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Abstract

Between the many branches of knowledge where quantum computing can play

an important role, in this project we have focused on approaching population

ecology (the study of the evolution of biological populations) using quantum

algorithms.

For this, we have related two concepts: on one hand, we studied about

the Lotka-Volterra equations, the most important predator-prey model. On

the other hand, we proposed a Quantum Artificial Life model. Such model is

strongly based on a map that we can build between an alive individual and

a qubit. Individuals are represented by qubits, which interact between them

and the environment.

We focused on trying to find out if this model follows the Lotka-Volterra

equations. Here, the small amount of available qubits has been a major limita-

tion. This restriction motivated us to build a classical algorithm that simulates

the behaviour of every mechanism (interactions, self-replications, etc.) of the

quantum model without using a quantum computer. This classical algorithm

can perform simulations including large number of individuals. Then, it al-

lowed us to state that our quantum model follows the results of Lotka-Volterra

equations in the correct limit.

With the support of this classical simulation, we built the associated quan-

tum algorithm. Besides the limited amount of qubits, the need of ancillary

qubits and knowing the state of the system at all steps also constituted im-

portant issues for the quantum simulation. Despite of this, we achieved to

perform a relatively small simulation on the IBM Qasm simulator with debat-

able results.

Proposed improvements on our algorithm will be mainly based on avoiding

to measure and destroy the quantum system at each step of the simulation.
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Chapter 1

Introduction

Since the invention of the first computers machines, computer hardware has

grown in power at an amazing pace. Intel co-founder Gordon Moore described

in 1965 [1] this growth in what has become known as Moore’s law, which states

that computer power will double every two years.

However, Moore’s law may be approaching its limit due to one main reason:

the growth of computational power is related to the skill of building smaller

microchips. But these cannot reduce indefinitely their size due to the fact

that quantum effects, such as tunneling, appear in the scale of nanometers,

preventing the microchip from working properly [2, 3]. So the union between

quantum physics and computer science appeared to be imminent.

Fundamental ideas of quantum computation rose during the 1980s. Richard

Feynmann, in his famous lecture in 1981 [4] highlighted the limitations of sim-

ulating nature with classical computers. According to Feynmann, we were not

simulating quantum systems but making some kind of classical and numeri-

cal approximation. In fact, the problem of simulating the state of a system

consisting of several particles becomes intractable when we have to classically

track the probabilities of all the particles. But quantum systems, like qubits,

can track these probabilities because it is in their very nature to do so [5].

Yet quantum computation soon started to enlarge its frontiers beyond the

simulation of quantum systems. Three main quantum algorithms were pro-

posed during the 1990s, proving that quantum computers could perform sev-

eral tasks more efficiently than classical computers.

The first algorithm is the Deutsch algorithm (1992), which can characterize

1



2 CHAPTER 1. INTRODUCTION

a unknown binary function f : {0, 1} −→ {0, 1} only with 2 measurements while

a classical computer needs 4 [6]. This algorithm was also the inspiration for

the well-known Shor’s algorithm proposed in 1995 by Peter Shor [7]. Shor’s

algorithm can perform more efficiently than any known classical algorithm the

factorization of large numbers into prime factors. The security of the largely

used RSA cryptosystem relies on the hardness of this computational task.

The third important quantum algorithm proposed was the Grover data search

algorithm (1996) [8] with a huge range of potential applications [2].

In the last years, the research on the potential applications of quantum

computer has increased exponentially. An uncountable number of potential

applications is being tested at different stages, including cybersecurity [9],

financial modeling [10], Artificial Intelligence [11], materials science [12] and

optimization problems [13] among many more [14].

Neuroscience is one of the most active research lines in biology including

quantum computation in its progress [15]. The idea that brain’s functioning

can be explained within the framework of quantum mechanics [16,17] lead to

many quantum computing applications in neuroscience such as genetics and

sequence analysis [18] or genomics [19].

Quantum computing can also be helpful in many optimization problems in

biology. It is worth mentioning how the ground-state energy of a protein is

obtained using adiabatic quantum computation in [20].

We can say that the present thesis approaches a different area of biology.

What we did is to apply quantum computation to computational ecology.

Thus, we aim to observe the evolution of populations given a quantum-based

model of life. Also, we aim to model this evolution through the well-known

Lotka-Volterra equations.

The thesis is structured in 4 essential chapter. First, in chapter 2 we

will introduce Lotka-Volterra equations, the most important model of prey-

predator systems. Here we will find out about the origin and meaning of these

equations, next to a mathematical analysis and the behaviour of its solutions.

Once we have a deeper understanding of Lotka-Volterra model, we will

proceed to explain about Quantum Artificial Life in chapter 3. Here we will

discover the idea and motivation beyond this topic. Also, we will briefly de-

scribe which are the current models of Quantum Artificial Life and their ben-
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efits and limitations. We introduce some modifications to this model in order

to improve it.

Most important, we will report the state-of-the-art of this topic in order to

have a deeper view on the objectives of this thesis. Our goal can be stated as

exploring whether if our Quantum Artificial model follows the characteristics

of a Lotka-Volterra prey-predator system as the number of individuals increase.

Due to our limitation on the number of qubits, and consequently on the

number of individuals, in order to support our ideas we will first make a

classical approach detailed in chapter 4. Here we will explain how this classical

program behaves identically to a quantum program, avoiding limitations on the

number of individuals and thus achieving results that prove how our quantum

model has the characteristics of a Lotka-Volterra system.

Then, we will explain how to perform an implementation of the model for

quantum computers at chapter 5. Due to the limited number of qubits of

public access quantum computers our executions are constrained to a single

simulator: the IBM Qasm Simulator. Results of this chapter will be far away

from the ones obtained in previous chapter due to our computational limita-

tions. However, some sketches of predator-prey Lotka-Volterra behaviour will

be observed here.

To conclude, we will present a short summary of the results and make some

general comments in the final chapter 6. Also, new paths will be suggested in

order to solve the weak points of our algorithm.



Chapter 2

Lotka-Volterra equations

In this chapter we will put into context the origins of the well-known Lotka-

Volterra equations, followed by an analysis of its physical meaning and math-

ematical solution

2.1 Brief history of mathematical ecology mod-

els

Mathematical ecology is the scientific field which models the evolution of size

of populations in their ecosystems. First worth-mentioning publication in this

field was made in 1798 by Thomas R. Malthus [21]. In his book An Essay on

the Principle of Population he presented an equation describing the population

growth, known as Malthusian growth model, which is no other thing than an

exponential law, according to

dP

dt
= rP (t), (2.1)

where P (t) is the population of the considered species and r a positive growth

ratio. Despite the simplicity of the model, it influenced several researchers of

19th century, such as Darwin’s On the Origin of Species work.

The well-known Lotka-Volterra equations are the next remarkable model of

population evolution. They were proposed independently by Alfred J. Lotka

in 1925 and Vito Volterra in 1926 [22].

4
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year 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

predator % 11.9 21.4 22.1 21.2 36.4 27.3 16.0 15.9 14.8 10.7

Table 2.1: Percentage of predator species over all species fished each year. [23]

On the one hand, Vito Volterra got his conclusions based on the observa-

tions of his son-in-law, the biologist Umberto D’Ancona. D’Ancona organized

the data of total caught species of fish during World War I and next years, or-

ganizing in predator fishes (such as sharks, rays, etc.) and prey fishes [23,24].

Percentage of predator species fished is shown in table 2.1 where we can observe

that predators species increased its number during a period of reduced fishing

activity such as the war period (1914-1918). This increasing of the predator

fishes proportion encouraged Volterra to model a system such benefits prey

population in case an external agent (such as fishing activity) appears. At

the end of next section we will show how Lotka-Volterra equations satisfy this

property.

On the other hand, Alfred J. Lotka initially proposed the same set of equa-

tions in the theory of autocatalytic chemical reactions in 1910. Later, in 1920,

Lotka used the same equations to characterize prey-predator systems [25].

2.2 The Lotka-Volterra model

Lotka-Volterra equations are a pair of first order non-linear differential equa-

tions given by
dx

dt
= αx− βxy and

dy

dt
= δxy − γy,

(2.2)

where x is the number of preys, y is the number of predators and {α, β, δ, γ}
are four real parameters which describe the nature of the system.

To understand the physical meaning of this model, we have to assume an

ecosystem where preys have infinite supply of food and predators depend on

the interactions with other preys in order to reproduce and achieve the survival

of the species.

