = 1

2dqkdpk, we can finally represent the Wigner function in the phase space
formulation as [107]

W (qk, pk) = 1
π

∫
R

∫
R

1
2dq′

kdp′
ke
i(pkq′

k−qkp′
k)χ(q′

k, p
′
k) (4.52)

= 1
2π

∫
R

∫
R

dq′
kdp′

ke
i(pkq′

k−qkp′
k)
∫
R

dqk ⟨qk| D̂(−r̂′/2)ρ̂D̂(−r̂′/2) |qk⟩ (4.53)

= 1
2π

∫
R

∫
R

∫
R

dqkdq′
kdp′

ke
i(pkq′

k)eip′
k(qk−q′

k) ⟨qk − q′
k/2| ρ̂ |qk − q′

k/2⟩ (4.54)

=
∫
R

dq′
ke
ipkq

′
k ⟨qk − q′

k/2| ρ̂ |qk − q′
k/2⟩ , (4.55)

which is its standard presentation. From the last expression we can show the following properties

1
2

∫ ∞

∞
dpk W (qk, pk) = ⟨qk| ρ̂ |qk⟩ (4.56)

1
2

∫ ∞

∞
dqk W (qk, pk) = ⟨pk| ρ̂ |pk⟩ , (4.57)

meaning that up to a factor 1/2, the integral of the W (q, p) over the quadrature parameter qk (pk),
gives the probability of measuring the system in its conjugated quadrature parameter pk (qk) [107].
In fact, the Wigner function was introduced firstly by Eugene Wigner in 1932 [108] to map the
language of wave functions to a phase space formulation of quantum mechanics. But contrary to
initial hopes, W (p, q) can not be truly probability distribution function since it can assign negative
values.
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Considering a system of N bosonic modes, the Displacement operator acting on the global Hilbert
space can be defined as

D̂(R) =
N⊗
k=1

D̂(rk), (4.58)

where R = ⊕N
k=1rk are the eigenvalues of R̂. In this representation one can rewrite the Wigner

function definition as
W (R) = 1

(2π)n
∫

R2N
d2NR eiR

TΩR̂χ(R), (4.59)

for χ(R) = Tr
{
ρ̂D̂(−R)

}
and d2NR = dq1dp1 . . . dqNdpN .

4.2.2 Gaussian states

A N -mode state described by a density operator ρ̂ is called a Gaussian state if its characteristic
function is of Gaussian type, namely if

χG(R) = exp
{

−1
2

RTΩΣΩTR − iRTΩ⟨R̂⟩
}
. (4.60)

The correspondent Wigner function for a N-mode Gaussian state then takes the form

WG(R) = 1√
det Σ

exp
{

−1
2
(
R − ⟨R̂⟩

)T
Σ−1

(
R − ⟨R̂⟩

)}
, (4.61)

which is therefore, fully characterized by the averages values of R̂ (called statistical first moment)
and its covariance matrix Σ (the system’s second statistical moment).

Beyond this intrinsic simplicity of describing a system in terms of few parameters, the true
importance of Gaussian states in our discussion comes from two results:

1. Unitary transformations that preserve the Gaussian character of a given state ρ̂G (transforms
any Gaussian state into another Gaussian state) are those generated by Hamiltonians which
are at most quadratic in the canonical operator R̂, such as in [98, 107]

Ĥ = 1
2R̂THR̂ + R̂TR̂, (4.62)

where H is symmetric matrix.

2. If Ĥ is a quadratic Hamiltonian (as in Eq. (4.62)) with positive definite matrix H, then any
Gaussian state ρ̂G can be written as a thermal state [107]

ρ̂G = e−βĤ

Tr
{
e−βĤ

} , (4.63)

where β > 0, including the limiting case β → ∞ (ground state).
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The importance of these properties will become evident in the next section, where we study the
evolution of the diagonal entropy in the long-time regime. However, before delving into that, let’s
finish this discussion by briefly introducing some definitions of entanglement entropies within the
Gaussian state formalism.

Given a pure state |ψ⟩, the entanglement between two complementary subsystems A and B is
contained in the reduced state ρ̂A = TrB |ψ⟩ ⟨ψ|. In special, one particularly useful measure of
entanglement between the referred subsystems is characterized by the family of Rényi-α entropy

R(A)
α (ρ̂A) = ln Tr{ρ̂αA}

1 − α
, (4.64)

where α is any positive number different than 1. Two important special cases of Eq. (4.64) are the
Rényi-2 entropy

S
(A)
R := R

(A)
2 = − ln Tr

{
ρ̂2
A

}
, (4.65)

and the von Neumann entropy

SvN(ρ̂A) := lim
α→+1

R(A)
α = − Tr{ρ̂A ln ρ̂A}. (4.66)

In the case of Gaussian states, one can show that the Rényi-2 entropy takes the following expres-
sion [107]

S
(A)
R = 1

2 ln [det ΣA] , (4.67)

where ΣA is the covariance matrix for the reduced state.

4.2.3 Reduced density operator

Since the DCE induced by our system is described at all times by a Hamiltonian which is quadratic
in terms of the creation and annihilation operators (see the effective Hamiltonian (4.6)), by initially
preparing the system in the vacuum state |0; in⟩ (which is a Gaussian state) one expects from the then
the evolved state must also be of a Gaussian character and, therefore, be completely characterized by
its covariant matrix and quadrature averages. The two results specified previously in Eqs. (4.62) and
(4.63), open to us the possibility of studying the time evolution of the system’s density operator and
its correspondent thermodynamics entropy, in terms of a formalism grounded on Gaussian states.
This becomes evident when recognizing that the DCE, induced by our idealized system, can be
described for all times in terms of quadratic Hamiltonians. Consequently, if one consider the system
to be initially prepared in the vacuum state |0; in⟩ (which is a Gaussian state), then the evolved state
must also be of a Gaussian character and, therefore, be completely characterized with the latter
formalism.
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But as exemplified by the previous section —where the time evolution of the density operator was
restricted to the short-time regime— the intrinsic complexity of the system prevents us to perform
a multimode description in the lines of a Gaussian state formalism. For this reason, we will proceed
by restricting attention to the dynamics of the density operator (its diagonal terms in the energy
eigenbasis) for a single-mode of the field.

More specifically, for a given pure Gaussian state described by a density matrix ρ̂ (to be initially
the vacuum state |0; in⟩ ⟨0; in|) we will consider the system to be decomposed into other two sub-
systems A and B: where A corresponds to a particular mode of the field, say the m-th field mode,
while B consists in its complement, i.e., all the rest of the field modes with k ̸= m. In this respect,
we define the reduced density operator of the mode m by

ρ̂(m) = TrB ρ̂, (4.68)

where we have traced the degrees of freedom of B. Under these considerations, the most general
single-mode Gaussian state can be characterized in terms of the following Wigner function for the
m-th field mode [109, 110]

WG(rm) = 1√
det Σm

exp
{

−1
2 (rm − ⟨r̂m⟩)T Σ−1

m (rm − ⟨r̂m⟩)
}
, (4.69)

where the m-th mode covariance matrix Σm stands for

Σm ≡

σ(m)
q σ(m)

qp

σ(m)
qp σ(m)

p

 (4.70)

with

σ(m)
q := Cov(q̂m, q̂m) = ωm

[
⟨q̂2
m⟩ − ⟨q̂m⟩2

]
, (4.71a)

σ(m)
p := Cov(p̂m, p̂m) = ω−1

m

[
⟨p̂2
m⟩ − ⟨p̂m⟩2

]
(4.71b)

σ(m)
qp := Cov(q̂m, p̂m) = 1

2⟨p̂mq̂m + q̂mp̂m⟩ − ⟨q̂m⟩⟨p̂m⟩, (4.71c)

whose averages are computed in terms of initial state of the system. In this particular case of a
single-mode system, the uncertainty relations of Eq. (4.40) constrain the covariance matrix to satisfy
the following inequality

det Σm = σ(m)
q σ(m)

p −
(
σ(m)
qp

)2
≥ 1

4 . (4.72)

Moreover, since we are interested in the system’s thermodynamic entropy, we focus on the diagonal
components of the density operator in the initial energy eigenbasis, which is defined by

ρ(m)
nn = Tr

{
ρ̂(m) |nm; in⟩ ⟨nm; in|

}
. (4.73)
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The problem then becomes, how can we extract these diagonal contributions of the reduced
density operator from our Wigner function (4.69). This task was already performed in Refs. [109,
110], but for completeness we follow their steps for the special case of an initial vacuum state |0; in⟩,
where we expect the averages ⟨q̂m⟩, ⟨p̂m⟩ and σqpm to vanish. For this purpose, we begin computing
the elements of ρ̂(m) in the coherent basis (from definition (4.42)) as

⟨β| ρ̂(m) |α⟩ = e− 1
2 (|α|2+|β|2)∑

nm

β∗mαm√
m!n!

ρ(m)
nm . (4.74)

Another representation for the last expression can be introduced in terms of an overlap integral
between Wigner functions

⟨β| ρ̂(m) |α⟩ = 1
2π

∫
dqmdpmWG(qm, pm)Wαβ(qm, pm), (4.75)

where Wαβ(qm, pm) is the Wigner-Weyln transform of the operator |α⟩ ⟨β| and has the explicit ex-
pression given by

Wαβ(qm, pm) =
∫ ∞

−∞
dv eiqmv ⟨pm − v/2|α⟩ ⟨β|pm + v/2⟩

= 2 exp
{

−1
2(|α|2 + |β|2) − αβ∗

m + p2
m − q2

m − 2αγ∗
m + 2β∗γm

}
, (4.76)

with γm = (qm + ipm)/
√

2.
By putting Eq. (4.76) into Eq. (4.75) and computing the correspondent integral, one obtains

⟨β| ρ̂m |α⟩ = 2P0e
− 1

2 (|α|2+|β|2) exp
{

−1
2αTRα

}
, with P0 = (1 + 2 Tr{Σm} + 4 det Σm)− 1

2 , (4.77)

where α = (β∗, α)Tand R is a 2 × 2 symmetric matrix with components

R11 = R∗
22 = 2

(
σ(m)
p − σ(m)

q

)
P2

0 , (4.78)