Thus, in the absence of predators, preys will reproduce uncontrollably and
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the population will increase exponentially (Malthusian behaviour) with the

ratio α: ẋ(t) = αx −→ x(t) = x(0)eαt. On the other hand, in absence of preys,

the number of predators would exponentially decrease with ratio γ due to the

absence of food: ẏ(t) = −γy −→ y(t) = y(0)e−γt.

The other two terms in the equations represent the effect on interactions.

Since the number of interactions increase with the size of both populations,

these terms will be proportional to both x and y. This term will be positive

for predators (δxy) since they benefit from interactions and negative for preys

(−βxy) since they get damaged in interactions.

The solution’s behaviour can be qualitatively explained in the following

way: an increase of the number of preys causes an increase of the amount

of available food for predators, which consequently increases its population.

This causes that preys get damaged due to interactions so their population de-

creases. Consequently, predators will have less food available so its population

will also decrease. Then, the number of preys can start increasing again due

to the lack of predators and the cycle starts again. Thus, as we shall see more

formally in the following, solutions will be periodically oscillating functions of

time.

Now that we have a qualitative idea of the system, let us take a deep look

into the solutions of the Lotka-Volterra model. There are two fixed points in

time: the trivial one, {x = 0, y = 0} and the non-trivial one

x =
γ

δ
, y =

α

β
. (2.3)

Since the sets {x(t) = x0e
αt, y(t) = 0} and {x(t) = 0, y(t) = y(0)e−γt} are

solutions contained in the x and y axis, any solution with x0 > 0 and y0 > 0

will be contained in the {x(t) > 0, y(t) > 0} region of the XY plane for any

t > 0 [23].

By dividing Eqs. (2.2) we get

dy

dx
=
−γy + δxy

αx− βxy
=
y(−γ + δx)

x(α− βy)
. (2.4)

This equation can be separated resulting in

dy(α− βy)

y
=

dx(−γ + δx)

x
, (2.5)
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which can be integrated as

α ln y − βy + γ lnx− δx = k (2.6)

for some integration constant k. Applying the exponential on both sides and

redefining the constant (ek −→ k) we get

yαe−βyxγe−δx = f(y)g(x) = k, (2.7)

where we defined
f(y) =yαe−βy

g(x) =xγe−δx
(2.8)

Note that these function (f and g) non-negative with f(0) = g(0) = 0 and

f(y −→ ∞) = g(x −→ ∞) = 0, with only one maximum at ymax = α/β,

xmax = γ/δ. The behaviour of these functions is shown in Fig. 2.1.

Let us define Mf = f(ymax) and Mg = g(xmax). Assuming we are not at

the fixed point {x = xmax, y = ymax} we will have k < MfMg or what is the

same, k = λMg, with λ < Mf . Of course, the value of λ is defined by the

initial conditions (λ = f(y0)g(x0)/Mg)

Now, we can rewrite Eq. (2.7) as

g(x) =
λ

f(y)
Mg. (2.9)

Therefore, for y values such f(y) < λ there will be no solution for x.

This means y-solution is contained between y1 and y2, the two solutions of

f(y) = λ (shaded zone at Fig. 2.1). As long as y approaches y1 or y2, x

trajectory will approach γ/δ. Same reasoning can be done defining k = λ′Mf

to state than x-solution is bounded between the two solutions of g(x) = λ′

and y approaches its central α/β value when x approach to x1 and x2 values.

Therefore, trajectories are cyclical on the x > 0, y > 0 zone; provided that

we are not on the fixed point {x0 = γ/δ, y0 = α/β} and {x1,2, y1,2} there are

return points [23, 26, 27]. In Fig. 2.2 we can observe these cyclic trajectories

surrounding the fixed point.

Although there exists no analytical solutions for the functions x(t) and

y(t), we can get an analytical estimation for initial values close to the fixed

point. We will assume x = γ/δ + ∆x and y = α/β + ∆y with ∆x << x and
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Figure 2.1: Representative plot of f(y). Similar behaviour holds for g(x), but

with peak at γ/δ.

Figure 2.2: At left, cyclic representative trajectory. At right, several solutions

with different initial conditions for given parameters α = 1, β = 2, γ = 1, δ = 1.

∆y << y. Neglecting terms proportional to O(∆x∆y), we can rewrite the
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Lotka-Volterra equations (2.2) as

∆ẋ ' −βγ
δ

∆y

∆ẏ ' δα

β
∆x

(2.10)

Differentiating again we get:

∆ẍ = −αγ∆x

∆ÿ = −αγ∆y
(2.11)

so we can observe that populations oscillate harmonically around the fixed

point with ω2 = αγ.

For bigger deviations of the fixed point we can check numerically that

oscillations become non-harmonic but period is still the same T = 2π√
αγ

as

shown in figure (2.3) [26].

Figure 2.3: On the left panel the (almost) harmonic solutions of L-V equations

near the fixed point x0 = 1, y0 = 0.5 is displayed. On the right, the non-

harmonic oscillations due to initial conditions not close to the fixed point.

Chosen parameters were α = 1, β = 2, γ = 1 and δ = 1.

Now that we have a deeper understanding of the Lotka-Volterra solutions

we can explain D’Ancona observations mentioned at previous section. D’Acona

data reflected average number of individuals during long (yearly) periods. For
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example, isolating x(t) from the second of Eqs. (2.2) it is straightforward to

see that average over a period is

x̄ =
1

T

∫ T

0

x(t)dt =
1

T

∫ T

0

(1

δ

ẏ

y
+
γ

δ

)
dt =

γ

δ
, (2.12)

where we cancelled the first term using the fact that∫ T

0

ẏ

y
dt = ln(y(T ))− ln(y(0)) = 0. (2.13)

Similarly, we get that ȳ = α/β implying that the average number of individuals

are equilibrium points.

Now, let us assume that we can model fishing as a factor that decrease

both preys and predators with same ratio ε, so L-V equations become

dx

dt
= αx− βxy − εx = α′x− βxy and

dy

dt
= δxy − γy − εy = δxy − γ′y,

(2.14)

which are same equations with α′ = α− ε and γ′ = γ+ ε. Therefore, as long as

ε is small enough to not change the α′ sign, we conclude that new average prey

population x̄′ = γ′/δ > x̄ benefits of the fishing activity while on the contrary

predator population ȳ′ = α′/δ < ȳ benefits of the lack of fishing activity. So

Lotka-Volterra model match perfectly with D’Ancona observations.

Provided all the above information about Lotka-Volterra population evolu-

tion, now we will introduce a concrete model for life. This means that we will

present a model in which the interaction between individuals and the envi-

ronment as well as with other individuals is explicitly discussed described and

we will discuss whether the populations of this model will follow the Lotka-

Volterra equations. As we will see, the particular characteristic of this model

is that is nature is purely quantum, so we shall name it as a Quantum Life

Model.



Chapter 3

Quantum Artificial Life

In this chapter we will introduce our life model, starting with the motivation

and idea behind Quantum Life. We will also describe current Quantum Ar-

tificial Life models so that we have an overall view of their advantages and

limitations.This general view will provide us a better understanding of the

goals and perspectives of this thesis.

3.1 What is Quantum Artificial Life?

Quantum Artificial Life is a brand new research topic on the field of quantum

computation. The idea between this topic is to make use of quantum mechanics

to improve life simulations model.

For this, we will construct an analogy between what we consider an alive

individual in any life simulation model and the qubit, the fundamental element

of quantum computing. Definition of Life is a very active topic of discussion,

since it can be interpreted from the point of view of so many branches of

knowledge including biology, physics or philosophy [28,29].

It is worth to mention that from a thermodynamic point of view, we can

consider alive a physical system which is able to decrease their internal entropy

at the expense of matter or energy taken in from the environment. Also, we

can interpret the death as the reaching of thermodynamic equilibrium between

the organism and the environment [30].

Of course there are many extensive definitions from each branch of biology

11
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but we will just take the simplest characteristic of them in order to construct

our analogy as follows.

• Alive individuals are born. This is represented by the initialization of

the qubits (individuals) in a predefined initial state.

• Alive individuals interact with the environment and progressively age.

This is represented by the loss of information of qubits due to decoher-

ence.

• Alive individuals interact with other individuals. In a very similar way,

qubits interchange information using many-qubits gates.