R21 = R22 = (1 − 4 det Σm) P2
0 . (4.79)

On the other hand, one can recognize the exponential term in Eq. (4.77) as the generating function
of the Hermite polynomials of two variables HR

nn, as in

exp
{

−1
2αTRα

}
=
∑
nm

HR
nm

n!m!α
nβm. (4.80)

Inserting Eq. (4.80) into Eq. (4.77) and comparing the resulting expression with Eq. (4.74) we can
identify the diagonal elements of ρ̂(m) as simply

ρ(m)
nn = P0

HR
nn

n! = P0 (− det R)
n
2 Pn

(
− R12√

− det R

)
, (4.81)
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where the explicit expression for HR
nn in terms of the Legendre polynomials Pn was derived in

Ref. [109]. Expressing the last equation in terms of the quadrature variances of the field, we fi-
nally obtain the following expression for the diagonal terms of the reduced density operator [97, 98,
109, 110]

ρ(m)
nn =

2
[(

2σ(m)
q − 1

) (
2σ(m)

p − 1
)]n/2

[(
2σ(m)

q + 1
) (

2σ(m)
p + 1

)](n+1)/2 Pn

 4σ(m)
q σ(m)

p − 1√
(4(σ(m)

q )2 − 1)(4(σ(m)
p )2 − 1)

 . (4.82)

4.2.4 Obtaining differential equations for the quadrature operators

With expression (4.82) at hands, our task to calculate the diagonal entropy for a given field mode
is severely facilitated. Now, we only need to obtain explicit expressions for the field variances σ(m)

q

and σ(m)
p . To do this we begin considering the special case in which the cavity returns (after an

interval of time T ) to its initial cavity length l0, such that the initial and final frequencies must be
equal ωin

k = ωout
k = ωk. Expressing the quadrature operators (4.35) in terms of the initial operators

âin
k and âin†

k with the Bogoliubov transformations (3.55), the variances can be directly computed,
resulting in

σ(m)
q = 1

2
∑
k

|αkm + βkm|2 , (4.83a)

σ(m)
p = 1

2
∑
k

|αkm − βkm|2 (4.83b)

where m is an odd integer and the cross term σ(m)
qp is identically zero for the choice of the initial

state. By taking the time derivatives of these last equations in respect to the dimensionless time τ
one obtains

d
dτ σ

(m)
q

d
dτ σ

(m)
p

 =
∑
k

Re
[
(αkm ± βkm)

(
d
dτ αkm ± d

dτ βkm
)]

. (4.84)

Inserting the recursive relations (3.118a) and (3.118b) in Eqs. (4.84), one can shown that

d
dτ σ

(m)
q

d
dτ σ

(m)
p

 = ∓ |α1m ± β1m|2 −
√

3 Re
[

(α1m ± β1m) (α3m ± β3m)
]

(4.85)

+
∞∑
k=3

√
k(k − 2) Re

[
(αkm ± βkm)

(
α(k−2)m ± β(k−2)m

) ]

−
∞∑
k=3

√
k(k + 2) Re

[
(αkm ± βkm)

(
α(k+2)m ± β(k+2)m

) ]
.
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By making the substitution k → k + 2 in the second term of Eq. (4.85), one can verify that almost
all terms of the expression are canceled, and the final expression takes the following form

d
dτ σ

(m)
q = −|α1m + β1m|2 (4.86a)

d
dτ σ

(m)
p = +|α1m − β1m|2, (4.86b)

which depends only on Bogoliubov coefficients with the first index equals to 1 (as we have pointed
out in section 3.3.2). Moreover, because the definitions (4.35), the differential equations (4.86) need
to satisfy the initial conditions σ(m)

q (0) = σ(m)
p (0) = 1/2. We now will analyze the solutions of these

equations in two distinct regimes, the short-time and the long-time.

4.2.5 Short-time regime

In the short time limit, τ ≪ 1, one can obtain expressions for the quadrature variances by
inserting the Bogoliubov coefficients (3.119) into Eq. (4.86) and integrating the resulting differential
equation, such as in,

σ(2µ+1)
q

σ(2µ+1)
p

 = 1
2 ∓ J2

µ

∫ τ

0
dt
[
(2µ+ 1)t2µ ∓ 2(µ+ 1)K2

µt
2µ+1 + O(t2µ+2)

] }
(4.87)

= 1
2 ∓ τ 2µ+1J2

µ

[
1 ∓K2

µτ + O(τ 2)
]
,

with Jµ and Kµ defined in Eq. (3.120).
By introducing expressions (4.87) into Eq. (4.82) we obtain the following expression for the

diagonal components of the density operator

ρ(2µ+1)
nn = (−1)ninJnµ τn(2µ+1)

(
1 −K4

µτ
2
)n/2

1 − (n+ 1)J2
µτ

2µ+2
(
K2
µ − 1

2J
2
µτ

2µ
) (4.88)

× Pn
[
iτ
(
K2
µ − J2

µτ
2µ
)]

+ O(τ 2µ+3).