• Alive individuals self-replicate. Likewise, qubits can copy partial infor-

mation to other qubits.

• Alive individuals eventually die. Similarly, in a quantum computer

qubits reach equilibrium state after some finite amount of time.

These considerations will be in the core of our life model.

3.2 Quantum Artificial Life previous models

So far, we gave a general vision of the analogies that can motivate a Quantum

Artificial Life model. In order to construct our own model, let us first take a

look of what has been done in this topic.

This project is strongly based on the work described in Refs. [31] and [32].

The model described in these publications can be interpreted at the starting

point of the model that will be proposed in the present work. Also modifica-

tions on the model proposed in Ref. [33] has played a special relevance for this

project, as we shall see in next sections.

In order to understand our model it is necessary to briefly explain the model

presented in Ref. [31]. The essential features of that model can be states as

follows

• Life unit. Individuals are described by two-qubits states: genotype

and phenotype. First one stores the genetic information of the individ-

uals, which is transmitted from generation to generation. Environment
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cannot affect the state of genotype but it can suffer random mutations.

The second one, phenotype, suffers the action from the environment, and

it gets modified with interactions with other individual and the passage

of time. When an individual is created, the information is copied from

the genotype to the phenotype as we will see in section 3.2.1.

• Death. Essential property of life. In this model, the essential quantum

observable is 〈σz〉, being σz the Pauli matrix. However, we will use a

convention which is different for most standard definition of σz:

σz =

(
−1 0

0 1

)
. (3.1)

This matrix representation is based on the usual computational basis:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. (3.2)

This non-standard notation is more consistent with the physical situation

on an actual computer, where |1〉 state is a more energetic state than

|0〉. This will be specially relevant at some points of this project

Individual is considered dead once 〈σz〉p (on the phenotype subspace)

reaches a certain minimal value 〈σz〉p < σdeath
1

• Preys and predators. We have two kinds of species. Preys are born

with greater 〈σz〉 than predators. This causes that predators’ life ex-

pectancy is shorter than preys’ life expectancy. If the predators’ new-

born ratio is shorter enough, predator species’ survival will rely on the

interaction with preys.

• Self-replication. Again, essential characteristic of any life model. This

model uses asexual reproduction based on the copy of partial information

as we will see in more details later.

1Actually in Ref. [31] and [32] the convention used for σz is different, so individuals are

dead when they reach a maximal value 〈σz〉p > σdeath. However, we are still describing the

exactly same model with a slightly different notation.
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• Environment. Passage of time must affect the phenotypes of individ-

uals. A Lindblad master equation is used for this purpose, since this

equation describes most of the open quantum system dynamics [36].

In the next sections we will take a further look into these features of the model.

Also, we will explain some of the disadvantages of the original model and some

first improvements that has been proposed for it.

3.2.1 Self-replication

The non-cloning theorem states the non-existence of an unitary operator that

could copy an arbitrary qubit state into a blank state, thus making two copies

of the same unknown state. Such impossible operator would be perfect for this

model so that we could use it to replicate the progenitor’s genotype into the

progeny’s genotype. Also this would allow us to copy then information from

the new born’s genotype to its phenotype.

However, there exist the possibility of partially copying the quantum infor-

mation from one qubit to the other. Specifically, we are interested in producing

a copy only of the expectation value of an operator O.

The mathematical formalism is as follows [35]: given a quantum state ρ,

the expectation value of an observable 〈O〉ρ and another blank state ρe, there

exists a partial cloning unitary operator, U(O, ρ) which acts on the product

state ρ⊗ ρe such as

〈O〉ρ = Tr(Oρ) = 〈O ⊗ 1〉U(ρ⊗ρe)U† = 〈1⊗O〉U(ρ⊗ρe)U† . (3.3)

This means that, in the new state U (ρ⊗ ρe)U †, the result of measuring 〈O〉
on first or on the second subsystem will be the same. Of course this is a copy

of the expectation value of a specific operator, and for other operators we will

need a different U gate.

The general expression for this partial cloning gate is given in Ref. [35],

yet it will not be necessary for our purposes. We aim to copy the 〈σz〉 value

between two qubits (two 2−dimensional systems). For this case, the partial
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cloning gate is the C-NOT

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (3.4)

whose matrix representation is based on the product state of the aforemen-

tioned computational basis.

It is straightforward to visualize the 〈σz〉 cloning with C-NOT gate using

pure states ρ = |ψ〉 〈ψ|. Let us consider a general state |ψ〉 = α |0〉+β |1〉 that

we aim to copy into the |0〉 blank state. Applying the C-NOT gate we obtain

|ψ′〉 = UCNOT |ψ〉 |0〉 = α |00〉+ β |11〉 . (3.5)

Now we can easily see that regardless of which of the two qubits we measure,

the result will be the same

〈σz ⊗ 1〉|ψ′〉 = 〈1⊗ σz〉|ψ′〉 = −|α|2 + |β|2. (3.6)

To conclude, a C-NOT gate can copy the information regarding the expec-

tation value of σz, which is our relevant observable. Thus, we shall use this

gate in order to both copying the genotype state to the phenotype one and

also the progenitor’s genotype into the newborn’s genotype.

3.2.2 Environment (aging)

Lindblad master equation

As we mentioned earlier, the passage of time will be modeled by making use

of a Lindblad master equation [36]

dρ

dt
= Lρ = γ

(
σρσ† − 1

2
σ†σρ− 1

2
ρσσ†

)
(3.7)

where σ ≡ |0〉 〈1| and γ > 0 is a decay parameter.

A complete derivation of Lindblad equation can be found in Ref. [37, 38].

For our purposes, we will just remark the most important assumptions needed

to apply Lindblad equation so that we can justify its appearance in our model.
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We shall assume a small system ρ in presence of a environment ρenv with

infinite degrees of freedom. Coupling is assumed to be small and both systems

are initially uncorrelated, so we can write them as product states ρ(0)⊗ ρenv.
Also, we will assume zero temperature T = 0K and we will accept that system

has no memory and thus we can make use of Markovian approximation [36,

38,39].

All this assumptions reflect the physical reality of a quantum computer, a

system constituted by few degrees of freedom (qubits) an a environment that

weekly interacts with qubits causing decoherence.

As we will see in the following, the evolution of 〈σz(t)〉 under this equa-

tion implies an exponential decay. Given a general 2-level quantum state,

represented by the density matrix

ρ(t) =

(
1− a(t) b(t)

b∗(t) a(t)

)
, (3.8)

along with the initial condition 〈σz(0)〉 = Tr{σzρ0} = 2a0 − 1, the master

equation takes the form

ρ̇ =

(
1− ȧ ḃ

ḃ∗ ȧ

)
= γ

(
a −b/2

−b∗/2 −a

)
. (3.9)

The solution of this equation can be found to be

ρ(t) =

(
1− a0e−γt b0e

−γt/2

b∗0e
−γt/2 a0e

−γt

)
. (3.10)

Consequently, the evolution of 〈σz(t)〉 is given by

〈σz(t)〉 = 2a0e
−γt − 1 (3.11)

which indicates a decay of the initial value to the ground-state value 〈σz(t −→
∞)〉 = −1.

The main problem here is the fact that quantum algorithms works in dis-

crete steps, so we need to find how to discretize this time evolution in order

to build its quantum simulation. The solution presented in Ref. [32] is based

on a rotation than can simulate this decay of 〈σz〉 only for specific states.

Therefore, we will reject this time-passing mechanism because it requires the

knowledge of the previous state of the phenotype in order to apply an specific

rotation that can reduce its 〈σz〉 value.
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Amplitude-damping channel

Despite modelling aging using Lindblad equation is reasonable, we need a

concrete method to implement this aging in specific qubits. This would be

achieved using the operator sum representation of the dynamics. The following

matrices, called Kraus operators [3]

A0 =

(
1 0

0
√

1− η

)
(3.12)

A1 =

(
0
√
η

0 0

)
,

with 0 ≤ η ≤ 1 represent the same evolution for the ρ(t) as the Lindblad

master equationin the form

EAD(ρ) = A0ρA
†
0 + A1ρA

†
1. (3.13)

This operation is also called quantum amplitude-damping channel, and it was

proposed in Ref. [33].

Let us compute the result of the amplitude-damping channel acting on a

general state in the form

ρ =

(
1− a b

b∗ a

)
. (3.14)

Applying Eq. (3.13) and simplifying we obtain

EAD(ρ) =

(
1− a(1− η) b

√
1− η

b∗
√

1− η a(1− η).