Using the last expression, we compute the diagonal entropy at short-times for the (2µ + 1)-th
mode. Consider only contributions up to second order in τ we obtain, for µ = 0, the following result

S1
d(τ ≪ 1) = −ρ(0)

1 ln ρ(0)
1 = −

(
1 − 1

2K
2
0J

2
0 τ

2
)

ln
(

1 − 1
2K

2
0J

2
0 τ

2
)

= 1
2N1(τ)

[
1 − ln 1

2N1(τ)
]
, (4.89)
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while for any other value of µ, we have

S2µ+1
d (τ ≪ 1) = −ρ(0)

2µ+1 ln ρ(0)
2µ+1 = −

(
1 −K2

µJ
2
µτ

2
)

ln
(
1 −K2

µJ
2
µτ

2
)

= N2µ+1(τ)
[
1 − lnN2µ+1(τ)

]
+ O(τ 2µ+3), (4.90)

where the number of particle created in a certain mode m = 2µ+ 1 is given by the expression

N2µ+1(τ) = K2
µJ

2
µτ

2µ+2 + O(τ 2µ+3).

Therefore, at short times, the entropy for each mode, grows directly proportional to the number of
created particles, which is fully consistent with the results presented in the previous section. Such
alignment is more explicitly demonstrated by considering the parametric resonance case (p = 2) in
Eq. (4.34), which was derived using the effective Hamiltonian approach. By doing so, one can recover
the exact expression (4.89) obtained through the Gaussian state formalism. This agreement arises
because, in the case of the mirror’s oscillatory motion (where the effective Hamiltonian analysis is
restricted to the short-time regime), only the first field mode contributes to the particle creation
process at the second order of the perturbation parameter (O(ϵ2)).

As anticipated, the present approach also allows us to investigate the long-time behavior of the
entropy production, and we proceed with such an analysis in what follows.

4.2.6 Long-time regime

In the long-time limit, τ ≫ 1, by substituting Eqs. (3.121) into Eqs. (4.86), we obtain the time
derivatives of the system’s quadrature variances as

d
dτ σ

(2µ+1)
q ≈ 0 (4.91a)

d
dτ σ

(2µ+1)
p ≈ 16

π2(2µ+ 1) . (4.91b)

Consequently, their solutions can be expressed by the following set of equations:

σ(2µ+1)
q ≈ A2µ+1 (4.92a)

σ(2µ+1)
p ≈ 16τ

π2(2µ+ 1) +B2µ+1, (4.92b)

where A2µ+1 and B2µ+1 are the correspondent constants of integration. The specific values for A2µ+1

and B2µ+1 varies from mode to mode, and it is dependent on the complete form of the Bogoliubov
coefficients. However, their general behavior exhibit similarities: both quadrature variances begin
with the same value 1/2 at t = 0 and evolve to assume distinct asymptotic behavior at τ ≫ 1.
More specifically, σ(m)

q decrease to a constant value whereas σ(m)
p increases almost linearly in time.
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In particular, explicit expressions for the first two modes were derived in Ref. [97, 98] and take the
following form

σ(1)
q ≈ 2

π2 ; σ(1)
p ≈ 16

π2 τ + 16
π2 ln 2 − 2

π2 (4.93a)

σ(3)
q ≈ 38

9π2 ; σ(3)
p ≈ 16

3π2 τ + 16
3π2 ln 2 + 10

9π2 . (4.93b)

With this in mind, by considering that σ(m)
q ∼ 1 and σ(m)

p ∼ τ , one can compute the single mode
reduced density operator in the long-time regime by expanding Eq. (4.82) over orders 1/τ such that

ρ(m)
nn (τ ≫ 1) = C(m)

n [det Σm(τ)]−1/2 + O(1/τ) (4.94)

where

C(m)
n = 1√

1 + Tm

 1 − Tm√
1 − T 2

m

n Pn

 1√
1 − T 2

m

 (4.95)

is a positive real coefficient with Tm = 1/2σqm.
From Eq. (4.94), we can then compute the diagonal entropy for the m-th field mode by decom-

posing the logarithmic term in two parts

S
(m)
d (τ ≫ 1) ≈ S

(m)
R (τ)

∑
n

ρ(m)
nn (τ) + [det Σm(τ)]−1/2S(C(m)

n ), (4.96)

where
S

(m)
R (τ) = 1

2 ln [det Σm(τ)] (4.97)

is the system’s Rényi-2 entropy for the m-th mode as defined in Eq. (4.67) and

S(C(m)
n ) = −

∑
n

C(m)
n lnC(m)

n . (4.98)

But before interpreting the last expression in more details, let us check the convergence of each one
of the summing terms. Consider the formula for the Legendre polynomial in the limit in which n ≫ 1

Pn

(
1√

1 − e2

)
= 1√

2πne
(1 + e)n+1

2

(1 − e)n/2 + O(1/n). (4.99)

If we introduce the last expression into Eq. (4.95), one can show that the coefficients C(m)
n take the

following asymptotic limit
C

(m)
n≫1 = 1√

πn
. (4.100)

By employing the integral test for convergence, we introduce an upper bound for the infinite sum
over n: ∑nC

(m)
n <

∑
nC

(m)
n≫1 <

1√
π

∫N
0

dn√
n

= 2√
π

√
N , where N → ∞ is the total number of modes. As

a result, the sum over all the diagonal components of the reduced density operator (at the long-time
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regime) can be shown to satisfy the following inequality

∑
n

ρ(m)
nn (τ ≫ 1) =

∑
n

C(m)
n [det Σm]−1/2 <

2√
π

√
N√

det Σm

∼ 1, (4.101)

where we have considered that for the long-time regime, both the total number of modes N and
the covariance matrix determinant det Σm grow with the same order of magnitude (remember that
det Σm ∼ τ for τ → ∞ since σ(m)

q ∼ 1 and σ(m)
p ∼ τ). As expected, Eq (4.101) is telling us that the

trace of the reduced density operator converges, and it is bounded to be less than 2/
√
π(≈ 1,128 . . . ).