)
(3.15)

We can compare this result with the solution of the Lindblad equation given in

Eq. (3.10) and notice that both results are the same by making the following

identification

1− η = e−γt. (3.16)

Therefore, this mechanism allows us to perform a discrete time-passing step

equivalent to a time γt = − log(1 − η) on the Lindblad equation. Note that

for a small time steps γt, η << 1 both time parameter and quantum channel

parameter are proportional: η ' γt.
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Quantum channels are not unitary operations, so there not exists any gate

than can compute this operation by itself. Yet they can be implemented mak-

ing use of an ancillary qubit as shown in Sec. 5.1. This can be a computational

problem since we will need to use this quantum channel several times but it is

still our best choice. Therefore, we will use this method as our mechanism to

simulate the passage of time.

3.2.3 Environment (interactions between individuals)

Discarding first proposal

In Ref. [31] the proposal for the interaction gate between two individuals is

the following one: a controlled unitary operation which uses genotypes of the

individuals as control qubits and phenotypes as target qubits. When control

qubits are equal, the target qubits remain unchanged. On the contrary, when

control qubits are different, target qubits are exchanged as shown in table 3.1.

in out in out in out in out

|0000〉 |0000〉 |0100〉 |0100〉 |1000〉 |1000〉 |1100〉 |0110〉
|0001〉 |0001〉 |0101〉 |0101〉 |1001〉 |0011〉 |1101〉 |1101〉
|0010〉 |0010〉 |0110〉 |1100〉 |1010〉 |1010〉 |1110〉 |1110〉
|0011〉 |1001〉 |0111〉 |0111〉 |1011〉 |1011〉 |1111〉 |1111〉

Table 3.1: Truth table of the interaction gate proposed in Refs. [31,32], where

control qubits are the second and fourth ones and target qubits first and third

ones.

The purpose of this gate is that when two qubits represent individuals of

same species (same genotype) they do not interact, but when they represent

individual of different species (prey and predator) the interaction benefit the

species with low 〈σz〉 (predator) while harming the species with high 〈σz〉
(prey).

But once again, this mechanism cannot be used for a system including

several individuals repeatedly interacting between them. The reason is that

interchanging phenotypes is not a realistic prey-predator interaction mecha-

nisms since it does not necessarily always benefit to predators while damaging
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preys. For example, if a prey and a predator that have previously interacted,

interact again, they will interchange its phenotypes a second time, in which

case the effect of two interactions will simply cancel. This need to be fixed

and we will see how do do this in the next section.

Two amplitude-damping channels

Since previous mechanism does not represent a realistic model, we need to

explore new possibilities. Once again, in Ref. [33] it was proposed using quan-

tum channels as a solution. The idea is simple, in order to decrease prey’s

〈σz〉 value we will use the amplitude-damping channel already explained in

Sec. (3.2.2) with different parameter η′. So the effect of this new channel, as

explained before, is to reduce the 〈σz〉prey in the following way

〈σz〉prey = 2a− 1 −→ 〈σz〉′prey = 2a(1− η′)− 1. (3.17)

In order to increase predators’ 〈σz〉 value we will use a similar quantum

channel (let us name it as inverse amplitude damping) based on the matrices

B0 =

( √
1− η′ 0

0 1

)
and

B1 =

(
0 0√
η′ 0

)
. (3.18)

Note that these two matrices are the same as the ones in Eq. (3.12). In order

to visualize the results in a more intuitive way, now we consider the general

state ρ written as

ρ =

(
a b

b∗ 1− a

)
, (3.19)

so that initially, 〈σz〉predator = 1− 2a.

The result of applying this new operation can be computed by means of

EIAD(ρ) = B0ρB
†
0 +B1ρB

†
1, resulting in

EIAD(ρ) =

(
a(1− η′) b

√
1− η′

b∗
√

1− η′ 1− a(1− η′)

)
. (3.20)
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Thus, the evolution of 〈σz〉predator is given by

〈σz〉predator = 1− 2a −→ 1− 2a(1− η). (3.21)

Therefore, we can see that 〈σz〉 is actually increasing by a factor (1−η′) under

the action of this channel. 〈σz〉 will get closer to 1 as long as η′ gets closer to

1.

3.2.4 Death

As mentioned earlier, this model considers that individuals are alive as long

as its phenotype 〈σz〉 is greater than some threshold value σdeath (see footnote

1). As we will see in the next section, this mechanism has both advantages

and inconveniences.

The main advantage is that this mechanism can be related with the nature

of a qubit. Since qubits are physical systems affected by decoherence (envi-

ronment) this death mechanism can be analogous to the physical situation of

a qubit getting affected by physical phenomena such as decay which causes a

natural decreasing of the 〈σz〉. We will try to take profit of this situation in

further sections.

The main disadvantage is the fact that we need to know how many indi-

viduals are alive in each step and, thus we need to measure these values in

each step of the quantum computation. But quantum physics only allows us to

measure 〈σz〉 through the destruction of the quantum state, which interrupts

the execution. Fixing this problem will require more computational resources.

3.3 Space and structure of the simulation

Once proposed a mechanism for individuals to interact, self-replicate, and

die we need to define the space where these individuals can be placed and

distribute interactions.

The proposal is simple (also based in Ref. [33] with some modifications):

we set a 2-dimensional grid where individuals can be in one of the cells. We

will initially distribute the individuals randomly on the lattice. In each step of

our simulation, individuals will randomly move to one of the 8 adjacent cells
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or stay in the same cell, with equal probability. Movement is aborted if cell

was already occupied. Also, movements to a cell outside the limit of the lattice

are corrected to the closest cell inside the lattice.

Two individuals interact when they are placed in adjacent cells, as shown

in Fig. (3.1).

Figure 3.1: Grid with a predator (red square) and a prey (blue circle) inter-

acting. Red shaded cells form the interacting field of the predator

Also, there will be a certain probability for each alive individual to self-

replicate after each step. If this happens, self-replication mechanism will be

executed and a new individual will be randomly assigned to a free cell.

Note that our spatial dynamics is purely classical, and grid must be pro-

grammed by classical means. This indicates the unavoidable combination be-

tween quantum and classical computing that will characterize our simulations.

3.4 State-of-the-art of Quantum Artificial Life

and new objectives

Now that we have an overall view of the model, we need to know at which

point is the development of this model.

As we have already mentioned, Quantum Artificial Life is a new-born topic

in quantum computation and Ref. [31–35] are the only publications where
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we can find something about this model. In Ref. [35] the authors provide

a deeper view into the mathematical formalism beyond the partial-cloning

method. In Ref. [31] the aforementioned basis of the model is set, while in

Ref. [32] a first implementation on a IBM Quantum Computer is performed.

This implementation consists on the simplest Quantum Artificial Life that we

can design: just two individuals are initialized, an interaction between them

is performed, followed by the simulation of the passage of time. There is no

spatial dynamics in this first approach.

In Refs. [33] and [34] a few more steps were taken. Besides the improved

features already mentioned, in Ref. [33] a more complex system is numerically

simulated. Here a dynamic system were individuals are placed in a grid is

used and the number of individuals is increased up to 4 individuals. However,

simulation is purely numerical, assembling density matrices. Thus, there is no

implementation on a quantum computer.

Having an overall view of the topic allow us to clearly state our goals. Due

to the huge number of qubits that it would require, it is not reasonable to say

that our goal is to implement a prey-predator system making use of a quantum

computer that reproduces Lotka-Volterra equations in the appropriate limit.

We expect the Lotka-Volterra dynamics to emerge when both the number

of individuals and the number of steps are large, as we will discuss later.

Such system would require a number of qubits out of the current quantum

computation resources.

But we want to do some approach to this objective, so we could say that

our goal is to check whether it is possible to observe a Lotka-Volterra

prey-predator system in a large enough quantum computer. For this,

we will make use of the following classical means

• First, a classical algorithm where the essential characteristics of the

model is presented, i.e., the classical algorithm performs all the mecha-

nisms of our model but classically imitating the action of these mecha-

nisms on the 〈σz〉 of each specie. We do not worry about the efficiency

of the algorithm here.

This algorithm will be optimized so that we can reach large number of

individuals (∼ 103) and steps (∼ 103) using reasonable computational

times so we can check if your model will indeed work on a quantum
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computer.