Indeed, by using the generating function for the Legendre polynomial, one can very easily prove that
Tr
{
ρ̂(m)

}
given by Eq. (4.82) is exactly identical to unity.

In regard to the second term in Eq. (4.96), by substituting Eq. (4.100) into expression
S(C(m)

n ) det Σ−1/2
m , one can show that the correspondent summation can be restricted to satisfy

the following inequality

S(C(m)
n ) det Σ−1/2

m <
1
2

1√
det Σm

∫ N

0

ln πn√
πn

dn

= 1
2

(
2√
π

√
N√

det Σm

ln πN − 4√
π

√
N√

det Σm

)
∼ 1

2 ln (πN ) − 1,

meaning that the last series diverges logarithmically with the system’s dimensionality. Indeed, this
last fact is somehow expected since we are considering a field theory and the number of degrees of
freedom of the system is infinite. However, as we are considering a finite period of time for the
mirror motion, the energy injected into the system must be finite. As a result the field high energy
modes are not expected to be excited and contribute to the correspondent divergence. Moreover, we
must remember that the thermodynamic entropy is defined up to a multiplicative and an additive
constant. So, this last term is not fundamental for the dynamical behavior of the entropy.

As a consequence we can identify the system’s thermodynamic entropy for the m-th field mode
to be simply identified as the Rényi-2 entropy

S
(m)
d (τ ≫ 1) ≈ S

(m)
R (τ). (4.102)

Since the global state of the field is pure —initial pure state under unitary evolution— S
(m)
R (τ)

then quantifies the amount of entanglement between the m-th mode and all the remaining modes.
Therefore, what Eq. (4.96) is saying to us is that the asymptotic behavior of the diagonal entropy
is fundamentally determined by the entanglement between the field modes. In particular, from
the expressions given by Eq. (4.93) one can compute the system’s thermodynamic entropy for the
resonant mode m = 1,

S
(1)
d (τ) ≈ 1

2 ln 4
π4 (8τ + 2 ln 16 − 1) ∼ 1

2 ln 32
π4 τ,
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which is in agreement with Ref. [59] 2. In the case of the subsequent mode m = 3, we obtain

S
(3)
d (τ) ≈ 1

2 ln 380
81π4

(24
5 τ + 6

5 ln 16 + 1
)

∼ 1
2 ln 608

27π4 τ.

2Here, the argument in the Réniy-2 entropy differs from Ref. [59] by a factor of 4. This occurs because the variances
defined in the last reference are twice as large as the ones in Eq. (4.71).





67

Chapter 5

Conclusions and Perspectives

Throughout this work, we have investigated the thermodynamic entropy production in the DCE
induced by the confinement of a quantum scalar field through a moving cavity. In practice, such
calculations were performed within two distinct approaches: (i) using the dynamical evolution gener-
ated by an effective Hamiltonian, it was possible to connect the entropy production in the short-time
regime with the generation of quantum coherence in the energy eigenbasis of the system; (ii) by
means of a reduced density operator, we were also able to connect the entropy growth in a given
mode (for all times) with the generation of entanglement between such mode and the rest of the
field.

Together, both approaches provide us with distinct but complementary insights into the dynami-
cal evolution of the production of thermodynamic entropy in the DCE. In summary, such irreversible
process is determined by the generation of quantum coherence in the field’s mode basis and the
quantum entanglement between such modes. Further conclusions can be drawn by the properties of
the diagonal entropy [78], which guarantees —because our choice of a diagonal initial state (vacuum
state)— that the entropy production, as well as the coherence and the entanglement generation, can
only either increase or remain constant, never decrease.

A better physical understanding on the last results can be enunciated as follows. Due to the
process of particle creation (where we have transitions between instantaneous energy levels) caused
by the non-trivial boundary conditions, one expects an initial state with definite energy value to
rapidly evolve into a coherent superposition of excited states: a process called delocalization of
energy [82]. Even though the process is unitary, since we are generally constrained by a limited
set of possible measurements, information quickly spread throughout the Hilbert space, becoming
increasingly inaccessible. This uncertainty on the energy measurement induced by the generation of
coherence acts as the root of irreversibility, as predicted by the non-vanishing value for the system’s
diagonal entropy production [78, 82, 86, 87]. On top of that, in the one-dimensional case where
the energy spectrum is equidistant, the time-dependent boundary conditions introduce a non-trivial
coupling between the modes of the field. Due to this strong inter-mode interaction, the diagonal
entropy production also predicts, at the long-time regime, the generation of entanglement between the
field modes. Not only information about the energy value of the system is becoming inaccessible due
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to the generation of coherence, but the entanglement among different parts of the system means that
recovering the system’s state must become increasingly difficult due to the strong correlations being
created among the field modes. In this context, reversible processes are defined in the limit where the
cavity motion is so slow that no particle creation, inter-mode scattering, or entropy production takes
place. It is also interesting to notice, that for the special case involving resonant cavity trapping the
field, there might exist motions by which no particles are created, and consequently, no entropy is
produced. This aspect warrants deeper investigation.

Saying few words about the work as whole, we think our research enhances the understanding of
thermodynamic considerations in quantum field theories under non-trivial conditions. The general
message is that the source of irreversibility in the DCE can be traced back to the (almost unavoid-
able) transitions between the instantaneous energy values (due to the generation of coherence) and
the strong intermode interaction which generate entanglement among different parts of the system.
Despite this, our treatment leaves open several questions to be answered.

One immediate question that emerges when thinking about the thermodynamics of our system,
is how exactly is the splitting of energy into work and heat contributions, with the latter being
associated with the irreversible nature of the process, while the former characterizing the amount
of energy that can be extracted from the field [111, 112]. The statistical description of the field in
terms of the production of stochastic entropy and their correspondent fluctuation theorems [113] are
also natural issues derived from our considerations. Since we only analyzed the long-time behavior
of the diagonal entropy for a particular mode of the field, the role of multipartite entanglement
and multiple quantum coherence to the process of entropy production is a relevant problem to be
addressed. Finally, the specific thermalization properties of the field dynamics constitute another
interesting question that remains unanswered.
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Appendix A

Alternative derivation for the effective
Hamiltonian

A.1 Dynamical equations for the instantaneous creation
and annihilation operators

From Eqs. (3.4) and (3.5), the dynamical equation of motion for a quantum scalar field and its
conjugated momentum can be written as

∂tϕ̂(x, t) = π̂(x, t) (A.1a)

∂tπ̂(x, t) = ∇2ϕ̂(x, t). (A.1b)

By introducing the instantaneous decomposition (3.79) into the expansion Eqs. (3.61) and (3.66) and
taking its time derivatives, one obtains

ϕ̂ =
∑
k

1√
2ωk(t)

[
âk(t) + â†

k(t)
]
φk(x, t); (A.2a)

π̂ = i
∑
k

√
ωk(t)

2
[
â†
k(t) − âk(t)

]
φk(x, t); (A.2b)

˙̂
ϕ =

∑
k

1√
2ωk

[
âk + â†

k

] (
φ̇k − ω̇k

2ωk
φk

)
+
∑
k

1√
2ωk

[ ˙̂ak + ˙̂a†
k

]
φk (A.2c)

˙̂π = i
∑
k

√
ωk
2
[
â†
k − âk

] (
φ̇k + ω̇k

2ωk
φk

)
+ i

∑
k

√
ωk
2
[ ˙̂a†
k − ˙̂ak

]
φk, (A.2d)

where for conciseness we have suppressed the notation of time and spatial dependence in Eqs. s(A.2c)
and (A.2d) and the upper dot convey time derivative. Comparing (A.1) with (A.2c) and (A.2d), we
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can isolate the time derivative of the ladder operators by computing
∫ L

0
dx φj

( ˙̂
ϕ− π̂

)
=
∑
k

1√
2ωk

[ ˙̂a†
k + ˙̂ak

]
δkj −

∑
k

1√
2ωk

[
âk + â†

k

] (
Gjk + ω̇k

2ωk
δkj

)

− i
∑
k

√
ωk
2
[
â†
k − âk

]
δkj = 0 (A.3)

∫ L

0
dxφj

( ˙̂π − ∂2
xϕ̂
)

= i
∑
k

√
ωk
2
( ˙̂a†

k − ˙̂ak
)
δkj + i

∑
k

√
ωk
2
[
â†
k − âk

] (
Gkj + ω̇j

2ωj
δkj

)

+
∑
k

ω2
k√

2ωk

[
âk + â†

k

]
δkj = 0

(A.4)

where it was used
∫ L

0 dxφkφj = δkj and Gjk :=
∫ L

0 φk∂tφj. By defining µkj =
√

ωj
ωk

(
Gjk + ω̇k

2ωk
δkj
)

we
obtain from (A.3) and (A.4) the following equations

˙̂aj(t) + ˙̂a†
j(t) − iωj(t)

[
â†
j(t) − âj(t)

]
=
∑
k

µkj(t)
[
â†
k(t) + âk(t)

]
, (A.5a)

˙̂aj(t) − ˙̂a†
j(t) + iωj(t)

[
âj(t) + â†

j(t)
]

=
∑
k

µjk(t)
[
â†
k(t) − âk(t)

]
. (A.5b)

From the last system, it is easy to isolate ˙̂aj(t) and ˙̂a†
j(t) as

˙̂aj(t) = −iωj(t)âj(t) +
∑
k

[
µ[k,j](t)ak(t) + µ(k,j)(t)a†

k(t)
]
, (A.6a)