• Second, the IBM Qasm Simulator, which is a classical simulator that

allow us to implement noise models on our simulations so that our results

will be closer to a real quantum execution. This simulator only allows us

to use up to 32 qubits so we are still strongly limited on the number of

individuals and the results will not reproduce Lotka-Volterra equations,

as expected.



Chapter 4

Classical simulation

Before we design an implementation of our model on a quantum computer, we

will make a first classical approach. So we will build a classical program that

simulates the behaviour of the 〈σz〉 value for each individual, without using

the quantum formalism. This will allow us to simulate a much larger number

of individuals than the number that quantum computation can allow us.

In this chapter major decisions regarding the quantum simulation will be

taken, such as removing the genotypes from our system or simplifying the

predator-prey interaction.

4.1 Basis of the simulation

Our aim is to check whether the model that we will use for the quantum sim-

ulations can properly replicate the Lotka-Volterra equations. So this program

will replicate some of the variables that are relevant for the quantum code.

Then, we will use a string σz variable which is analogue to the expected value

〈σz〉 of each qubit, and gives us the information whether individuals are alive

or not. Damaging of individuals decrease the σz value, and individuals will be

dead when σz < σdeath for a certain σdeath. Key points of simulation are

• We have a 2-dimensional grid where individuals are located. Each step

they move randomly to a contiguous cell.

• In each step there is a certain probability for each individual to self-

replicate.

24
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• Self-replication probability for preys is constant (parameter α of LV equa-

tion) but self-replication probability for predators is proportional to the

number of preys (parameter β of LV equations)

• In each step all individuals are damaged by the passage of time.

• If two individuals are in contiguous cells, they will interact and this

will damage the prey. Finally, we decide not to increase σz value of

predator at each interaction since we already increase its born ratio with

the number of preys. Thus, the behaviour of the βxy term of Lotka-

Volterra equations is already implemented here. We tried also increasing

predators’ σz each interaction, with almost identical results.

• For this section, we decided to remove the genotypes from the model

and thus, renounce to observe natural evolution and focus on populations

evolution. Self-replication is performed similarly, except that initial phe-

notype value is the same for all individuals of the same species. In the

last section, we will implement genotypes and discuss its contribution to

the model

4.2 How aging and damaging are simulated

We want this program to reproduces the results that the quantum simulation

will provide. As we explained in Sec. 3.2.2, the quantum code makes use of

several amplitude damping quantum channels which allow us to decrease

the σz value by a factor of e−γi , where γi is the damping factor1. We will use

a parameter γTime when the channel is used for simulate aging and a different

value γFeed when the channel represents a feeding interaction.

As we explained, on the quantum part we will use the following convention:

〈0|σz |0〉 = −1 and 〈1|σz |1〉 = 1, so our analogous variable σz needs to be

−1 ≤ σz ≤ 1. Consequently, the function that decreases the value cannot be

such simple as σz −→ σze
−γi since we will decrease until σz = 0 which is not

the minimal value.

1For simplicity, we redefined the factor γt to a single dimensionless factor γ since a single

parameter completely characterizes the channel.
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To properly perform the decreasing of σz by some factor we first need to

linearly re-scale σz into a σ′z such 0 ≤ σ′z ≤ 1, and then revert the change.

This is required so that if we apply the quantum channel several times our σz
will approach to the minimal value, −1.

The relation between the two conventions of σz is simply given by

σ′z = (σz + 1)/2, σz = 2σ′z − 1. (4.1)

So, the function that decreases σ′z due to time or feeding will be

f ′γi(σ
′) = σ′e−γi , (4.2)

where i can refer to feed or time depending on which channel we are using.

Then, the function that we will use for decreasing σz is

fγi(σz) = 2×
(σz + 1

2
e−γi

)
− 1 (4.3)

Obviously, if we repeatedly apply this function we get a bigger decreasing.

Applying n times this function is equivalent to apply it once with nγ decay

factor as fnγi(σz) = f(nγi)(σz).

Figure 4.1 shows how an individual with initial σz,0 is affected when this

function is repeatedly applied.

4.3 Functioning of the program

Let us explain in a schematic way how the program works step by step.

• Set the parameters in the model (size of grid, number of initial individ-

uals, self-replication probabilities, γi, number of steps, etc.).

• Randomly distribute individuals on the grid.

• In each step we perform the following actions:

• To check, for each individual, if there are interactions (prey and

predator in contiguous cell) and decrease prey’s σz value using previously

explained function fγFeed .

• To simulate the passage of time by decreasing all σz values making

use of fγTime
.
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Figure 4.1: Effect of applying fγ with γ = 0.5 several times on an individual

with σz,0 = 0.7. Red lines denotes that individual will be dead setting σdeath =

−0.8.

• To check which individuals are dead and remove them from the

grid.

• With a certain probability, each individual can self-replicate and

create another individual of same species.

• To store the number of alive individuals.

• Randomly move individuals into a contiguous cell.

• Finally, we visualize the results. The program allows us to visualize the

grid evolution as in shown in Fig. (4.2)

Of course we have to understand that Lotka-Volterra equations are real

variable equations while the number of individuals is integer. Also, this sim-

ulation is based on random movements so this randomness can make results

differ from predictions. The effects of these two factors will be smaller as long

as we increase the number of individuals of or simulation, the limit where we

expect to observe the emergence of Lotka-Volterra behaviour.

One of the main manifestation of these problems was the extinction of the

populations. Since Lotka-Volterra solutions can reach minimal values really

close to zero, the randomness of the simulation could cause that some of the

populations eventually vanish. This situation is not reversible since, once
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Figure 4.2: Screenshot of the grid in one step of a small simulation. Red

squares represent predators while blue circles represent preys. Brighter colour

indicates individual with bigger σz value

a population has extinguish there is no probability of self-replication. This

motivated us to avoid the last individual of each population to die. So

the program allows an individual to be alive with σz < σdeath until a new one

is born.

4.4 Results of simulations

We made several combinations of the set of parameters so that we could ap-

proach a behaviour as similar as possible as the Lotka-Volterra solutions. A

similar behaviour (i.e. increasing the number of preys leads to an increase in

that of the predators, which leads to a decreasing of the preys population and

so on) can be observed for all choices of parameters. But this Lotka-Volterra-

like behaviour does not always match exactly Lotka-Volterra solutions.

Figure (4.3) shows a comparison between the results of our simulation and

Lotka-Volterra solutions. As we can see, both plots seems to fit properly, but

in the simulation peaks may be not so regularly distributed and cycles are
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Simulation parameters Solution parameters

preys newborn probability 0.15 α 0.07

predators newborn probability 8E-4 δ 5E-4

feeding channel parameter γf 0.507 β 3.5E-4

time channel parameter γt 0.059 γ 0.165

Table 4.1: Parameters used in the simulation showed in Figs. 4.3 and 4.4.

not exactly the same. Differences can be more visible in the implicit plot of

Fig. (4.4), where we observe that simulated behaviour is not purely cyclical

as in the analytical solutions. The parameters used in both simulations and

solutions are displayed in Table 4.1.

Figure 4.3: Comparison between the simulation and Lotka-Volterra solutions.

There are several reasons that prevent us to use formal methods such as

χ2, in order to obtain the best fit and analyze its reliability.

First of all, the solutions are not analytical. For example, χ2 function for

preys, given a set of results {xi} with no error is [40]

χ2 =
∑
i

(x(ti)− xi)2 . (4.4)

Minimizing this function requires to numerically solve LV equation for the

preys x(t) for some unknown parameters α, β, γ, δ each time we evaluate χ2
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Figure 4.4: Comparison between simulation and Lotka-Volterra solutions, im-

plicit plots.

looking for a minimum. This leads to long computational times looking for

the optimal parameters.

Yet even ignoring this problem, χ2 test may not be a good method for

obtaining the best parameters beyond the simulation, since the small random-

ness of simulation can introduce fluctuations on the period of the solutions.

This can desynchronize the oscillations of simulations and LV solutions and

consequently, reasonable values of parameters may have a bad result with this

test while some solutions which do not reflect the actual behaviour can have

lower χ2 values, as we can see in Fig. 4.5.