˙̂a†
j(t) = +iωj(t)â†

j(t) +
∑
k

[
µ[k,j](t)a†

k(t) + µ(k,j)(t)ak(t)
]
, (A.6b)

with

µ[k,j](t) = 1
2 [µkj(t) − µjk(t)] e−i[Ωk(t)−Ωj(t)], (A.7a)

µ(k,j)(t) = 1
2 [µkj(t) + µjk(t)] e−i[Ωk(t)+Ωj(t)]. (A.7b)
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Since ωk(t) = kπ/L(t) and using the definition (3.58) we can calculate

Gkj(t) =
√

2
L(t)

∫ x0+L(t)

x0
dx sin

[
jπ(x− x0)

L(t)

]
d

dt

{√
2

L(t) sin
[
kπ(x− x0)

L(t)

]}

= − 1
L(t)

L̇(t)
L(t)

∫ x0+L(t)

x0
dx sin

[
jπ(x− x0)

L(t)

]
sin

[
kπ

L(t)(x− x0)
]

− 2kπ
L2(t)

L̇(t)
L(t)

∫ x0+L(t)

x0
dx x sin

[
jπ(x− x0)

L(t)

]
cos

[
kπ(x− x0)

L(t)

]

= 1
2
L̇(t)
L(t)δkj +

 (−1)j−k 2kj
j2−k2

L̇(t)
L(t) j ̸= k

−1
2
L̇(t)
L(t) j = k

= gkj
L̇(t)
L(t) ,

and

ω̇k(t)
ωk(t)

= − L̇(t)
L(t) , (A.8)

where gkj has the same form as expressed in (3.64).

A.2 Effective Hamiltonian

To find the effective Hamiltonian that generates the dynamical equations (A.7) we begin by
considering the most general quadratic operator

Ĥ(t) =
∑
kl

[
Akl(t)â†

k(t)â
†
l (t) + Bkl(t)â†

k(t)âl(t) + Ckl(t)â†
l (t)âk(t) + Dkl(t)âk(t)âl(t)

]
, (A.9)

which is: (i) hermitian, by satisfying the conditions Akl(t) = D∗
kl(t), Bkl(t) = C∗

kl(t) and (ii) invariant
over an index change, with the conditions Akl(t) = Alk(t), Dkl(t) = Dlk(t), Bkl(t) = Clk(t) and
Blk(t) = Ckl(t).

Suppressing the notation for time dependence, the correspondent Heisenberg equation of motion
for the annihilation and creation operators is therefore

˙̂aj = i
[
Ĥ, âj

]
= i

∑
kl

Akl

[
â†
kâ

†
l , âj

]
+ Bkl

[
â†
kâl, âj

]
+ Ckl

[
â†
l âk, âj

]
+ Dkl[âkâl, âj]


= −i

∑
k

[
(Akj + Ajk) â†

k + (Bjk + Ckj) âk
]

(A.10)
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and

˙̂a†
j = i

[
Ĥ, â†

j

]
= i

∑
kl

Akl

[
â†
kâ

†
l , â

†
j

]
+ Bkl

[
â†
kâl, â

†
j

]
+ Ckl

[
â†
l âk, â

†
j

]
+ Dkl

[
âkâl, â

†
j

]
= i

∑
k

[
(Dkj + Djk) âk + (Bkj + Cjk) â†

k

]
. (A.11)

Comparing (A.6a) with (A.10) and (A.6b) with (A.11), we obtain the following system

−i [Akj(t) + Ajk(t)] = −2iAkj(t) = µ(k,j)(t),

−i [Ckj(t) + Bjk(t)] = −2iCkj(t) = −iωkδkj + µ[k,j](t),

i [Dkj(t) + Djk(t)] = 2iDkj(t) = µ(k,j)(t),

i [Bkj(t) + Cjk(t)] = 2iBkj(t) = iωkδkj + µ[k,j](t).

Inserting the last coefficients into Eq. (A.9), one obtains the following expression for the effective
Hamiltonian

ĤH(t) =
∑
k

ωk(t)â†
k(t)âj(t) − i

2
∑
jk

µ[k,j](t)â†
j(t)âk(t) + µ(k,j)(t)â†

j(t)â
†
k(t) − H.c.

, (A.12)

where the subscript H conveys that the operator is represented in the Heisenberg picture of quantum
mechanics. Moving to the Schrodinger picture, the last Hamiltonian takes the form

ĤS(t) =
∑
k

ωk(t)âin†
k âin

j − i

2
∑
jk

µ[k,j](t)âin†
j âin

k + µ(k,j)(t)âin†
j âin†

k − H.c.
, (A.13)

where the Heisenberg annihilation (and creations) operator is defined as âk(t) = Û †
S(t)âin

k ÛS(t), with
ÛS(t) being the time evolution operator generated by the Hamiltonian (A.13).
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Appendix B

Coupled differential equations for the
Fourier coefficients

Let the differential equation for the generalized function Qn
k(t)

Q̈n
k + ω2

k(t)Qn
k = 2λ(t)

∑
j

gkjQ̇
n
j + λ̇(t)

∑
j

gkjQ
n
j + O(λ2).