4.5 Reducing the number of individuals

Since the objective of this classical simulation is to explore the behaviour

that our quantum life model will have, we will try to reduce the number of

individuals so that our future quantum simulation can use less qubits. In

order to achieve this, we will present the results for several configuration of

the parameters, by decreasing the number of individuals each time.
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Figure 4.5: Results of the simulation along with a fit that reflects the simu-

lation behaviour (green) and a trivial non-representative solution (red). Fit 1

has χ2 ' 1.38× 105 and fit 2 has χ2 ' 1.37× 105.

In order to reduce the maximal number of individuals we need to modify

several parameters: first, the grid size must be reduced so that the number

of interactions decreases proportionally and we can compare distinct simula-

tions. Also, we needed to reduce prey’s newborns ratio α and initial num-

ber of individuals. By trial-and-error we decided also to increase predators

self-replication ratio (since predators self-replication probability needs to be

multiplied by the number of preys and the number of preys is decreasing, in-

creasing this parameter makes the system more stable). Different parameters

of 4 simulations with progressively less individuals are shown in Table 4.2.

Of course, as we previously explained, a big number of individuals reduces

the randomness of the system so that we expect that reducing the number of

individuals should lead to a worst result. This is in fact observed in Fig. 4.6

where we show a comparison between this four simulations with progressively

less individuals.

We must note that, in Fig. 4.6, we always chose one of the best results

after performing several simulations. This allowed us to observe that the less

individuals we use, bigger differences are observed in the simulations with same
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Simulation a b c d

preys newborn probability 0.15 0.07 0.05 0.05

predators newborn probability 8E-4 1.5E-3 3E-3 6E-3

feeding channel parameter ηf 0.507 0.507 0.507 0.507

time channel parameter ηt 0.059 0.059 0.059 0.059

initial number of preys 150 20 20 20

initial number of predators 270 60 60 20

lattice size 60× 60 30× 30 30× 30 15× 15

Table 4.2: Parameters used in the simulations shown in Fig. 4.6.

Figure 4.6: From left to right and up to down, comparison of the four progres-

sively smaller simulations with parameters shown in Table 4.2.

parameters.
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4.6 Genotypes and natural evolution

We also built a version of the simulation which includes genotypes.

Functioning is really similar, but in each step we perform a random mu-

tation on genotypes. This mutation consist of adding a random number

r ∈ [−0.01, 0.01] to the genotype. Mutation is only allowed if resulting σz
of the phenotype is in the range σdeath < σphenotype < 1. Thus, when a new

individual is born its genotype and initial phenotype will be a copy of the

father’s genotype.

The results (shown in Fig. 4.7) are essentially the same when it comes to

the population evolution, and we can observe a really slow increase in the mean

value of the population genotype as we have new generations of individuals.

Two conclusions can be drawn from this discussion

• We need a large number of steps to observe natural evolution. This and

the fact that we need to double the number of qubits forces us to discard

this option for the simulation on a quantum computer.

• Our results indicate a slow tendency of increasing average population

genotype σz value, for both phenotypes and genotypes. This means that,

as long as the individuals are evolving, they become healthier, since new

individuals are born with a larger σz on phenotype, which gives them

more life expectancy.

4.7 Classical simulation: Conclusions

As we showed, it is possible to simulate a system using our model which accords

fairly to the Lotka-Volterra. But the level of precision that we aim to achieve

can limit us due to the need of a higher number of individuals. Making use of

thousand of individuals allows us to achieve excellent results, but this will not

be possible in the quantum simulation. We can notice that for a few tens of

individuals (∼ 70 individuals) the dynamics is quite irregular but we can still

observe a Lotka-Volterra-behaviour. This number of individuals is still out of

our quantum computational possibilities. So we can conclude that our goal of

observing Lotka-Volterra on the quantum simulation is very hard, demanding
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Figure 4.7: Simulation results. In the first figure, we observe that the evolution

of the populations is really similar to the first example shown in Fig. 4.6. In

the second figure, we show how the average genotype of the population slowly

increases in time.

improvements in the quantum hardware. However, we can still observe clues

of some similar behaviour, indicating that the theoretical proposal actually

works.

Regarding genotypes, we can also state that our model follows a Darwinian

evolution. Yet this evolution has a characteristic time considerably longer than

the evolution times considered here. Therefore, adding Darwinian character-

istics to the model will be discarded in the next section so we can focus on the

proper population evolution.
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Quantum Simulation

Since we now have a better perspective of what should we expect, let us focus

on design an algorithm that we can execute on a quantum computer.

First, we will explain in detail how we shall implement each of the afore-

mentioned mechanisms of our model. Also, major contributions to the model

of this project are explained in this chapter, since they mainly consist of ap-

proaches designed to make possible the simulation of the model on a quantum

computer.

Then, we will have to glue the mechanism together with the spatial dy-

namics in order to construct the whole prey-predator system simulation.

As we explained at Sec. 3.4, at the moment our only possibility is to execute

our algorithm on a simulator. So we will focus some details of the explana-

tion thinking about the Qasm Simulator by IBM, although every step can be

extrapolated to any of the most common quantum computers.

5.1 Aging

As we explained in Secs. 3.2.2 and 4.2, our idea is to make use of a quantum

amplitude-damping channel in order to simulate the passage of time due to

discrete steps.

Since quantum channels are not unitary operations they cannot be directly

implemented as a quantum gate: they require the use of ancillary qubits. The

simplest implementation can be found in Ref. [3]. It consist of a controlled-y

35
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rotation by an angle (θt) followed by a C-NOT gate, as shown in Fig. (5.1).

Figure 5.1: Quantum circuit for implementing the amplitude-damping chan-

nel [3].

It can be shown [3] that this circuit performs the quantum operation given

in Eq. (3.13) with η = sin2(θt/2).

However, our model needs to simulate aging to each phenotype at each

step. For a system with N individuals with a maximum of S steps, this would

require the number of N × S ancillary qubits. So our computational limit

will be reached incredibly soon. This is the main motivation for the following

proposal.

5.1.1 Taking profit of the natural decay of the qubits

Qubits are generally physical systems where |1〉 represents the excited state

which naturally decays to the ground state |0〉. Thus, if we keep the circuit

static (without applying any gates) for a certain time t of the order of the

decay time of the qubit (T1), we will observe a very similar behaviour of

the one produced by the amplitude-damping channel. This coherence time is

characteristic of each qubit. We should expect similar coherence times for all

the qubits of a quantum computer although some quantum computers have

considerably different T1 for each qubit. However, it would be interesting to

interpret the differences of T1 times between qubits as the fact that different

individuals die at different ages due to several causes (diseases, accidents,

etc...) and the average T1 would be the average life expectancy.

It is worth also mentioning the natural dephasing which causes the ran-

domization of the relative phase between the components |0〉 and |1〉 of the

qubit state. This process is characterized by the T2 time. Yet this phenomena
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has no special relevance for us since we are measuring 〈σz〉 operator which

does not take into account dephasing between |0〉 and |1〉 states.

Coherence times of some of the IBM quantum computers are shown in

Table 5.1. They are calibrated daily [41], but the order of magnitude does not

change.

Quantum Computer # qubits T1: max-min-average (±1µs) T2: average (±1µs)

IBM Q Melbourne 14 19-102-57 59

IBM Q5 Rome 5 70-111-91 117

IBM Q5 London 5 61-107-75 85

IBM Q Yorktown 5 44-72-58 62

IBM Q Armonk 1 195 148

Table 5.1: Coherence times of some of the public access IBM quantum com-

puters. Based on [42] but updated using data from [41] (11/06/2020).

Also, this idea is extremely coherent with the philosophy of Quantum Ar-

tificial Life: we are taking profit of how time progressively destroy quantum

information to precisely simulate how time progressively destroy life. So this

mechanism is included in the very nature of quantum physics.

Thus, applying several identity gates which makes no other thing than

delay the execution of the program we will get a natural decay of the state

|1〉 towards the ground state |0〉. The number of identity gates needed will

depend on the run time of each gate (which also depend on the calibration)

and the strength of the decay that we want to observe (related with parameter

η of amplitude-damping channel).

5.1.2 Noise Models in Qasm Simulator

As we have already mentioned, we will need a large amount of qubits. IBM Q

Melbourne is the biggest public access IBM quantum computer, but its decay

times are extremely short and very different between all the qubits. This

confirms us the fact that we are restricted to use the IBM Qasm Simulator.

Quantum simulators are generally ideal simulators which introduce no noise

to our computations, so this idea of taking profit of the natural decay may

not be applicable to our simulations. Luckily, IBM Qasm Simulator allows
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us to include customized error models into our simulations [43], which can be

extremely helpful for us. Among all the possible error models that we can

implement, such as phase damping or thermal relaxation, we will choose the

amplitude-damping. This means that when we implement this model, the

decay to the ground |0〉 state will be modelled through an amplitude-damping

in certain gates but it will not require an extra qubit to implement the quantum

channel. So we will get same results with no need of using ancillary qubits.

Also, we have plenty of freedom applying this noise model: we can choose

which gates and which qubits will be subjected to this error. Of course, we

can also choose the error strength through the amplitude-damping parameter

η. We will implement the error on phenotypes qubits and on identity gates.

Thus, our time-passing simulation will consist of just identity gates in the

phenotype qubits with a noise model parametrized by our chosen value of η.

Of course, in a real quantum computer the practical situation will be quite

different: we would have to calibrate how many identity gates should we im-

plement in order to achieve a proper decay in phenotypes qubit. But the final

result will be similar. Furthermore, if we are implementing genotypes in our

model, same decay will be produced on the qubits representing them, and

we do not want genotypes to be affected by the environment. This last issue

motivated us to propose the solution of next section.

5.1.3 Proposal to avoid damping at genotype

We know that quantum computation is performed in parallel on all qubits,

so the aforementioned mechanism of delay the computation on some qubits

will affect all qubits, including the genotypes. Genotypes are modelled so that

they do not suffer other change than random mutations. Before we explain

our proposed solution, let us clarify two points:

• It is not our goal in this project to implement simulations including

genotypes. This proposal is explained for completeness and to show that

(ignoring our lack of quantum computational resources) it is possible to

implement a model including genotypes using our time-passing mecha-

nism.

• Our proposal has been tested on the simulator. Implementation on a
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quantum computer may require further calculations and tests in order

to calibrate the number and positions of the gates.

Given that a time-passing operation is given by T identity gates (here,

we have chosen T = 6 since we can choose the effect of identity gates using

previous model), we can insert in the genotype 2 NOT gates between all these

identity gates: first NOT gate will be placed close to the beginning and second

NOT gate at the end. Of course, at the phenotype we will implement the same

number of identity gates with no NOT gates inserted between them. The idea

is that, before we place first NOT gate, the physical sate had decay about half

of the total decay that we should expect. Then, the other half of the process

is performed between NOT gates, which leads to the inverse behaviour. Thus,

second part of the process causes an increasing of the 〈σz〉 of the state that

cancels the first decay.

In Fig. 5.2 our positioning of gates is showed and how this achieves to

leave the genotype’s 〈σz〉 unmodified. An amplitude-damping noise model

was implemented using a parameter η = 0.06.

Figure 5.2: At left, gates distribution for genotype (q1) and phenotype (q0)

are shown. At right, we first observe the 〈σz〉 genotype evolution each step:

NOT gates cause bounces and finally we obtain (almost) same initial value.

On the other hand, we can then observe that phenotype 〈σz〉 is progressively

decaying each step

At the end, the genotype’s 〈σz〉 final vale is almost the same as initially, in

such a way that the quantum computation will not interfere with the results.
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Small and random variations on the genotype can be perfectly justified in a

Darwinian model as random mutations. In Fig. 5.3 we show how the genotype’s

and phenotype’s 〈σz〉 evolve after 20 steps, just like the one shown in Fig. 5.2.

Figure 5.3: Results after 20 iterations of the quantum circuit shown in Fig. 5.2.

We can observe how the genotype value (first 20 bars) is almost constant,

suffering small random mutations, while the phenotype (last 20 bars) decreases

exponentially.

5.2 Interaction between individuals

Once again, extending the idea in Ref. [33], we will implement this mechanism

by making use of quantum channels. In the initial propose, two quantum

channels were necessary: the first one, the already known amplitude-damping

channel was implemented at prey’s phenotype in order to reduce its 〈σz〉,
while the second one —inverse amplitude-damping— works in a similar way

to increase 〈σz〉 value, as explained in Sec. 3.2.3. The implementation of this

second channel can be performed just realizing that the matrices describing it

(Eq. (3.18)) are exactly the same as the usual channel, but reversing the order

of the states |0〉 and |1〉. This allows us to use the same implementation as
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in the amplitude-damping channel but adding two NOT gates to the target

qubit before and after the circuit, as shown in Fig. 5.4.

Figure 5.4: Inverse amplitude damping. Now damping parameter will be

γf = sin2(θf/2)

Of course, a formal proof that this circuit actually performs inverse amplitude-

damping operation can be worked out, but since NOT gates just reverse the

states |0〉 and |1〉, this reasoning is enough to support our claim.

However, as we showed in Sec. 4.1, it is not necessary to increase preys’

〈σz〉 since Lotka-Volterra behaviour will be already implemented by making

new-born probability proportional to the number of preys. So, we will just use

the standard amplitude-damping for prey’s phenotype.

Of course we could use the same mechanism as in time-passing to decrease

〈σz〉, but we finally decided not to due it because of the following reasons:

• The time-passing mechanism takes place in every step for every individ-

ual, while feeding interaction is more occasional.

• The feeding interaction should be much stronger than time-passing in-

teraction, so we will need an extraordinary amount of identity gates to

cause such big time delay. Also, it is performed between only 2 individu-

als, which may lead to huge computational times and other type of noise

problems.

So we will use an ancillary qubit each time two individuals are interacting.

IBM Qasm Simulator allows us to restore qubits to the |0〉 state in the middle

of the implementation of the circuit. It is true that, nowadays, this is not

possible in a real quantum computer, but we shall use it in our simulations to

only employ one ancillary qubit, thus saving computational resources.
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5.3 Self-replication

Self-replication is performed by copying the state from progenitor’s phenotype

to the descendant phenotype, or if we include genotypes in our model, from

progenitor’s genotype to the descendant genotype and then from descendant

genotype to its phenotype. Partial state copying is performed using a C-NOT

gate as explained in Sec. 3.2.1.

Self-replication has a certain probability of occurrence for every individual,

in each step, as explained in the classical program section. This probability is

constant for the preys while, in the case of the predators, it is proportional to

the number of alive preys.

5.4 Death

As we mentioned while explaining the model, individuals are dead at the point

its phenotype 〈σz〉 reaches a minimal value σdeath. Yet here it comes what is

the main problem of Quantum Artificial Life: we have to know at each step

whether individuals are alive or not in order to move them at the grid, interact,

self-replicate, etc. But quantum computation only allows us to know the state

of a qubit through the measurement of the qubits, which destroys the state of

the system. So a quantum life simulation cannot be simply executed and look

for the final results.

Our solution is the following one: each step we perform all life proto-

cols that happened in previous steps such interactions, time-passing, and self-

replication and then, we measure the circuit. We store the data and, by

classical means we check which individuals are dead, i.e., we check whether

any phenotype qubit has 〈σz〉 < σdeath. If an individual is dead, we remove

this individual from our system, which means, this individual will not interact

or self-replicate again and its qubits will be used for further computations1.

Then, we will repeat the exact same quantum computation but adding

a new step (which may contain another interaction, self-replication, death),

1Once again, when implementing model on Qasm Simulator we will be able to restore

qubits of death individuals in order to use them again, although this is not the general

situation in a real quantum computer
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but excluding previously dead qubits. After this new execution, the system is

measured and data is again analyzed.

Of course this whole procedure of measuring data at each step and exe-

cuting each time all steps until the current one, will noticeably delay compu-

tations, but is the only way to check at each step which individuals are still

alive.

5.5 A complete quantum simulation

We have built a code which allows us to execute a complete scenario of quan-

tum life including all the previously described mechanisms. This code com-

bines scripts using qiskit (the open IBM Q python library) and Matlab R©.

First, let us highlight and clarify some points about our final simulation:

• Individuals move randomly in a 2D classical grid as explained in Sec. 3.3.

• We also prevent last individual from each specie to be dead as shown

and justified in Sec. 4.3.

• Since we have a limited amount of qubits it is unavoidable to set a max-

imal bound on the number of individuals. If the number of individuals

of a specie is maximal, there will not be newborns.

• Finally, we will not be implementing genotypes since we do not have

enough resources to observe natural evolution through this program.

The whole functioning of the program combines both quantum and classical

simulation due to the aforementioned fact that we must measure after each

new step and decide the next step using the information of the previous step.