Here we will concentrate in the parametric amplification of the fundamental cavity mode. Therefore,
we impose the following equation of motion for the moving mirror

l(t) = l0 [1 + ϵ sin (ωpt)] . (B.1)

We search for solutions
Qn
k(t) = ξnk (t)e−iωkt + ηnk (t)eiωkt. (B.2)

Here we consider ξ̈, η̈, l̇ ∼ ϵ2, up to second order in ϵ one obtains

λ(t) = l̇(t)
l(t) = ϵωp cosωpt = ϵωp

2
[
eiωpt + e−iωpt

]
(B.3)

λ̇(t) = l̈(t)
l(t) = −ϵω2

p sinωpt = i
ϵω2

p

2
[
eiωpt − e−iωpt

]
(B.4)

as well as

Q̇n
k =

[
ξ̇nk e

−iωkt + η̇nk e
iωkt

]
− iωk

[
ξnk e

−iωkt − ηnk e
iωkt

]
(B.5a)

Q̈n
k ≈ −2iωk

[
ξ̇nk e

−iωkt − η̇nk e
iωkt

]
− ω2

k

[
ξnk e

−iωkt + ηnk e
iωkt

]
. (B.5b)

Inserting (B.5) into the left side of Eq. (3.105) and multiplying both sides by exp{±iωkt}, we end
up with

E±
1 :=

[
Q̈n
k + ω2

k(t)Qn
k

]
× e±iωkt (B.6)

= −2iωk
[
ξ̇nk e

−i(ωk∓ωk)t − η̇nk e
i(ωk±ωk)t

]
− 2ϵ sinωpt

[
ξnk e

−i(ωk∓ωk)t + ηnk e
i(ωk∓ωk)t

]
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as for the right-side, by considering ϵξ̇, ϵη̇ ∼ ϵ2 we have

E±
2 :=

2λ
∑
j

gkjQ̇
n
j + λ̇

∑
j

gkjQ
n
j

× e±iωkt (B.7)

= −iϵωp
∑
j

gkjωj
{[
ei(ωp−ωj±ωk)t + e−i(ωp+ωj∓ωk)t

]
ξnj −

[
ei(ωp+ωj±ωk)t + e−i(ωp−ωj∓ωk)t

]
ηnj
}

+ i
ϵω2

p

2
∑
j

gkj
{[
ei(ωp−ωj±ωk)t − e−i(ωp+ωj∓ωk)t

]
ξnj +

[
ei(ωp+ωj±ωk)t − e−i(ωp−ωj∓ωk)t

]
ηnj
}
.

We then perform the method of averaging over fast oscillations with the frequencies proportional
to ωk. For the case k ≥ p all the terms e±2iωk , ei[ωp±(ωk+ωj)]t, e−i[ωp±(ωk+ωj)]t, sinωpt → 0 whereas
ei[ωp∓(ωj−ωk)]t, e−i[ωp∓(ωj−ωk)]t → δk,k±p, meaning we obtain

E±
1 =

 −2iωkξ̇nk for × e+iωkt

+2iωkη̇nk for × e−iωkt
(B.8)

and

E±
2 =

 −iϵωp
{
gk,k+pωk+pξ

n
k+p + gk,k−pωk−pξ

n
k−p

}
+ i

ϵω2
p

2

[
gk,k+pξ

n
k+p − gk,k−pξ

n
k−p

]
for × e+iωkt

+iϵωp
{
gk,k+pωk+pη

n
k+p + gk,k−pωk−pη

n
k−p

}
+ i

ϵω2
p

2

[
gk,k−pη

n
k−p − gk,k+pη

n
k+p

]
for × e−iωkt

=

 −iϵωkω1(−1)p
[
(k + p)ξnk+p − (k − p)ξnk−p

]
for × e+iωkt

+iϵωkω1(−1)p
[
(k + p)ηnk+p − (k − p)ηnk−p

]
for × e−iωkt

(B.9)

where were used the identities

gk,k±p = (−1)∓p2k(k ± p)
p(p± 2k)

ωk±p = ωk ± ωp.

From Eqs. (B.8) and (B.9) one then obtain the following set of differential equations

d
dτ ξ

(n)
k = (−1)p

[
(k + p)ξnk+p − (k − p)ξnk−p

]
, (B.10a)

d
dτ η

(n)
k = (−1)p

[
(k + p)ηnk+p − (k − p)ηnk−p

]
, (B.10b)

with the small time τ = 1
2ϵω1t.

On the other hand, for the case in which k ≤ p, when applying the method of averaging over
fast oscillations for Eqs. (B.6) and (B.7) we expect e±2iωk , ei[ωp+(ωj±ωk)]t, e−i[ωp+(ωj±ωk)]t, sinωpt → 0
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whereas ei[ωp−(ωj∓ωk)]t, e−i[ωp−(ωj∓ωk)]t → δk,p±k. Following the same procedure as before we find

d
dτ ξ

(n)
k = (−1)p

[
(p+ k)ξnk+p − (p− k)ηnp−k

]
, (B.11a)

d
dτ η

(n)
k = (−1)p

[
(p+ k)ηnk+p − (p− k)ξnp−k

]
. (B.11b)
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