For this, it is important to mention the agenda variable. It consist of a

string were each element is an event. Here, every event that take place at the

simulation is reported and saved. Possible reported events are:

• Feeding: it saves which individuals have interacted and at which step.

• Death: it saves which individuals have died at each step.
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• Newborns: it saves in each step, which alive individual is the father and

which free qubit we will use as newborn individual.

The agenda variable is essential to combine classical and quantum computa-

tion. Figure 5.5 schematically explains the general behaviour of the program.

Figure 5.5: Scheme of the simulation.

After each simulation, we can observe all the data concerning the simula-

tion, including the position of each qubit at each time and its 〈σz〉.

5.6 Results of quantum simulations

As we have explained, all simulations were performed at the IBM Qasm Simu-

lator. Our main limitation using this simulator is not the limited of 32 qubits,

but our own computational resources. Working with a standard personal com-

puter, we cannot expect to compute in a affordable amount of time anything

involving more than 20 qubits.

So most of the time invested in this project was dedicated to a trial-and-

error work in two directions: on one hand, looking for some proper parameters
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(of course classical simulations helped us since we used really similar parame-

ters) and on the other hand, making the most of our computational resources

and exploring which could be the limit of our simulations.

Finally, after several days of computations we achieve to put our limit in 17

qubits, using 1 qubit as ancillary, 9 qubits as prey’s phenotypes and 7 qubits

as predator’s phenotypes. The parameters used for one of the best results

obtained after several executions are shown in Table 5.2. In Fig. 5.6 we can

check different results using these parameters.

Parameter Value

σdeath -0.8

Lattice dimensions 10× 10

Prey’s self-replication probability 0.2

Predator’s self-replication ratio probability 0.1

Feeding channel parameter ηf 0.059

Time channel parameter ηt 0.507

Table 5.2: Parameters used in the simulation.

Although the graph of our results is not very conclusive, we can observe

some signs of a Lotka-Volterra behaviour. In other words, we can see how a

large amount of predators causes a drop on the number of preys and conse-

quently also on the number of predators. After a some steps, preys number

start to increase causing also an increase on the number of predators. Of

course this behaviour is considerably vague in our results, due to the huge

randomness of the system. As we expected, the small amount of individuals

makes that randomness affecting the processes of interaction and self replica-

tion plays such an important role on the system. Also, we can observe that

simulations are plenty different one from other.

However, our results from Chapter 4 already showed us that Lotka-Volterra

dynamics emerged for larger number of individuals, having progressively worse

and more random results when reducing the number of individuals and steps.

So, classical simulations can endorse the thesis that our quantum model would

follow Lotka-Volterra equations when considerably increasing the size of the

simulation.
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Figure 5.6: Results of population’s evolution of the simulation for 4 different

executions using, respectively 35, 40, 60 and 80 steps.



Chapter 6

Conclusions

In order to properly understand the advances of our work, it is important

to know where was the starting point of Quantum Artificial Life, which was

explained in Sec. 3.4 and the huge difficulties of observing a quantum system

with the characteristics of a Lotka-Volterra model.

First, we can say that classical simulation emulating the quantum model

was considerably successful: we replicated in a reliable way the mechanisms of

our quantum model (self-replicating, interacting with both environment and

other individuals and dying) into a classical program, in order to explode the

capacity of the model. Results were pretty successful when a large number of

individuals (in the order of few thousand) was implemented in the simulation.

This large simulation followed in a really reasonable way the Lotka-Volterra

equations. Also, a model using genotypes was implemented obtaining an slow

increase on both species genotype. This prove us that genotypes model is a

Darwinian model since it evolves according to natural selection.

Yet simulations are based on random factors, such as the random movement

in the grid and the self-replication probability and this randomness becomes

more evident when we decrease the number of individuals, and results starts

to progressively differ of Lotka-Volterra solutions.

Secondly, we could say that the results of our quantum simulation where

what we ought to expect: simulations are ruled by our own limitations so

properties that we can observe are just sketches of what we would like to

observe. This means, we do not truly observe a Lotka-Volterra behaviour on

our system but we can sketch this behaviour by identifying certain tendencies

47
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on the population to increase or decrease depending on the other population

according to Lotka-Volterra solutions.

However, classical simulation works as a support since they prove that our

quantum model could achieve same —or really similar— results provided that

we have an enough large number of qubits available. Obviously, computational

resources are nowadays the main limitations of Quantum Artificial Life. How-

ever, we could analyze classical vs quantum models ignoring this fact so that

we can make a fair comparison.

On the one hand, the main advantage of quantum models is the natural

way in which qubits adapt to individuals: using the decoherence of the system

as a time-passing mechanism and gates errors or dephasing as a random mu-

tations (when our model includes genotypes) provides us a optimal platform

for including these mechanisms. Furthermore, partial-cloning mechanism is

extremely optimized since only one C-NOT gate is required in order to copy

the 〈σz〉 value from the progenitor to the son. These advantages translate into

a optimization of quantum life model simulations in front of classical simula-

tions.

Yet on the other hand, there are two big points in favour or classical simula-

tions: The main one, the fact that quantum measurement destroys the current

system, does not allow to know the state of the system at intermediate steps.

This problem could be ignored if we are only interested in the final state of the

system —which is not our case, since our goal was to observe a Lotka-Volterra

behaviour so we needed to know the state at each step— and the solution

that we devised requires more computational time: provided that a classical

computation of n steps takes a time O(n), a quantum simulation that needs

to measure at each step an repeat the simulation until next step is equivalent

to perform
∑n

k=1 k = n(n+1)/2 steps, so quantum computation takes a O(n2)

time.

Also, the fact that we cannot reset qubits in most quantum computers plays

an especial relevant role since qubits representing death individuals and qubits

used in quantum channels are not used again. This can increase extremely fast

the number of qubits that we need for our simulation, since every step newborn

individuals and new interactions will take a brand new qubit.

Let us now give some perspectives that could be of great interest for future
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research.

One simple idea that could strongly optimize the number of qubits used is

to use previously dead qubits as a new individuals, since they can be considered

after a long time in the ground state |0〉.
Also, we could avoid our great weakness (measuring system multiple times

at each step) using weak measures that do not destroy the system or entangling

ancillary qubits with an individual qubit so that we get information of the

individual at a precise step.

Another different but interesting approach might be to study the ther-

modynamics of the system. Since life is constantly fighting against second

thermodynamics law, a balance of the entropy of the system could be a great

source of information about the simulation.

So as a final conclusion, we would say that Artificial Life is branch of

computational science were quantum supremacy can be achieved, yet it is

considerably more far away than other branches of computational science.
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Cuántica (2013). Faculty of Informatics, University of A Coruña. Compu-

tation Department.

[3] M. A. Nielsen, I. L. Chuan, Quantum computation and quantum in-

formation (2010). Cambridge University Press.

[4] R. Feynmann, Simulating physics with computers (1982). International

Journal of Theoretical Physics, Vol 21, Nos. 6/7.

[5] J. J. Fernandez, Richard Feynman and the birth of quantum

computing (January 2018). Medium. https://medium.com/quantum1net/

richard-feynman-and-the-birth-of-quantum-computing-6fe4a0f5fcc7

[6] J. Pade, Quantum mechanics for Pedestrians 2 (2018). Springer.

[7] P. Shor, Polynomial-Time Algorithms for Prime Factorization and Dis-

crete Logarithms on a Quantum Computer (1994). IEEE Computer Society

Press, pp. 124–134.

[8] Lov K. Grover, A fast quantum mechanical algorithm for database

search Annual ACM Symposium on the Theory of Computing (May 1996)

[9] Sreeja Chowdhury et al., Physical Security in the Post-quantum

Era: A Survey on Side-channel Analysis, Random Number Generators, and

Physically Unclonable Functions May 2020 https://arxiv.org/abs/2005.

04344

50

https://medium.com/quantum1net/richard-feynman-and-the-birth-of-quantum-computing-6fe4a0f5fcc7
https://medium.com/quantum1net/richard-feynman-and-the-birth-of-quantum-computing-6fe4a0f5fcc7
https://arxiv.org/abs/2005.04344
https://arxiv.org/abs/2005.04344


BIBLIOGRAPHY 51
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Codes and Files

In the following repository, most relevant codes of this project have been de-

posited:

https://github.com/alvaroesalvaroo/Quantum-Artificial-Life-Files

https://github.com/alvaroesalvaroo/Quantum-Artificial-Life-Files
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